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Abstract: Submarine landslides are a global geohazard that can displace huge volumes of loose
submarine sediment, thereby triggering enormous tsunami waves and causing a serious threat to
coastal cities. To investigate the generation of submarine landslide tsunamis, a three-dimensional
numerical model based on the smoothed particle hydrodynamics (SPH) method is presented in this
work. The model is first validated through the simulation of two underwater landslide model tests,
and is then applied to simulate the movement of the Baiyun landslide in the South China Sea (SCS).
The kinetics features of the submarine landslide, including the sliding velocity and runout distance,
are obtained from the SPH simulation. The tsunami waves generated by the Baiyun landslide are
predicted. In addition, sensitivity analyses are conducted to investigate the impact of landslide
volume and water depth on the amplitude of the tsunami waves. The results indicate that the
amplitude of tsunami waves triggered by submarine landslides increases with the landslide volume
and decreases with the water depth of the landslide.

Keywords: submarine landslide; tsunami; wave amplitude; SPH model; multiphase flow

1. Introduction

Submarine landslides are a phenomena of slope instability and failure in a submarine
environment, characterized by tremendous volumes and long runout distances [1–3].
The propagation of a submarine landslide can generate tsunamis and cause significant
coastal hazards. According to Harahap and Huan [4], submarine landslides account for
approximately 10% of all the tsunami events that have occurred in history, and rank as the
second-most frequent source of tsunamis. For example, the Storegga submarine landslide
generated a large tsunami that inundated most of the coastlines bordering the North Sea
and the Norwegian Sea [5]. In 1929, a catastrophic tsunami event triggered by a submarine
landslide occurred in the Grand Banks off the coast of Canada. The tsunami waves reached
heights of up to 8 m and resulted in 28 fatalities in the coastal areas of Newfoundland [6].
In July 1998, a submarine landslide occurred and generated tsunami waves of up to
15 m, and resulted in the loss of 2200 lives in the coastal cities of Papua New Guinea [7].
On 30 December 2002, a tsunami was triggered by the Sciara del Fuoco landslide in Italy
and caused serious damage to the infrastructure on the coastline of Stromboli Island [8].
Recently, a debris flow triggered by the 2018 Palu earthquake caused catastrophic tsunamis
and resulted in more than 2000 fatalities in Indonesia [9]. Therefore, submarine landslides
can generate large tsunami waves and result in a significant loss of life and property. With
the rapid development of ocean engineering nowadays, more and more attention is being
paid to the prediction and evaluation of tsunami waves.
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A tsunami triggered by a submarine landslide is a complex physical phenomenon
involving the strong interaction between loose sediment and the ambient water, which is
difficult to observe and record directly due to the complicated submarine environment and
its inaccessibility and unpredictability. A physical model experiment is the most common
and efficient way to investigate the surge waves generated by underwater landslides. For
example, Watts conducted a series of laboratory experiments to investigate the near-field
and far-field wave features generated by underwater landslides [10,11]. Ataie-Ashtiani
and Najafi-Jilani [12] performed 120 laboratory tests on the impulse waves generated by
both rigid and deforming-slide masses. Bregoli et al. [13] conducted 41 3D experiments to
define the empirical relationships between the landslide features and the resulting wave
characteristics. Recently, Hu et al. [14] investigated the process of wave generation in-
duced by subaerial granular landslides through a series of physical experiments. The
effects of impact angle, grain size, and water depth were quantified. However, physi-
cal model experiments are time-consuming, labor-intensive, and are often hindered by
space limitations.

As an alternative approach, numerical modeling is commonly used to investigate the
mechanism of submarine landslide-generated tsunamis. Traditional grid-based methods,
such as the finite difference method (FDM), the finite element method (FEM), and the
finite volume method (FVM), have been widely applied to study this topic and have
obtained the expected outcomes. For example, Rauter et al. [15] used OpenFOAM, a
multiphase solver based on FEM, to simulate the impulse waves generated by idealized
landslides, and to derive the scaling relations between landslide parameters and wave
amplitude. Deng et al. [16] constructed a numerical tank using FLOW-3D software, based
on the volume of fluid (VOF) method, to investigate the hydrodynamic response of a
sea wall subjected to tsunamis generated by submarine landslides. Yavari-Ramshe and
Ataie-Ashtiani [17] applied a two-layer two-phase landslide tsunami model based on FVM
to simulate both subaerial and submarine landslide-generated waves. Recently, meshfree
methods have been widely applied to the modeling of landslide-generated tsunamis, due
to their simplicity and efficiency. For example, Fu and Jin [18] proposed a multiphase
model based on the moving particle semi-implicit (MPS) method to predict the surge waves
generated by a landslide. Zhao et al. [19] presented a multiphase material point method
(MPM) to simulate flow-like landslides and generate impulse waves. Mulligan et al. [20]
used the particle finite element method (PFEM) to simulate the surge waves generated by
debris flows. Qiu et al. [21] developed a 3D lattice Boltzmann model (LBM) to investigate
the interaction between sediment and water and the generation of a wave. The more recent
advances and future challenges in the numerical modeling of landslide tsunamis were
discussed by Yavari-Ramshe and Ataie-Ashtiani [22].

The smoothed particle hydrodynamics (SPH) method is a meshfree method based on
a Lagrangian description. It is especially advantageous for modeling free surface problems
in ocean engineering, such as wave breaking [23,24], surf zone dynamics [25–28], and
fluid–solid interactions [29]. Recently, several numerical models based on the SPH method
have been presented for landslide tsunami modeling. For instance, Capone et al. [30]
established an SPH model to simulate landslide deformation and the generation of surface
tsunami waves. Shi et al. [31] simulated the generation of a landslide-induced impulse wave
using a soil–water bilateral-coupling SPH model. Farhadi [32] applied an ISPH formulation
to solve the rheological non-Newtonian Bingham model, and to simulate underwater
sediment transport and surface wave propagation. Mahallem et al. [33] developed a
WCSPH model and proposed a new constitutive law to describe the dynamics behaviors of
landslides and water, and analyzed the strong coupling between both phases. In addition,
the SPH-DEM coupled approach is now commonly applied to the simulation of landslide
tsunamis. Bu et al. [34] proposed a coupled algorithm of SPH and DEM to deal with the
interaction between landslides and water, and to simulate the surge waves generated by
underwater landslides. Tan and Chen [35] proposed a block DEM-SPH model to investigate
rigid landslides and their generated waves. Hu et al. [36] developed a coupled DEM-SPH



J. Mar. Sci. Eng. 2023, 11, 2015 3 of 19

model for the estimation of landslide-generated waves in Zhouziyan Reservoir, China.
Xu et al. [37] presented a DEM-SPH coupling method to handle the complex fluid–solid
interaction process in the generation of landslide tsunamis. According to the above research
works, the SPH method has the advantage of dealing with the complicated soil–water
coupling problems due to its Lagrangian and meshfree characteristics. Although some
pioneering achievements have been obtained, the 3D SPH modeling of submarine landslide-
generated tsunamis is still limited.

In this work, a 3D SPH model is developed to simulate tsunami generation caused by
submarine landslides. A laboratory model experiment recorded in the literature [38] is sim-
ulated and analyzed to validate the simulation precision of the SPH model. Subsequently,
a submarine landslide in the Pearl River Mouth Basin (PRMB) in the northern South China
Sea (SCS) is simulated; the entire process of the submarine landslide propagation and
tsunami generation is reproduced. Furthermore, the influence of the landslide volume
and water depth on the amplitude of the landslide tsunami is discussed in the sensitivity
analyses.

2. Numerical Approach
2.1. SPH Theory

In the SPH method, the governing equations, in the form of partial differential equa-
tions, can be transformed into summation form using two approximation approaches [39].
The first one is known as the kernel approximation, where the integral representation
generating functions are used. The second one is particle approximation, where the compu-
tational domain is discretized into a set of particles. Based on these two approximations,
the field variables and their derivatives in the SPH model can be expressed by [40]:

f (xi) ≈
N

∑
j=1

mj

ρj
f
(
xj
)
W
(∣∣xi − xj

∣∣, h
)

(1)

∇ · f (xi) =
N

∑
j=1

mj

ρj
f
(
xj
)
· ∇iW

(∣∣xi − xj
∣∣, h
)

(2)

where f represents an arbitrary field function, x denotes the coordinates of the SPH particle,
m refers to the particle mass, ρ represents the density, W represents the kernel function,
h represents the smoothing length, and N represents the total number of neighboring
particles.

The kernel function W, also known as the smoothing function, is very essential to the
performance of the SPH model. The cubic spline function and the Wendland function are
commonly used in the literature as the kernel function. They are employed to estimate the
function value at a given position. The cubic spline function is a classic kernel function
and has wide applications in various fields. It exhibits the properties of local support and
dominance, which contribute to good performance in terms of computational speed and
accuracy. Additionally, the cubic spline function is relatively simple, and easy to implement
and adjust. However, it has a drawback known as “stretching instability”, which poses
certain limitations for simulating multiphase flows [41]. The Wendland function is an
emerging kernel function that also has widespread applications in various fields [42].
Compared to the cubic spline function, the Wendland function exhibits better convergence
and numerical stability, particularly in high-dimensional spaces and for larger radii. As
a result, it has been extensively used in fields such as computer vision, spatial statistics,
and machine learning. Therefore, in this study, the Wendland function is used as the kernel
function for the SPH model, and its formulation is as follows:

W(r, h) = αD

(
1− q

2

)4
(2q + 1), 0 ≤ q ≤ 2 (3)
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where r represents the distance between two particles, and αD is a parameter with a value
of 7/4π in two dimensions and 21/16π in three dimensions. This formulation ensures
that the Wendland function provides a smooth and accurate interpolation within a limited
support radius.

2.2. Governing Equations

The governing equations for fluids involve a mass conservation equation and a mo-
mentum conservation equation, which can be expressed in Lagrangian form:

dρ

dt
= −ρ∇ · v (4)

dv
dt

= −1
ρ
∇p + F + Θ (5)

where v is the velocity vector, p represents the pressure of the fluid, F is the external force
acting on the fluid, and Θ represents the diffusion term.

Based on the SPH discretization algorithm given in Equations (1) and (2), governing
Equations (4) and (5) can be represented in the following SPH form:

dρa

dt
= −∑

b
mb(va − vb) · ∇aW(|ra − rb|, h) (6)

dva

dt
= −∑

b
mb

(
pa

ρ2
a
+

pb

ρ2
b

)
· ∇aW(|ra − rb|, h) + ga + Θa (7)

where the subscripts a and b represent the considered particle and its neighboring particles
within the support domain, respectively, and g represents the gravitational acceleration
acting on the particles, which is a form of the external force F in Equation (2).

Following the suggestion of Lo and Shao [43], the diffusion term Θ in the momentum
equation can be calculated as:

Θa = ∑
b

4mb(µa + µb)rab · ∇Wab

(ρa + ρb)
2
(
|rab|2 + η2

) vab (8)

where µa = ρav0, µb = ρbv0, and v0 is the dynamic viscosity of the fluid.
In the model presented here, the sub-particle scale model (SPS) presented by Dalrym-

ple and Rogers [44] for large eddy simulations is applied. The SPS stress tensor τ over
superscripts i and j is defined according to

τij

ρ
= 2vSPS

(
Sij − 1

3
Sijδij

)
− 2

3
Cl∆

2δij∣∣S∣∣ (9)

where vSPS is the eddy viscosity determined by

vSPS = (CS∆)2∣∣S∣∣ (10)

Cl is taken to be 0.0066 in this work. Cs = 0.12 is the Smagorinsky constant. ∆ is the initial
particle spacing.

∣∣S∣∣ is the local strain rate given by

∣∣S∣∣ = (2SijSij
)1/2

(11)

Sij is the Favre-filtered rate of strain tensor:

Sij = −1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(12)



J. Mar. Sci. Eng. 2023, 11, 2015 5 of 19

Using the symmetric formulation proposed by Lo and Shao [36], the discrete form of the
SPS stresses is (

1
ρ
∇ · τ

)
a
= ∑

b
mb

(
τa

ρ2
a
+

τb

ρ2
b

)
∇aWab (13)

Then, the diffusion term can be expressed as:

Θ = ∑
b

mb
4v0rab · ∇aWab

(ρa + ρb)
(
r2

ab + η2
)vab + ∑

b
mb

(
τa

ρ2
a
+

τb

ρ2
b

)
∇aWab (14)

In the simulation of multiphase flows, it is often necessary to simulate two different
fluids with distinct densities. The interface between these two fluids exhibits density and
mass discontinuities, which pose significant challenges for the accurate and stable solution
of the continuity and momentum equations. Therefore, when dealing with the interface
between the two fluid phases, the specialized treatment of the governing equations is
required. Hu and his colleagues [45,46] have conducted valuable research on the SPH
modeling of multiphase flows. The pressure term in their model is approximated as:(

1
ρ
∇p
)

a
=

1
ma

∑
b

(
v2

a + v2
b

)
p̃ab · ∇aWab (15)

with the inter-particle pressure in the following form:

p̃ab =
ρa pb + ρb pa

ρa + ρb
(16)

Therefore, when considering the inclusion of diffusion terms, the momentum equation at
the interface between the two distinct fluids can be expressed as follows:

dva
dt = − 1

ma
∑
b

(
v2

a + v2
b
)

p̃ab · ∇aWab + ∑
b

mb
4v0rab ·∇aWab

(ρa+ρb)(r2
ab+η2)

vab

+∑
b

mb

(
τa
ρ2

a
+ τb

ρ2
b

)
∇aWab + ga

(17)

2.3. Material Model

The Bingham fluid model is a commonly used non-Newtonian model to simulate the
rheological behavior of landslides [47–49]. In the presented SPH model, the submarine
sediment is assumed as a Bingham viscous fluid, which begins to flow as a viscous fluid
when the yield stress limit τy is reached. The constitutive law for a Bingham fluid is
given by:

τ =

(
η +

τy

(DΠ)1/2

)
D (18)

where τ is the shear stress tensor, η is the dynamic viscosity coefficient, and D is the rate of
strain tensor defined by:

D = ∇v + (∇v)T (19)

where ∇v denotes the velocity gradient tensor, and the superscript T denotes its
transpose tensor.

3. Validation of the SPH Model
3.1. Benchmark Problem 1: 2D Submarine Landslide Test

To validate the simulation precision of the presented SPH model, a model experiment on
the tsunami waves generated by underwater debris flow carried out by Rzadkiewicz et al. [38]
is simulated in this section, and the results are compared to the experimental data.
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Figure 1 shows the experimental setup, consisting of a rectangular water tank with
dimensions of 2.0 m × 4.0 m × 0.3 m. The slope of the inclined bed is set to 45◦. In this
experiment, the maximum water depth is 1.6 m. Under the effect of gravity, a large amount
of sediment (with dimensions of 0.65 m× 0.65 m× 0.30 m) slides down along the 45◦ slope
and generates surge waves.
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Figure 1. Schematic of the experimental setup of the underwater debris flow.

In Table 1 are the tabulated values of the parameters used in the SPH simulation in
this study. The densities of the water and sediment are set to 1000 kg/m3 and 1950 kg/m3,
respectively. The viscosity of the water is set to ηw = 0.001 Pa·s. The rheological parameters of
the sediment cannot be measured directly in the experiment. According to a trial-and-error
approach, we set ηs = 0.15 Pa·s and τy = 750 Pa in this study. In this case, the particle spacing
Dp = 0.01 m, the smoothing length h = 0.021 m, and the timestep Dt = 1.0 × 10−4 s.

Table 1. Parameters for SPH simulation of underwater debris flow.

Density of sediment ρs (kg/m3) 1950
Viscosity coefficient of sediment ηs (Pa·s) 0.15
Yield stress of sediment τy (Pa) 750
Density of water ρw (kg/m3) 1000
Viscosity coefficient of water ηw (Pa·s) 1.0 × 10−3

Gravity acceleration g (m/s2) 9.8

The SPH model for this experiment consists of approximately 230,000 particles. Based on
the SPH simulation, the movement of the underwater slope and the resulting surge waves are
obtained. Figure 2 shows the simulated slope configuration and water profile at 0.4 and 0.8 s.
Figure 3 shows the simulated water pressure field and the velocity vector of the fluid phase.
At t = 0.4 s, the underwater landslide moves downward along the slope, and the water surface
at the top of the landslide body collapses to occupy the position of the original landslide
body. The maximum velocity of the soil particles is about 0.49 m/s, and the maximum water
velocity is about 0.42 m/s. As the collapse of the landslide develops, the maximum velocity of
the soil particles reaches 0.87 m/s at t = 0.8 s, and the velocity of the water particles at the right
top of the slide is about 0.96 m/s. The relative movement between the landslide and the water
is not very significant. The distribution of the water pressure field is obtained, which shows
that the pressure in the pure water domain remains almost unchanged during the underwater
landslide movement.
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To validate the simulation precision of the SPH model, the simulated results are
compared to the experimental data recorded in the literature. Figures 4 and 5 show the
simulated and tested slope configurations and water profiles at t = 0.4 s and t = 0.8 s,
respectively. Through this comparison, it is shown that the simulation results are consistent
with the experimental observations.

3.2. Benchmark Problem 2: 3D Submarine Landslide Test

This benchmark problem is based on the 3D physical model experiments on landslide
tsunamis carried out by Ataie-Ashtiani and Najafi-Jilani [12]. A 3D SPH modeling is
conducted to simulate the landslide movement, and the resulting impulsive waves hereby
validate the accuracy and applicability of the SPH model for submarine landslide tsunami
modeling.

The experimental setup mainly includes a wave tank with dimensions of 2.5 m× 1.8 m
× 25.0 m. A total of 120 experiments were carried out, and the No. 115 case was selected for
simulation using the 3D SPH model developed in this work. The cross-section area of the solid
block A is 0.0195 m2, and the volume V is 0.0039 m3. The special gravity of the sliding granular
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material γ is 1900 kg/m3, and the total weight W is 7.41 kg. The slope angle of the sliding
bed θ is 45◦. The water depth in the wave tank h0 is 0.966 m, and the initial submergence of
slide hc is 0.025 m. A wave gauge was set above the initial position of the slide block. In this
simulation, the particle spacing Dp = 0.005 m, the smoothing length h = 0.011 m, and the timestep
Dt = 1.0× 10−5 s.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

To validate the simulation precision of the SPH model, the simulated results are com-

pared to the experimental data recorded in the literature. Figures 4 and 5 show the simu-

lated and tested slope configurations and water profiles at t = 0.4 s and t = 0.8 s, respec-

tively. Through this comparison, it is shown that the simulation results are consistent with 

the experimental observations. 

  
(a) (b) 

Figure 4. Comparison of the simulated and tested slope configurations at different times. (a) t = 0.4 s 

and (b) t = 0.8 s. 

  
(a) (b) 

Figure 5. Comparison of simulated and recorded water profiles at different times. (a) t = 0.4 s and 

(b) t = 0.8 s. 

3.2. Benchmark Problem 2: 3D Submarine Landslide Test 

This benchmark problem is based on the 3D physical model experiments on landslide 

tsunamis carried out by Ataie-Ashtiani and Najafi-Jilani [12]. A 3D SPH modeling is con-

ducted to simulate the landslide movement, and the resulting impulsive waves hereby 

validate the accuracy and applicability of the SPH model for submarine landslide tsunami 

modeling. 

The experimental setup mainly includes a wave tank with dimensions of 2.5 m × 1.8 

m × 25.0 m. A total of 120 experiments were carried out, and the No. 115 case was selected 

for simulation using the 3D SPH model developed in this work. The cross-section area of 

the solid block A is 0.0195 m2, and the volume V is 0.0039 m3. The special gravity of the 

sliding granular material γ is 1900 kg/m3, and the total weight W is 7.41 kg. The slope 

angle of the sliding bed θ is 45°. The water depth in the wave tank h0 is 0.966 m, and the 

initial submergence of slide hc is 0.025 m. A wave gauge was set above the initial position 

of the slide block. In this simulation, the particle spacing Dp = 0.005 m, the smoothing 

length h = 0.011 m, and the timestep Dt = 1.0 × 10−5 s. 

Experimental data
Simulation results

x (m)

y
(m

)

1.0 1.5 2.0 2.5

0.5

0.0

1.0

1.5
Experimental data
Simulation results

x (m)

y
(m

)

1.0 1.5 2.0 2.5

0.5

0.0

1.0

1.5

x (m)

y
(m

)

0.0 1.0 2.0 3.0

1.5

1.4

1.6

1.7
Experimental data
Simulation results

x (m)

y
(m

)

0.0 1.0 2.0 3.0

1.5

1.4

1.6

1.7
Experimental data
Simulation results

Figure 4. Comparison of the simulated and tested slope configurations at different times. (a) t = 0.4 s
and (b) t = 0.8 s.
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Figure 5. Comparison of simulated and recorded water profiles at different times. (a) t = 0.4 s and
(b) t = 0.8 s.

Figure 6 shows the simulated sliding process of the confined granular material. Note
that the water layer is hidden in the figures in order to display the sediment movement
clearly. The maximum velocity is about 0.5 m/s, and the slope configurations at different
moments are basically anastomotic with the experimental observations.
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Figure 7 shows the propagation of the impulsive waves generated by the underwater
landslide. After the initiation of the landslide, the water surface is depressed down at
the position near the slide center. The maximum depression of the water surface is about
0.032 m. In front of this depression, a positive wave with a mild crest appears, which
propagates along the sliding direction of the granular material. The amplitude of the
positive wave is about 0.010 m.
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To evaluate the effect of the particle size on the numerical results, the model is discreted
into SPH particles with three different sizes (d = 0.005 m, d = 0.010 m, and d = 0.020 m),
respectively. Figure 8 shows the time history of the wave amplitude at wave gauge ST1,
and compares the simulated results obtained from the model to the different particle
sizes. It shows that the simulated wave elevation basically matches the experimental data.
When finer particles are used, the simulation results of the SPH model are closer to the
experimental data.
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The simulation of the above two benchmark problems shows that the numerical
results are slightly different from the experimental data. The discrepancies may be due
to the size of the SPH particles being much larger than the diameter of the grains, which
has some effect on the water–sediment interaction and the evolution of tsunami waves.
However, with an increase in particle resolution, this gap is gradually narrowed. Although
there are some discrepancies, the numerical results basically match the experimental data,
thus, validating the accuracy of the presented SPH model for the simulation of submarine
landslide-induced tsunamis.



J. Mar. Sci. Eng. 2023, 11, 2015 10 of 19

4. 3D Modeling of Baiyun Submarine Landslide
4.1. Baiyun Landslide in the South China Sea

The South China Sea (SCS), surrounded by China, Vietnam, and the Philippines, is the
largest marginal sea in the western Pacific Ocean. It receives abundant sediment from river
systems, such as the Pearl River, the Red River, and the Mekong River. The distribution
of sediment accumulation in the South China Sea is shown in Figure 9 [50]. Additionally,
the SCS is in the convergence zone of the Pacific Plate, the Eurasian Plate, and the Indian
Plate. Seismic activities are very frequent in this area [51–53]. As a result, there are many
submarine landslides triggered by earthquakes in the SCS, especially in the Pearl River
Mouth Basin (PRMB). According to Zhu et al. [54], more than 142 submarine landslides,
with an average area of over 7 km2, can be documented in the PRMB. Figure 10 shows
the distribution of the seismic faults and submarine landslides, as well as the cities on
the coastline of the SCS which have been affected by landslide tsunamis in history. It is
reported that the risk of landslide tsunamis is very high in the PRMB [55,56], which poses a
great threat to China’s marine construction projects in the SCS. Therefore, it is important to
investigate the tsunami characteristics generated by submarine landslides in this area.
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The Baiyun landslide is the largest submarine landslide ever found in the deeper
part of the PRMB. It was of an enormous magnitude, covering an estimated area of
~5500 km2, with a total removal volume of ~1035 km3 of sediment, including a signif-
icant amount of mud, gravel, and coral reef blocks [57,58]. The landslide resulted in
significant changes to the submarine topography and hydrogeological environment of the
SCS, causing severe damage to the marine ecosystem and fisheries resources. It also made
a significant impact on China’s maritime security strategy and territorial sovereignty in the
SCS. Some previous studies have investigated the tsunamigenic potential of the Baiyun
landslide and highlighted the devastating waves generated by the Baiyun landslide [59–61].
However, the key features of the landslide propagation and tsunami generation were
not reproduced.
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4.2. Numerical Simulation of Baiyun Landslide

In this work, the bathymetric DEMs obtained from Ren et al. [62] are used to establish
a three-dimensional digital elevation model of the Baiyun landslide area in the PRMB.
Figures 11 and 12 show the bathymetric map and the three-dimensional terrain model of
the Baiyun landslide in the SCS, respectively.

According to the bathymetric DEMs of the Baiyun landslide, a 3D SPH model of
the landslide is established (Figure 13), which includes three different types of particles:
boundary particles, landslide body particles, and water particles. In this model, there are
over 8.5 million particles with a radius of 50 m. The red particles represent the landslide
body, and the color of the boundary particles represents the elevation of the submarine
topography, as shown in the legend. To present the submarine terrain clearly, the water
particles are hidden in Figure 13. In the SPH model, the density of the water is set to
ρw = 1000 kg/m3, and the viscosity is set to ηw = 0.001 Pa·s. The landslide body is simulated
as a Bingham fluid, with a density of ρs = 1860 kg/m3, a viscosity of ηs = 0.15 Pa·s, and
a yield stress of τy = 750 Pa. To balance the computational efficiency and accuracy, the
particle spacing Dp is 50 m in this simulation, h = 1.35 Dp, and Dt = 5.0 × 10−2 s.

Based on the SPH model, the numerical simulation of the Baiyun submarine landslide
motion across the 3D terrain is conducted, and the simulated results are shown in Figure 14.
The color of the SPH particles in the figures represents the kinematic velocity of the
landslide. Note that the water layer is hidden in the figures in order to clearly observe the
propagation behavior of the underwater landslide. The submarine sediment rapidly flows
down along the submarine terrain, with a main direction of NW-SE. The maximum velocity
is ~40.0 m/s, which occurs about 0.5 h after the landslide’s initiation. The submarine
sediment moves downslope and finally spreads out as a fan-shaped planform on the ocean
floor, as shown in Figure 14d. The simulated runout distance of the submarine landslide
is about 96 km. The whole movement process lasts about 2 h from the initiation to the
deposition of the submarine landslide.
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Figure 14. The 3D simulated results for the motion process of the Baiyun submarine landslide.
(a) t = 0.5 h, (b) t = 1.0 h, (c) t = 1.5 h, and (d) t = 2.0 h.

The propagation of a submarine landslide disturbs the ambient water and generates
surge waves on the sea. Figure 11 shows the simulated water surface elevations above the
Baiyun submarine landslide at different moments. According to the simulation results, the
movement of the Baiyun submarine landslide could generate large tsunami waves. The
amplitude of the leading wave is approximated to be 18.4 m. Figure 15 shows that the
propagation of the tsunami wave generated by the Baiyun landslide was in the southeast
direction, which basically agrees with the dominant landslide direction, as shown in
Figure 14.

4.3. Discussion

Landslide volume and water depth are considered to be two of the most important
factors that affect the characteristics of tsunamis generated by landslides [11,12]. However,
the Baiyun landslide is an ancient submarine landslide that occurred about 24 M years
ago. It is difficult to exactly determine the landslide volume and water depth at that time.
Therefore, the effect of the landslide volume and water depth is investigated in this section
to predict the potential tsunami generated by the Baiyun landslide.

4.3.1. Effect of Landslide Volume

The volume of the submarine landslide is a significant factor that influences the
tsunami waves, which is difficult to precisely measure in situ due to the complex features
(bathymetry, etc.) of the marine environment. To investigate the effect of the landslide
volume on the tsunami amplitude, SPH simulations of the Baiyun landslide with three
different volumes (V1 = 250 km3, V2 = 500 km3, and V3 = 1000 km3) were carried out in this
work. Figure 16 shows the tsunami waves at different moments generated by submarine
landslides with different volumes. Figure 17 shows the relationship between the tsunami
amplitude and the landslide volume. The axis of abscissas represents the maximum height
of the head wave generated by the submarine landslide. The axis of ordinates represents
the volume of the landslide body. In the simulations, the rheological parameters of the
submarine sediment were constant. The simulated results show that the maximum heights
of the head waves were about 7.6 m, 15.1 m, and 18.4 m when the landslide volumes were
250 km3, 500 km3, and 1000 km3, respectively. Therefore, it can be concluded that the
tsunami amplitude becomes higher as the landslide volume is increased.
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The wavelength and period are two important factors with which to evaluate a tsunami
disaster. In this study, the effect of the landslide volume on the wavelength and period of
the tsunami are investigated according to the 3D SPH numerical simulations. When the
landslide volumes are 250 km3, 500 km3, and 1000 km3, the length of the leading waves
are about 19.4 km, 22.1 km, and 26.3 km, and the periods range from 24.6 to 28.5 min,
respectively. Therefore, it can be concluded that a slide with a larger volume can generate a
tsunami with a larger wavelength and lower frequency.
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Figure 17. Relationship between the tsunami amplitude and the landslide volume.

4.3.2. Effect of Water Depth

Submarine landslides usually occur on distinct seabed domains, ranging from shallow
coastal areas to the deeper areas of the ocean. According to the bathymetric DEMs, the water
depth of the source area of the Baiyun landslide ranged from 2000 m to 3000 m. To investigate
the impact of water depth on the tsunami amplitude, simulations of the Baiyun landslide with
three different water depths (H1 = 2000 m, H2 = 2500 m, and H3 = 3000 m) of the landslide
head scarp are conducted in this work. Figure 18 shows the tsunami waves triggered by
the Baiyun landslide (V = 1000 km3) with different water depths at a time of 1.0 h after
landslide initiation. The simulation results show that the tsunami amplitude is 18.4 m,
14.5 m, and 7.3 m when the water depth is 2000 m, 2500 m, and 3000 m, respectively.
Figure 19 shows the relationship between the tsunami amplitude and water depth, which
indicates that a submarine landslide in a shallower water area may result in a larger
tsunami.
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Figure 18. Tsunami waves triggered by Baiyun landslides with different water depths. (a) H1 = 2000 m,
(b) H2 = 2500 m, and (c) H3 = 3000 m.

4.3.3. Limitations of the Presented SPH Model

The 3D SPH model presented in this work can simulate landslide propagation across
complex submarine terrain and predict the resulting tsunami waves. In the simulation of the
Baiyun landslide, the particle spacing is 50 m, which is much larger than the tsunami wave
height. The low resolution may result in considerable errors. However, high-resolution
3D modeling includes millions of SPH particles that greatly reduces the computational
efficiency. Therefore, high-efficiency parallel algorithms are necessary to be incorporated
into the presented model.
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Due to the complex soil–water interaction, the propagation behavior of the sediments
is affected by its particle size. In the presented model, the sediment is represented by a
series of SPH particles of the same size. The gradation characteristics of the sediment are
not considered in the SPH modeling, which may lead to some simulation error.

The simulation results focus on the near-field characteristics of the tsunami waves
generated by submarine landslides. Due to the limitations of the presented SPH model, the
ocean-basing propagation, run-up behavior, and inundation modeling are not investigated
in this work, which are all important for tsunami risk prediction and evaluation.

Therefore, although the simulation results in this work are acceptable, much more
attention and effort should be given to break through the above limitations and improve
the model’s performance.

5. Conclusions

Submarine landslides play an important role in the generation of tsunami waves and
their related hazards. This study presented a three-dimensional SPH model to simulate
the propagation of submarine landslides and the resulting tsunami waves. The main
conclusions of this work are as follows:

(1) A 3D numerical model based on the SPH method was established in this work to
simulate a submarine landslide’s movement across complex submarine terrain and
the near-field characteristics of the resulting tsunami waves.

(2) To validate the SPH model, two physical model experiments, in both 2D and 3D,
which have been recorded in the literature were simulated and analyzed. The water
pressure distribution and velocity vector of the fluid were obtained. The simulated
landslide configurations and surface water profiles were compared to the experi-
mental data. The presented results show that despite some discrepancies, the SPH
model established in this paper is capable of simulating the soil–water interaction and
predicting landslide-generated tsunami events with satisfactory accuracy. The bench-
mark problem was simulated using the SPH model with different particle resolutions.
The results show that the SPH model with finer particle resolution can obtain more
accurate results. Therefore, high particle resolutions are necessary in SPH simulations
to ensure sufficient computational accuracy.

(3) The Baiyun submarine landslide in the South China Sea was simulated using the
presented SPH model. The entire motion process of the landslide and the generation
of tsunami waves were reproduced. The propagation direction of the leading wave
basically agreed with the dominant landslide direction. The effects of water depth
and slide volume on the landslide-generated tsunami waves were investigated. The
simulation results show that landslides with a larger volume generate larger tsunamis
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with higher amplitudes, longer wavelengths, and lower frequencies. A landslide in a
shallower water area can result in a larger tsunami. These relationships can be used
for the rapid prediction of a tsunami disaster.
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