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Abstract: The ensemble Kalman filter is often used in parameter estimation, which plays an essential
role in reducing model errors. However, filter divergence is often encountered in an estimation
process, resulting in the convergence of parameters to the improper value and finally in parameter
estimation failure. To alleviate this degeneration, various covariance inflation schemes have been
proposed. In this study, I examined six currently used inflation schemes: fixed inflation, conditional
covariance inflation, modified estimated parameter ensemble spread, relaxation-to-prior perturba-
tions, relaxation-to-prior spread, and new conditional covariance inflation. The six schemes were
thoroughly explored using the Zebiak–Cane model and the local ensemble transform Kalman filter in
the observing system simulation experiment framework. Emphasis was placed on the comparison
of these schemes when it came to estimating single and multiple parameters in terms of oceanic
analyses and resultant El Niño–Southern Oscillation (ENSO) predictions. The results showed that the
new conditional covariance inflation scheme had the best results in terms of the estimated parame-
ters, resultant state analyses, and ENSO predictions. In addition, the results suggested that better
parameter estimation yields better state simulations, resulting in improved predictions. Overall, this
study provides viable information for selecting inflation schemes for parameter estimation, offering
theoretical guidance for constructing operational assimilation systems.

Keywords: inflation schemes; parameter estimation; ENSO prediction; local ensemble transform
Kalman filter; Zebiak–Cane model

1. Introduction

Climate models serve as powerful tools in climate research, which can simulate and
predict climate phenomena [1]. Even with the current state-of-the-art coupled models,
model predictions often diverge from the true states of the atmosphere/ocean. Researchers
have demonstrated that the prediction of climate models was largely limited by the increase
in initial errors [2]. Zheng et al. (2007) used data assimilation based on the ensemble trans-
form Kalman filter (EnKF) to initialize El Niño–Southern Oscillation (ENSO) prediction,
and improved the prediction skill [3]. Apart from the significant impacts of initial condi-
tions [2,4,5], model errors also seriously deteriorate the accuracy of climate prediction [6–9].
Model errors usually originate from three aspects: dynamical core misfit, physical scheme
approximation, and model parameter errors [10]. The amendment of the dynamical core
is very challenging [11]. Some studies have been devoted to improving parameterization
schemes [12–14]. For example, Mishra et al. compared several convective parameteriza-
tion schemes in a regional climate model for simulating the spatiotemporal variability
of precipitation extremes over India and demonstrated that different parameterization
schemes had their own advantages and disadvantages [12]. Compared with the challenges
of these two aspects, reducing model parameter errors is relatively easier. Thus, many
studies have focused on reducing model parameter errors [15–17]. Although parameters in
models cannot be directly observed, their uncertainty can be constrained by observational
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information. This process is known as parameter estimation. Many studies have shown
that parameter estimation can restrain the uncertainty of parameterization schemes and
reduce model errors, thus improving the simulation and prediction ability of coupled
climate models [16,18–21]. In addition, parameter estimation is crucial to the study of
climate predictability.

With the enhancement of atmospheric and oceanic observations as well as the devel-
opment of assimilation methods, the study of parameter estimation regarding atmospheric,
oceanic, or coupled models has developed rapidly [22–25]. Parameter estimation is mainly
realized through two methods: the variational method [15,25–27] and the EnKF [17,27–30].
These two methods are also widely used in state estimation. For example, Ueno et al.
reported a first application of the EnKF to an intermediate coupled atmosphere–ocean
model to estimate states for initialization, and successfully predicted Sea Surface Temper-
ature (SST) anomalies approximately 5 months in advance [31], whereas Dwivedi et al.
used a four-dimensional variational method to estimate oceanic states and improved the
accuracy of assimilated fields [32]. However, it is difficult to implement a four-dimensional
variational method in fully coupled circulation models because of the difficulty of deriving
adjoint equations. Therefore, the EnKF and its variants, such as the ensemble adjustment
Kalman filter and the local ensemble Kalman filter (LETKF), are widely used from simple
to fully coupled circulation models. Studies have shown that parameter estimation based
on the EnKF and its variants can reduce the bias of climate simulation and improve the
prediction of climate models [16,19–21,33].

Theoretically, any model states-related parameters can be estimated using data as-
similation. However, in practice, parameter estimation is difficult because there is no
physics-based description of parameters and the error covariances between prior state
variables and parameters are not often guided by physical laws, so the effect of parameter
estimation tends to depend on the quality of state–parameter covariance. To estimate real-
life parameters using data assimilation methods, researchers often assume the parameters
to be constant or slowly varying. Consequently, a finite number of ensemble members can
lead to an underestimation of the background error variance in the assimilation, weakening
the role of observations and converging the ensemble of parameters to a value far from
the observation [34,35]. This phenomenon is known as filter divergence in the field of data
assimilation. In addition, the limitation of ensemble size due to costly computational ex-
pense causes an under-sampling issue, accelerating ensemble spread decrease and leading
to filter divergence [36], which makes it difficult to accurately estimate the parameter. Thus,
how to deal with the filter divergence problem is challenging in parameter estimation [37].

Many efforts have been made to solve this problem, and the results have shown that
inflation schemes can somewhat alleviate the filter divergence problem, thereby enhancing
the parameter estimation accuracy. For example, a conditional covariance inflation (CCI)
scheme was proposed by Aksoy et al. (2006a) [35]. As the name suggests, the parameter
ensemble is inflated only if a condition is satisfied: its ensemble spread is smaller than a
prescribed threshold. With the CCI scheme, Wu et al. successfully optimized geographi-
cally related parameters in an intermediate atmosphere–ocean–land coupled model [29].
Their results showed that the quality of state estimates was significantly improved by
parameter estimation. In subsequent parameter estimation studies, this scheme was often
used [17,27,29,30]. However, estimated parameters using the CCI scheme may converge
to wrong values due to the rapid decline of ensemble spread. Gao et al. (2021, hereafter
denote as G21) [38] developed a new scheme called the New-CCI (N-CCI) scheme based
on the CCI scheme, which improved the ENSO prediction compared to other schemes in
the Zebiak–Cane model.

Ruiz et al. (2013b) [39] proposed a scheme called estimated parameter ensemble
spread (EPES) to estimate parameters in the SPEEDY model [40]. In this scheme, parame-
ters are inflated within ensembles, reducing computational cost while keeping the analysis
error covariance matrix structure unchanged. However, this scheme was only used for
single-parameter estimation, and its performance in more realistic scenarios with multiple
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parameters needs to be tested further. Further, there are two inflation schemes primor-
dially used in state estimation, including relaxation-to-prior perturbation (RTPP) [41] and
relaxation-to-prior spread (RTPS) [42].

Although various inflation schemes have been proposed in previous studies, their
performances in parameter estimation need to be systematically evaluated. The main
objective of this study is to compare different inflation schemes in a weakly coupled data
assimilation framework. In the so-called weakly coupled assimilation, the atmospheric
(oceanic) assimilation analysis is only obtained by atmospheric (oceanic) observations.
The atmospheric or oceanic observational information is dynamically transmitted to the
other model component through coupled model integration, i.e., by flux exchange at the
atmosphere–ocean interface. This differs from strongly coupled data assimilation in which
atmospheric or oceanic observation simultaneously adjusts its model component and the
other component. This work is a methodology study, whereas G21 focused on practical
applications. G21 was based on this study and submitted after this paper, but G21 was
published first.

The remainder of this article is organized as follows. Section 2 briefly introduces the
Zebiak–Cane model, observations, the LETKF-based parameter estimation algorithm, and
six inflation schemes. Section 3 conducts sensitivity studies with regard to the configuration.
Section 4 shows the examined impacts of the inflation schemes on single and multiple-
parameter estimation and ENSO prediction. Finally, further discussions and conclusions
are presented in Sections 5 and 6, respectively.

2. Materials and Methods
2.1. The Zebiak–Cane Model

The Zebiak–Cane model used in this study is an intermediate ocean–atmosphere
coupled model, which contains more physical processes and higher spatial complexity
than simple and theoretical model and only retains the most important part of ENSO
compared to complex model that pursues a comprehensive description of the space-time
structure. Therefore, it has been widely applied in ENSO simulation and prediction.
The description of the model is similar to that of Gao et al. (2020) [5] as follows. Be-
cause the Gill model elucidates some basic features of the response of the tropical atmo-
sphere to diabatic heating [43], the atmospheric dynamics follow it. The model contains
steady-state and linear shallow water equations forced by heating anomalies parame-
terized by SST anomalies and moisture convergence. The integral range of the atmo-
spheric model spans over the domain of 101.25◦ E–286.875◦ E and 29◦ S–29◦ N with a
grid spacing of 5.625◦ × 2◦ (longitude × latitude). The oceanic dynamics, which is sim-
ulated using a reduced-gravity model, is forced by the wind stress anomalies from the
atmospheric model. The integral range of the oceanic dynamics spans over the domain of
125◦ E–281◦ E and 28.75◦ S–28.75◦ N with a grid spacing of 2◦ × 0.5◦ (longitude× latitude).
The oceanic thermodynamics, which describes the SST anomalies and heat flux change
using a three-dimensional nonlinear equation, covers the domain of 129.375◦ E–275.625◦ E
and 19◦ S–19◦ N with the same grid of the atmospheric model. The model time step is
10 days. More details about the Zebiak–Cane model can be found in Zebiak and Cane
(1987) [44].

Among the parameters in the Zebiak–Cane model, I only focused on the six parameters
in the SST anomaly equations:

∂T
∂t

= −u1·∇
(
T + T

)
− u1·∇T− [γ1 × HF(w) + γ2 × GF(w + w)]× T− Te

H
− γ2 × GF(w + w)× Tz − αT, (1)

Tsub =

{
T1 ×

{
tanh

[
b1 ×

(
h + h

)]
− tanh

(
b1 × h

)}
, h > 0

T2 ×
{

tanh
[
b2 ×

(
h− h

)]
− tanh

(
b2 × h

)}
, h < 0

. (2)

where T is the SST anomaly, Tsub is the entrainment temperature, h is the perturbation of
Upper Layer Depth (ULD; +h and −h perturbation show an increase and a decrease in the
ULD, respectively), h is the mean of ULD, and other mathematical symbols can be found in
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Zhao et al. (2019) [17]. γ1, γ2, T1, T2, b1, and b2 are parameters that control the variation in
ocean upwelling and subsurface temperature (Te) and are therefore essential for simulating
and predicting SST anomalies. In the observing system simulation experiment (OSSE)
framework, it was assumed that incorrectly set parameter values are the only cause of
model errors. A model was defined as a true model when its parameter values were set
to the “default values” (Truths, third column in Table 1), whereas a model was defined as
a biased model when its parameter values were set by the ensemble mean initial guesses
that were perturbed from the truth (Biased Guess, fourth column in Table 1). Parameter
estimation based on data assimilation was a process of adjusting the initial guess parameter
values to true ones.

Table 1. List of parameters (Pars.) and their physical meanings, truths and ensemble mean biased
guesses for the ensemble mean in the Zebiak–Cane model.

Pars. Physical Meanings Truths Biased Guess

γ1 Strength of mean upwelling advection term 0.75 0.6

γ2
Strength of anomalous upwelling

advection term 0.75 0.6

T1
Amplitude of subsurface temperature

anomaly +h perturbations 28 22.4

T2
Amplitude of subsurface temperature

anomaly for −h perturbations −40 −48

b1
Affect the nonlinearity of subsurface

temperature anomaly for +h perturbations 1.25 1.0

b2
Affect the nonlinearity of subsurface

temperature anomaly for −h perturbations 3.0 2.4

2.2. LETKF-Based Parameter Estimation

I selected LETKF [45] to perform state and parameter estimations, as follows. Denoting
the prediction or background state vector by xb and its mean by xb, the projection of the
analysis error covariance matrix onto the ensemble space can be expressed as follows:

Pa =

[∼
H

T
R−1∼H + (Ne− 1)I

]−1

, (3)

where
∼
H = HXb and R is the observation error covariance matrix. H denotes the obser-

vation operator mapping the model state to the observation space, and the perturbation
of state vector is given by Xb = xb − xb. Ne represents ensemble size, and I is a Ne order
identity matrix.

With a state augmentation technique, the following calculations of the LETKF algo-
rithm contain parameters. The Kalman gain matrix of state variables and parameters are
given by [

Kx
KΦ

]
=

[
Xb

Φb

]
Pa∼H

T
R
−1

, (4)

where the perturbation of a parameter is expressed by Φb = ϕb −ϕb, ϕb is parameter
ensembles with a mean of ϕb. Then, the analysis means and analysis perturbations can be
expressed as follows: [

xa

ηa

]
=

[
xb

ηb

]
+

[
Kx
KΦ

][
yo −H

(
xb
)]

, (5)

[
Xa

Φa

]
=

[
Xb

Φb

]
[(Ne− 1)Pa]

1/2

, (6)
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where yo represents observations and ηb represents ensemble mean of background parame-
ters. The states and parameters can be calculated as follows:[

xa

ηa

]
=

[
xa

ηa

]
+

[
Xa

Φa

]
. (7)

Because the inverse matrix of
∼
H

T
R−1

∼
H + (Ne− 1)I in Equation (3) is calculated in the

ensemble space, the amount of calculation with LETKF is much less than that with the
EnKF. Some researchers successfully employed LETKF to perform parameter estimation. In
particular, Kang (2009) [46] and Kang et al. (2011, 2012) [28,47] used LETKF to estimate the
spatial distribution and seasonal variation in CO2 surface fluxes. Additionally, Ruiz et al.
(2013a, b) [39,48] employed LETKF in a SPEEDY model to estimate parameter uncertainty
and compared the differences between the simultaneous and separate estimations of states
and parameters.

2.3. The Observing System

In the OSSE framework, the true values of state variables are obtained by running
the true model with prescribed initial conditions and true parameters. Among the state
variables, I assume that only the SST anomaly is observed at every other grid point of
the Zebiak–Cane model on the 1st day of each month. Thus, the observations of SST
anomaly for the OSSE are obtained by superimposing Gaussian white noise onto the true
SST anomaly. The Gaussian white noise is used to simulate the observational error, with
the mean of 0 ◦C and the variance of 0.4 (◦C)2.

Other state variables, such as ULD and Te anomalies, which are obtained by running
the model using the prescribed initial conditions and true parameters, can be considered
true state variables. The true state variables and state simulations were compared to
evaluate the impact of parameter estimation on model state simulations.

2.4. Inflation Schemes

As mentioned above, dealing with the filter divergence problem is a great challenge for
parameter estimation. To resolve this issue, various inflation schemes have been proposed.
In general, inflation schemes are implemented by inflating posterior perturbations of
parameters [49]. The inflation can be expressed as follows:

ηj = ηa + µ
(

ηa
j − ηa

)
, (8)

where ηj and ηa
j denote the j-th ensemble member of inflated and posterior parameters,

respectively, and ηa denotes the ensemble mean of ηa
j . In this study, posterior parameters

are the analysis values of parameters after assimilation, i.e., ηa in Equation (7), whereas
those before assimilation are prior parameters. According to different inflation factors, i.e.,
µ in Equation (8), several inflation schemes are currently used, as listed below.
Algorithm 1 (FI scheme):

The simplest scheme is to set µ to a fixed inflation (FI) factor that is slightly greater
than 1. The scheme on state and parameter estimations has been employed by several
authors [4,27,39,48,50,51].
Algorithm 2 (CCI scheme):

The CCI scheme was specifically designed for parameter estimation [17,27,29,30,35,52–54].
In this scheme, the posterior parameter ensemble is inflated once its ensemble spread is smaller
than a certain threshold. The inflation factor in Equation (8) is expressed as follows:

µ =

{
1, σa

η ≥ a
a

σa
η

, σa
η < a , (9)
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where σa
η =

√
[1/(Ne− 1)]∑Ne

l=1
(
ηa

l − ηa)2 represents the posterior standard deviation of
the parameter ensemble, and a is the threshold.
Algorithm 3 (m-EPES scheme):

To determine the spread of the parameter ensemble, Ruiz et al. (2013b) proposed
an approach referred to as EPES, in which the trace of Pa and ensemble size are used to
calculate the inflation factor [39]. Particularly, the inflation factor in Equation (8) can be
written as follows:

µ =

√
Ne

(Ne− 1)tr(Pa)
, (10)

where tr stands for the matrix trace, and Ne is the ensemble size. As pointed out by
Ruiz et al. (2013b) [39], this scheme could preserve the structure of Pa. It can be seen that, in
the EPES scheme, the inflation factor is entirely determined by Pa and Ne. In this study, the
scheme is extended by multiplying a factor λ that is close to 1. Particularly, the extended
scheme in Equation (10) can be modified as follows:

µ = λ

√
Ne

(Ne− 1)tr(Pa)
. (11)

The extended scheme is named as the modified EPES (m-EPES) scheme, which is equiva-
lent to EPES when λ is set to 1. The best factor λ is tuned by a trial-and-error procedure.
Algorithm 4 (RTPP scheme):

In addition to the above three inflation schemes used in parameter estimation, there is
a scheme called RTPP that was primordially used for state estimation [41,42]. In this study,
I apply this scheme to parameter estimation. The posterior perturbations are relaxed back
to their prior values. Thus, the inflated ensembles can be expressed as follows:

ηj = ηa + (1− α)
(

ηa
j − ηa

)
+α
(

ηb
j − ηb

)
, (12)

where ηj denotes the j-th inflated parameters, ηa
j and ηb

j denote the posterior and prior

parameters for the j-th member, respectively, and ηa and ηb denote the ensemble means
of ηa

j and ηb
j , respectively. α is a relaxation factor that is between 0 and a value slightly

larger than 1. For 0 < α < 1, the inflation means that part of the posterior perturbations
is replaced with the prior perturbations. In the case where α is set to 1, the posterior
perturbations are completely replaced by the prior perturbations. Unlike the FI scheme,
this scheme has the desired property of compensating for the reduced variance due to
assimilating observations to some extent.
Algorithm 5 (RTPS scheme):

Similar to Algorithm 4, there is a scheme called RTPS [42] in which the posterior
ensemble standard deviation is relaxed back to its prior value via a relaxation factor. That is,

σa
η ← (1− α)σa

η + ασb
η , (13)

where σb
η =

√
[1/(Ne− 1)]∑Ne

l=1

(
ηb

l − ηb
)2

represents the prior ensemble standard devia-

tion at each analysis grid point.
Thus, the inflation factor in Equation (8) can be written as

µ =

(
α

σb
η − σa

η

σa
η

+ 1

)
, (14)

where α is a relaxation factor. Similar to the RTPP scheme, α is usually between 0 and 1.
Sometimes, α > 1 is necessary to maintain ensemble spread [55]. The RTPP scheme is a
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combination of multiplicative inflation and additive inflation, whereas the RTPS scheme
entails only multiplicative inflation.
Algorithm 6 (N-CCI scheme):

The abovementioned five schemes can be categorized into two categories: one is
starting inflation at the beginning of parameter estimation, such as FI, m-EPES, RTPP, and
RTPS schemes, and the other is conditional inflation, i.e., starting inflation only when some
criteria are met, such as CCI. Both categories have their advantages, but caveats exist. The
former inflates immediately from the beginning of parameter estimation and continues
to the end, potentially resulting in exaggerated ensemble spread and causing the failure
of parameter estimate, whereas the latter does not start inflation at the beginning of the
parameter estimation. However, the parameter estimation is typically characterized by
a rapid decline in its ensemble spread with the assimilation steps, potentially causing
insufficient ensemble spread to update parameters before inflation [37].

With this motivation, a new scheme based on the ideas of these two categories was
proposed, referred to as N-CCI in G21. Different from the CCI scheme, N-CCI inflates
posterior parameter ensemble perturbations at the beginning of parameter estimation
but stop inflating when the standard deviation is smaller than a certain threshold. N-CCI
appears as a paradoxical scheme, but it was motivated by numerous sensitivity experiments.
The idea behind N-CCI is that the ensemble spread of parameters is often insufficient for
parameter updating because of its rapid decline at the first few assimilation steps, as
observed in these sensitivity experiments. Thus, inflation is always required for an effective
estimation of the parameter. However, the ensemble spread of the parameter decreases
gradually once the estimated parameter approaches a steady value close to the true value.
When the ensemble spread reaches a small value, the estimated parameter is closest to the
true value. Therefore, the parameter estimation terminates, and the inflation stops. The N-
CCI scheme is expected to be more effective in both seeking the true value and preventing
the filter from the divergence caused by the rapid decline in parameter ensemble spread
with assimilation steps. Opposite to the CCI scheme, the inflation factor in Equation (8) can
be written as follows:

µ =

{
b

σa
η

, σa
η ≥ a

1, σa
η < a

, (15)

where b is a factor that controls the strength of inflation. The six schemes are summarized
in Table 2. The goal of this work is to systematically compare the six inflation schemes in
the OSSE framework in terms of the estimation accuracy of the parameters and resultant
ENSO predictions.

Table 2. Six inflation schemes, their factors/thresholds, and the convergence times in single-parameter
estimation (SPE) in this study. The unit of convergence time is the month. MPE represents multiple-
parameter estimation. The second row for a given algorithm (in parentheses) is the range of fac-
tors/thresholds tested. In the CCI and N-CCI schemes in MPE, the factors/thresholds correspond to
six parameters, and their tested range values are quite complex and hence were omitted.

Algorithms Schemes Factors/Thresholds
in SPE

Convergence
Times in SPE Factors/Thresholds in MPE

1 FI µ = 1.002
(µ ∈ [1.0005~1.2]) 284 µ =1.0005

(µ ∈ [1.0005~1.2])

2 CCI a = 0.01
(a ∈ [0.001~0.1]) 355

a =0.012, 0.016, 0.45,
1.95, 0.02, 0.07

(omitted)

3 m-EPES λ =0.95
(λ ∈ [0.8~1.2]) 70 λ =0.98

(λ ∈ [0.8~1.2])
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Table 2. Cont.

Algorithms Schemes Factors/Thresholds
in SPE

Convergence
Times in SPE Factors/Thresholds in MPE

4 RTPP α = 0.4
(α ∈ [0.1~1.2]) 288 α =0.45

(α ∈ [0.1~1.2])

5 RTPS α =0.6
(α ∈ [0.1~1.2]) 434 α =0.2

(α ∈ [0.1~1.2])

6 N-CCI
[a, b] = [0.03, 0.20]

(a ∈ [ 0.001 ∼ 0.1], b ∈
[0.08~0.4])

168
[a, b] = [0.021, 0.20 ],

[0.019, 0.20 ],[0.64, 6.75 ],[0.97, 14.4 ],[0.01, 0.30 ],[0.03, 0.72 ]
(omitted)

To sum up, a flowchart of parameter estimation based on LETKF is presented in
Figure 1.
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3. The Sensitivity Study

As indicated in previous studies, the quality of the results may be affected by the
configuration of the assimilation system [56]. Therefore, numerical sensitivity experiments
are conducted to determine the configuration, such as factors in inflation schemes, initial
guesses of parameters, and state inflations or not.

3.1. Factors in Inflation Schemes

For each inflation scheme, numerous sensitivity experiments were performed to tune
such factors/thresholds as µ in the FI scheme, a in the CCI scheme, λ in the m-EPES
scheme, α in the RTPP and RTPS schemes, and a and b in the N-CCI scheme, so that the best
estimation of parameters is achieved. In the OSSE framework, the best estimation means to
seek the estimate of a parameter as close to the true value as possible in the shortest time
for each scheme.

To compare the six inflation schemes, numerous sensitivity experiments were per-
formed to tune the factors/thresholds for each scheme, whose goal was to obtain the best
estimate of parameters in terms of the true values in the shortest time. Considering the
FI scheme in single-parameter estimation as an example, five experiments with different
inflation factors were performed. The values of inflation factor µ are listed in Table 3. To
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measure the convergence speed, I define the convergence time as the time taken to reach
the moment when the difference between the estimated and true values fluctuates in the
range of ±5% of the estimated value. The second experiment in which µ was set to 1.002
had the shortest convergence time.

Table 3. Sensitivity experiments settings and their convergence times with the FI scheme.

Experiments 1 2 3 4 5

µ 1.0005 1.002 1.005 1.10 1.20

Convergence time 349 284 573 1162 /

Figure 2 shows the temporal evolution of the estimated γ1 with the assimilation for
the FI scheme. The estimated value of the second experiment is the closest to the true value
of 0.75. If the inflation factor is too large or too small, the estimation effect of parameters
will deteriorate. For example, the estimated value did not converge when µ was set to 1.20.
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Figure 2. Temporal evolution of the estimated γ1 with the assimilation based on the FI scheme:
(a–e) represent experiments 1–5, respectively. The dotted lines are the truths of γ1 in Table 1.

Similar experiments were performed with other schemes in single-parameter estima-
tion, and the best factors/thresholds were obtained for each scheme. Note that, the third
column in Table 2 shows the tested range values (signed with parentheses) and values
making the best estimation for each scheme in single-parameter estimation. In particular,
in other schemes, the estimation effect of the parameters will deteriorate if the inflation
factor/threshold is too large or small, as in the FI scheme. Sensitivity experiments in
multiple-parameter estimation were performed to obtain these factors, as in the single-
parameter estimation. In particular, multiple-parameter estimation is complicated. the
criterion to select the factors/thresholds for each inflation scheme will be introduced later.
Thus, the comparison of these schemes was based on the best performance that each scheme
could achieve. Such a comparison among different schemes was somewhat objective. In
the following discussion, the comparison of these schemes is based on the best estimation
that each scheme can have.
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3.2. Initial Guess of Parameter

Notably, the same ensemble mean initial guesses of parameters are used in all experi-
ments. Therefore, the question is how can the initial guesses of parameters be determined?
Typically, an excessive bias of an initial guess will cause a severe initial shock to the model
system, resulting in the system crashing. To examine the influence of initial guess bias on
parameter estimation, I set up a series of sensitivity experiments within an allowable range
of bias.

Considering the FI scheme as an example, four experiments with different initial guess
biases were performed: 5%, 10%, 15%, and 20% of the truth. If the bias is larger than 25%,
the model will crash. Figure 3 shows the temporal evolution of the estimated γ1 with the
assimilation for the FI scheme. The estimated values with different initial biases converge
to different estimates, indicating that the relative performance is relatively sensitive to
the initial guess bias. Considering that the value of the parameter in the real world is
not known, the maximum allowable (20%) initial guess bias of the model parameter was
adopted in this study.
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Figure 3. Temporal evolution of the estimated γ1 with the assimilation based on the FI scheme:
(a–d) represent initial guess bias for 5%, 10%, 15%, and 20%, respectively. The dotted lines are the
truths of γ1 in Table 1.

Similar sensitivity experiments were also performed with the five other inflation
schemes. The relative performance of inflation schemes was sensitive to the initial guess
bias. That is, within the permissible limits, different initial guess biases resulted in differ-
ent estimated values. After a series of sensitivity experiments, I set the ensemble mean
biased guess of parameter bias 20% away from its true value (the fourth column in Table 1).
Thus, the initial ensemble members are produced by perturbing the ensemble mean bi-
ased guess with random noise with a mean and variance of 0% and 25% of the biased
guess, respectively.

3.3. State Inflations

The main purpose of this study is to compare the different inflation schemes on param-
eter estimation. Therefore, the influences of different configurations of state estimation on
parameter estimation should be excluded. To this end, one possible way is to use the same
state inflation scheme, such as RTPP, RTPS or any other scheme. This operation, however,
changes the state variables derived from different parameter estimation experiments, which
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in turn affects the parameter estimation. Thus, no inflation is applied to the state estimation
throughout the assimilation process.

To demonstrate that omitting inflation for state estimates is a valid design choice, I
provide evidence that the ensemble spread for state variables is not collapsing well below
root mean square errors. Two quantities were examined: the ensemble spreads of the prior
and posterior SST anomaly and the RMSEs for the prior and posterior mean. Figure 4
shows both quantities based on the FI scheme. Even without the inflation of states, the
ensemble spreads can still maintain an order of magnitude equivalent to RMSEs. Although
assimilation reduces the ensemble spread of SST anomaly (i.e., posterior spread), model
integration increases the ensemble spread (i.e., prior spread) again, indicating that the
ensemble spread of state variables is not collapsing well below root mean square errors.
The results from other schemes are similar to the results shown in Figure 4. Although
model integration prevents the ensemble spread of state variables collapsing in this study,
it still cannot avoid the risk of collapse without state inflation in other places.
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Figure 4. Temporal evolution of ensemble spreads of the prior and posterior SST anomaly and RMSEs
for the prior and posterior mean based on the FI scheme.

4. Results
4.1. Single-Parameter Estimation

The different inflation schemes were first investigated using single-parameter estima-
tion. The single-parameter estimation in this study refers to only one parameter estimated
by assimilation, thus there are six single-parameter estimation experiments (see the first
row in Table 4). Because γ1 in Equation (1) is a key parameter to control upwelling, it was
first selected to perform single-parameter estimation.

Table 4. The experimental designs. SPE, MPE, and SE represent single-parameter estimation, multiple-
parameter estimation, and state estimation only, respectively.

Experiments Assimilated Data To Be Estimated

SPE SST anomalies SST anomalies and γ1, γ2, T1, T2, b1, or b2

MPE SST anomalies SST anomalies, γ1, γ2, T1, T2, b1, and b2

SE SST anomalies SST anomalies

The ensemble size was set to 100 for all experiments. The assimilation frequency
was once a month. The decorrelation of the Gaspari–Cohn function [57] is defined as the
observation localization of eight times the distance between the adjacent grids (5.625◦ in
zonal direction and 2◦ in meridional direction) after a series of tests. That is, when the
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distances between model grids and a certain observed location are beyond eight times
the distance between the adjacent grids, the model grids are not affected by the analysis
increment of this observation.

The total data assimilation period was 100 model years, and single-parameter estima-
tion was activated after five years of the state estimation only (see the third row in Table 4)
to ensure a “quasi-equilibrium” state [11]. The parameter estimations were performed
using the augmentation technique, as mentioned in Section 2.2, which were accompanied
by state estimation as shown in Equation (4) to Equation (7). For simplicity, I only refer
them to as parameter estimation but actually, the state and parameter were simultaneously
estimated in this study (see the first and second row in Table 4).

4.1.1. Estimated Single Parameter

A good inflation scheme can reduce bias effectively in an estimated error covariance
and produce a better estimate of the ensemble mean. Parameter estimation under the OSSE
framework can make an ensemble mean converge toward a true value. Figure 5 shows
the temporal evolution of the estimated γ1 with the assimilation length. The estimated
parameters with the six inflation schemes converged to a constant value close to the
true value (0.75) after two or three decades, despite the large initial errors. Excluding
periods of dramatic parameter adjustment, the last 50 years (51st–100th model years of
data assimilation) was a relatively stable period for parameter estimates. Therefore, data
over the last 50 years were used to evaluate the results in the following text. The estimated
parameter for each scheme was obtained using the average value over the last 50 years, as
labeled in the subplot figure. The comparison shows that the N-CCI scheme is closest to
the true value, unlike the m-EPES scheme, which is farthest from the true value.

In addition, Figure 5 shows that different inflation schemes have different conver-
gence speeds. If the absolute error variation between the estimated value and true γ1 is
maintained in a small range after a certain time, the time taken to reach this certain time is
defined as the convergence time. For each scheme, the small fluctuation range is defined
by the interval of ±5% of the estimated value. Table 2 shows the convergence times of the
six inflation schemes. Although the m-EPES scheme had the shortest convergence time,
it converged to the wrong estimation (Figure 5c). As for the other schemes, the N-CCI
scheme converged the fastest, followed by the FI and RTPP schemes, and the CCI and RTPS
schemes had relatively slower convergence.

It would be interesting to explore the reason different schemes have different parameter
estimation effects. The ensemble spread, which represents the uncertainty of samples,
should not be too large or too small. If the spread is too large, the unrealistic parameter
values would produce a negative impact on the analysis quality. However, if the spread is
too small, the filter would not work due to filter divergence. Figure 6 shows the temporal
evolution of the ensemble spread of the estimated γ1 using the six schemes. To clearly
display the ensemble spread of the last 50 years, Figure 6b enlarged the y-axis of 0−0.015
in Figure 6a. The spread with the m-EPES scheme rapidly declined to a value close to 0,
suggesting that after several assimilation steps, the filter is no longer effective despite the
participation of new observations. The estimated value of γ1 with the m-EPES scheme
seems to be a local optimum value. Additionally, other schemes can maintain certain
ensemble spreads from 0.0001 to 0.01 over a long time, including the very last step of
assimilation, making the estimated parameter value easier to achieve global optimum value
than the m-EPES scheme.
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Figure 5. Temporal evolution of the estimated γ1 with the assimilation length. (a–f) represent the
estimated results of FI, CCI, m-EPES, RTPP, RTPS, and N-CCI schemes, respectively. The bold solid
lines indicate the ensemble means of the six inflation schemes, and the dashed lines are the truths.
The dotted lines are the truths of γ1 in Table 1.

The previous analysis only examined estimations of γ1 with the six inflation schemes.
To examine the validity of the six inflation schemes in other five parameter estimations,
γ2, T1, T2, b1, and b2 were estimated separately. The absolute errors between the estimated
parameters and true values all significantly declined with the assimilation steps in these
experiments, implying the success of the six inflation schemes in estimating the six param-
eters. Figure 7 shows the absolute errors of the six estimated single parameters with the
six schemes over the last 50 years. For most parameters, such as γ1, γ2, T1, and b2, the
N-CCI scheme achieved the best results. As for T2 and b1, the N-CCI scheme had decent
estimations. For γ1, γ2, T1, and b1, the results of the FI scheme were slightly inferior to
that of the N-CCI scheme, the RTPS scheme had relatively poor estimations. For most
parameters, such as γ2, T1, T2, and b1, the m-EPES scheme achieved the poorest results.
The results are consistent across most single-parameter estimation experiments. Thus, the
performance of the inflation schemes is stable when applied to most parameter estimations.

Although the above results show that the assimilation system with different inflation
schemes is successful in single-parameter estimation, there are some differences between
the different schemes. In terms of both the estimated parameter and convergence speed,
the N-CCI scheme achieved the best results, followed by the FI scheme.
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Figure 6. (a) Temporal evolution of the ensemble spread of γ1 with the six schemes. (b) As in (a) but
for the y-axis of 0–0.015 (remove the large spread values).
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Figure 7. The absolute errors (aEs) of the six estimated single parameters ((a) γ1, (b) γ2, (c) T1, (d) T2,
(e) b1, and (f) b2) with the six schemes over the last 50 years.

4.1.2. Model States and ENSO Prediction

Although parameters were constant during model integration, they could influence
the state variables through the model. Before performing prediction experiments, a model
system should be examined for its ability to simulate state variables. To assess the impact
of parameter estimation on the analysis of state variables, I performed composite analyses
for El Niño and La Niña events in three scenarios. One was SST anomalies produced by
the true model, another was the simulations with the N-CCI scheme from single-parameter
estimation (first row in Table 4), and the third was the simulations from state estimation
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only (third row in Table 4). In this subsection, I only considered γ1 and the N-CCI scheme
as examples. Following the definitions in Chen et al. (2004) [2], an El Niño is defined when
the Niño3.4 index is greater than 1 ◦C, whereas a La Niña is defined when the Niño3.4
index is less than −1 ◦C. Thus, there are 21 El Niño events and 23 La Niña events during
the entire period.

Figure 8 shows the composite results, including those comparisons with true values
and state estimation only. The mean absolute error in the El Niño composite of state estima-
tion only was 0.0499 ◦C, whereas that of single-parameter estimation was 0.0197 ◦C, with an
error reduction of approximately 60%. The mean absolute error in the La Niña composite
of state estimation only was 0.0404 ◦C, whereas that of single-parameter estimation was
0.0240 ◦C, with an error reduction of approximately 40%. First, the results indicate that
parameter estimation makes SST anomalies in the central and eastern Pacific closer to
the truths for both warm and cold events. Second, after single-parameter estimation, the
decrease in mean absolute error in the La Niña composite was smaller than that in the El
Niño composite, probably because the intensity of the La Niña events was usually relatively
small, resulting in difficulties in improving the simulations.
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Figure 8. (a) El Niño and (b) La Niña composite of the true values, (c) El Niño and (d) La Niña
composite of state estimation only, and (e) El Niño and (f) La Niña composite of a single-parameter
estimation. The colors represent the SST anomalies, and the unit is ◦C.

Figure 9 shows the RMSEs of the averaged SST, ULD, and Te anomalies over the
Niño3.4 region during the last 50 years. The RMSEs were calculated between the true states
described in Section 2.3 and the simulations with each inflation scheme. Although different
inflation schemes have different effects on state simulations, a consistent conclusion can
be drawn in terms of the estimated parameter. Namely, the N-CCI scheme achieved the
best simulations, followed by the FI scheme. The RTPP and RTPS schemes had a relatively
poorer simulation, and the m-EPES and CCI schemes had the poorest simulations. Similar
results were obtained using the other five single-parameter estimation experiments. In
general, the best parameter estimation by the N-CCI scheme produced the best state
simulations, whereas the worst parameter estimation by the m-EPES scheme produced the
worst state simulations.
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Figure 9. RMSEs of the (a) SST anomalies, (b) ULD anomalies, and (c) Te anomalies in the Niño3.4
region for a single-parameter estimation, respectively.

Based on the state augmentation technique, the assimilation filter estimated the pa-
rameter γ1 and the model states, as discussed in the preceding sections of the manuscript.
With the model states used as the initial conditions, and the average of estimated γ1 over
the last 50 years (see Table 5) taken as the parameter value, six prediction experiments were
performed to examine the performance of the six schemes regarding the ENSO predictions.
These experiments were performed covering 100 model years, with each prediction lasting
for 12 months. For clarity, the diagram of prediction experiment is illustrated by Figure 10.

Table 5. Values of γ1 in the six prediction experiments.

Experiments FI CCI m-EPES RTPP RTPS N-CCI

γ1 0.7401 0.7203 0.7021 0.7628 0.7560 0.7526
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Since the value of γ1 was the average value of the estimated γ1 over the last 50 years,
the results of the last 50 years were used to evaluate the predictions. Because the Zebiak–
Cane model is an anomaly model, the Anomaly Correlation Coefficients (ACCs) could be
calculated by Equation (16). The ACCs and RMSEs of the predicted SST anomalies against
the true counterparts in the Niño3.4 region are shown in Figure 11. Note that, the formulas
of the two quantities for the s-th (s = 1, 2, . . . , 12) lead month are

ACCs =
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where M represents the number of prediction experiments, which is equal to 49×12 in

this study because the evaluation was performed during the last 50 years [16]; X f denotes
the ensemble mean of predicted SST anomalies over the Niño3.4 region with prediction

experiments mean of
=
X

f
; Xobs denotes the observational counterpart with prediction

experiments of Xobs.
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Figure 11. The (a) ACCs and (b) RMSEs of the predicted SST anomalies against the true counterparts
in Niño3.4 region during the period of the last 50 years for single-parameter estimation.

The results show that the N-CCI scheme achieved the highest prediction accuracy,
followed by the FI scheme. The RTPS and RTPP schemes had relatively poorer accura-
cies, and the m-EPES and CCI schemes had the poorest accuracies. Combined with the
abovementioned results, better parameters, such as in the N-CCI and FI schemes, which
produce better state simulations, will result in improved predictions. On the other hand,
inferior parameters, such as in the m-EPES and CCI schemes, which produce poor state
simulations, will result in worsened predictions.

The signal-to-noise ratio analysis method was adopted to explain the differences in
the predictions for the different inflation schemes further. For ensemble forecasting, the
variance of the ensemble mean can be regarded as a measure of signal, while the ensemble
spread reflecting the increase in disturbance can be regarded as noise. The signal-to-noise
ratio should be as high as possible for a successful estimation or prediction system. Thus,
the signal-to-noise ratio is a robust tool for interpreting the prediction effects of different
schemes [58,59]. The signal-to-noise ratio can be expressed as

SNR =

1
M ∑M

m=1

(
Xm −

=
X
)2

1
M·Ne ∑M

m=1 ∑Ne
ne=1

(
Xm,ne − Xm

)2 , (18)

where Xm,ne denotes the ne-th member of predicted Niño3.4 index from the m-th initial
condition, M represents the number of total initial conditions, and Ne represents the
number of ensemble members, Xm = 1

Ne ∑Ne
ne=1 Xm,ne represents the ensemble mean of

Xm,ne,
=
X = 1

M ∑M
m=1 Xm represents the mean of all initial conditions in Xm. Figure 12
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compares the signal-to-noise ratios of the six inflation schemes. The N-CCI scheme had the
greatest signal-to-noise ratio, followed by the FI scheme. The RTPS and RTPP schemes had
relatively smaller ratios, and the CCI and m-EPES schemes had the smallest ratios. The
results explain why the N-CCI scheme can obtain the best parameter estimation effect.
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Figure 12. The signal to noise ratios for single-parameter estimation with the six schemes.

4.2. Multiple-Parameter Estimation

As mentioned in Section 3, the N-CCI scheme showed superiority in single-parameter
estimation and ENSO prediction. To examine its performance with multiple-parameter
estimation, a similar study is conducted with the biased model in this section. The multiple-
parameter estimation entails adjusting the six key parameters and state variables simulta-
neously in the assimilation step (see the second row in Table 4). The settings were the same
as those in Section 3, except that the six parameters were simultaneously estimated. The
fifth column in Table 2 shows the range of tested values (signed with parentheses) and the
values giving the best estimation for each scheme in multiple-parameter estimation. In the
CCI and N-CCI schemes, the six factors/thresholds correspond to six parameters.

4.2.1. Estimated Multiple Parameters

Joint estimation of multiple parameters is more difficult than single-parameter esti-
mation due to the increase in the dimensional number of parameter estimation and their
mutual constraints. Figure 13 shows the temporal variation in the absolute errors between
the estimated parameters and true values of γ1, γ2, T1, T2, b1, and b2 with the six inflation
schemes. The absolute errors of all parameters had different decline degrees for the six
schemes except for T2 from the CCI scheme, in which the absolute error increase rather
than decrease. For half of the parameters, such as γ1, T1, and b2, the absolute error based
on the N-CCI scheme achieved the greatest reduction. For half of the parameters, such
as γ1, γ2, and b1, the absolute errors based on the m-EPES scheme achieved the poorest
reductions, whereas the absolute errors based on the CCI scheme achieved the poorest
reductions for the other half.
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Figure 13. Temporal variation in the AEs of the six parameters for multiple-parameter estimation.
(a–f) represent the estimated results of γ1, γ2, T1, T2, b1, and b2, respectively.

To quantitatively evaluate the impact of each inflation scheme on multiple-parameter
estimation, the total absolute error was defined as follows:

AEt = ∑6
i=1

AEpi

AEpi ,0
, (19)

where AEpi denotes the absolute error between the i-th (i = 1, 2, . . . , 6) estimated parameter
and its true value, and AEpi ,0 denotes the initial value of AEpi . AEt before estimation
was calculated from the parameter value with a biased guess. Thus, the AEt before the
estimation was six for each inflation scheme. The AEt after the estimation was calculated
from the estimated parameter value. The AEt before and after estimation with the six
inflation schemes are shown in Table 6. The AEt based on the N-CCI scheme achieved the
largest decline, followed by the FI scheme. The RTPP and RTPS schemes had a relatively
lower decay, and the CCI and m-EPES schemes had the lowest decay. The conclusion is the
same as that for single-parameter estimation. Therefore, it is can be said that the N-CCI
scheme is superior in both single-parameter estimation and multiple-parameter estimation.

Table 6. AEt before (first row) and after (second row) the estimation and the descent (third row) for
multiple-parameter estimation with the six inflation schemes.

AEt FI CCI m-EPES RTPP RTPS N-CCI

Before 6 6 6 6 6 6

After 0.8427 2.7813 2.8775 1.1755 1.5584 0.6913

Decay (%) 85.96 53.64 52.04 80.41 74.03 88.48

4.2.2. Model State and ENSO Prediction

Similar to Section 3, the ability to simulate state variables of the system was examined
in this section. Figure 14 shows the RMSEs of the SST, ULD, and Te anomalies during
the last 50 years in the Niño3.4 region. For all three state variables, the orders of the
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RMSEs with the six schemes agreed with the descent orders of AEt after parameter estima-
tion, indicating that the N-CCI scheme also showed state simulation robustness based on
multiple-parameter estimation.
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Figure 14. The same as Figure 9 but for multiple-parameter estimation. (a–c) represent the RMSEs of
the SST anomalies, ULD anomalies, and Te anomalies in the Niño3.4 region, respectively.

Similar to the prediction experiments in the single-parameter estimation, with the
above multiple-parameter estimation averaged over the last 50 years and state simulations
recognized as initial ensembles, six prediction experiments were performed to examine
the performance of the six schemes regarding the ENSO predictions. The covering period
and lasting time of each forecast were the same as those in the single-parameter estimation.
The ACCs and RMSEs of the predicted SST anomalies against the true counterparts in the
Niño3.4 region are shown in Figure 15. The N-CCI scheme achieved the highest prediction
accuracy, followed by the FI scheme. The RTPS and RTPP schemes had relatively poorer
accuracies, and the m-EPES and CCI schemes had the poorest accuracies. Similar to the
single-parameter estimation in Section 3, better parameters, such as in the N-CCI and
FI schemes which produce better state simulations, result in improved predictions; and
vice versa.
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5. Discussion

ENSO is a widely known short-term climatic phenomenon that can cause climate
anomalies on a global scale, and further affect human life and activities in coastal zones [60].
Therefore, its forecast is of great significance for early disaster warning and coastal manage-
ment. Although ENSO prediction has been greatly improved over the past few decades,
there are wide uncertainties in prediction systems. Based on the sources of uncertainties,
the limitations of this paper can be clarified as follows:

This study focused on parameter estimation; therefore, no inflation scheme was
employed in model state estimation. In fact, there are many other inflation schemes, partic-
ularly adaptive schemes, have been successful in atmospheric and ocean sciences [7,61–63].
Further studies applying adaptive inflation to data assimilation are required.

This study followed the Zebiak–Cane model, a cornerstone of ENSO predictions [2],
and only considered the effects of intrinsic parameters on the uncertainty of ENSO pre-
diction. Many studies have shown that model tendency error from multiple sources,
particularly from physical scheme approximations, has an important effect on ENSO pre-
diction [64–66]. However, almost relative studies were based on variational and traditional
linear statistical methods. Tendency error estimation based on simple ensemble Kalman
filters and artificial intelligence methods is necessary for future studies.

Previous studies have shown that external forcing factors, such as westerly wind
bursts in the tropical Pacific, are closely related to ENSO [67,68]. However, this study did
not take into account external forcing factors, especially atmospheric forcing. Our future
work will attempt to employ an appropriate westerly wind burst parameterization scheme
and further optimize its uncertain parameters using data assimilation based on the EnKF.

It is universally acknowledged that more than 20 dynamical and statistical models can
provide successful ENSO predictions for up to six months [69], with some models providing
successful large ENSO event predictions for up to 12 months [70]. Recently, deep learning
techniques have been widely applied as a powerful statistical approach in geoscience [71].
Ham et al. (2019) demonstrated that the convolutional neural network model can make
skillful ENSO predictions for a lead time of 17 months [72]. This skill is systematically
superior to that of almost all dynamic and linear statistical models. Therefore, deep learning
is expected to be introduced in future studies.

In addition, the same initial state ensembles were used in all experiments to ensure a
fair comparison. Therefore, the experimental results were only determined by the parameter
estimation with different inflation schemes. Although each inflation scheme appears
somewhat sensitive to its tunable parameters, the comparison was based on the best
performance that each scheme can achieve. In this sense, this comparison can elucidate the
relative merits of each inflation scheme.

6. Conclusions

Many studies have shown that parameter estimation plays an essential role in reducing
model errors. The Kalman filter and its variants are simple and effective techniques for
parameter estimation. However, the filter divergence problem, which reduces the accuracy
of estimated state–parameter covariance, is often encountered in parameter estimation. To
solve this problem, inflation schemes have been proposed. In this study, six currently used
inflation schemes were applied to an assimilation system based on the Zebiak–Cane model
using LETKF. Then, the impacts of the six schemes on parameter estimation and ENSO
prediction were investigated.

Single-parameter estimation and the resultant ENSO prediction were first performed
in the OSSE framework. The results showed that the assimilation systems with the six
inflation schemes all successfully estimated parameters, including the systems with the
relaxation-to-prior perturbation and relaxation-to-prior spread schemes primordially used
in state estimation. The new conditional covariance inflation scheme achieved the best re-
sults evaluated by the estimated parameters themselves, resultant state analysis and ENSO
predictions, followed by the fixed inflation scheme. The relaxation-to-prior spread and
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relaxation-to-prior perturbation schemes had relatively poorer performances, and the mod-
ified estimated parameter ensemble spread and conditional covariance inflation schemes
had the poorest performance. The results also suggested that better parameter estimation
led to better state simulations, which resulted in the ENSO prediction improvement.

I also examined the performance of the new conditional covariance inflation scheme
in multiple-parameter estimation and found that the new conditional covariance inflation
scheme showed superiority too. Particularly, the new conditional covariance inflation
scheme achieved the greatest reduction of total absolute errors and best resultant state
simulations and ENSO predictions. The fixed inflation scheme had a relatively poorer
performance, followed by the relaxation-to-prior perturbation and relaxation-to-prior
spread schemes, and the modified estimated parameter ensemble spread and conditional
covariance inflation schemes had the poorest performance.

Although some studies have been conducted on the applications of inflation schemes,
this study systematically compared various inflation schemes for parameter estimation.
The results showed that there is a good consistency among parameter estimation, state
simulation and ENSO prediction in general, suggesting that better parameter estimation
led to better state simulations, which resulted in the ENSO prediction improvement. In
general, the new conditional covariance inflation scheme reduced uncertainty of model
parameters, and improved ENSO prediction. This study provides viable information for
selecting inflation scheme for parameter estimations, offering theoretical guidance for
constructing operational assimilation systems.
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