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Abstract: Despite the importance of critical infrastructure for the effective functioning of communities,
their vulnerability to tsunamis remains unstudied. This study addresses this issue by developing
empirical fragility curves for infrastructure components currently absent from tsunami vulnerability
research. This research applies post-event damage data from the 2015 Illapel tsunami in a cumulative
link model (CLM) to form fragility curves for three-waters (manholes, culverts, and drain inlets) and
railway infrastructure components. The synthesized fragility curves reveal that in response to the
flow depth, culverts exhibit the highest vulnerability of all the infrastructures studied. The curves
also suggest that culverts, drain inlets, and railways have higher vulnerability when compared to
infrastructure such as roads or utility poles.
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1. Introduction

Critical infrastructure networks are vital for the socio-economic functioning of coastal
communities [1,2]. Tsunamis have a high potential to physically damage network compo-
nents and disrupt their services. To better manage the risks of tsunamis for the built envi-
ronment, impact assessments are commonly performed to inform disaster risk managers in
their decision-making [3–5]. Impact assessments use hazard, exposure, and vulnerability
information to estimate the socio-economic consequences of tsunami events.

Tsunami vulnerability models define a metric of impact (e.g., damage level) for a
given hazard intensity (e.g., flow depth) [6–9]. The model approaches include vulnerability
indices (e.g., [10,11]), damage matrices (e.g., [8]), damage curves (e.g., [12]), multivariate
models (e.g., [13]), non-linear models (e.g., [14]), and fragility curves (e.g., [15,16]). Vulner-
ability indices represent a qualitative system ranking susceptibility to impacts. Damage
matrices define the probability of a specific hazard intensity level. Damage curves provide
a continuous impact or loss ratio for a given hazard intensity measure (HIM) [9]. Fragility
curves derive the probability of the exceedance of different damage limit states for a given
intensity measure (HIM) (e.g., [17]) and are widely considered a best-practice approach for
tsunami impact assessment, provided appropriate curves are available for the local hazard
and exposure context.

Previous tsunami vulnerability studies have focused on various infrastructures, in-
cluding roads [2], bridges [18], and structures [12,17,19]. The approaches for evaluating
the vulnerability of these stated infrastructures have included the development of fragility
curves and damage matrices [12,19–21]. While previous studies have examined the damage
inflicted on three-waters and railway infrastructure qualitatively [21], quantitative vulnera-
bility assessments of these assets remain a knowledge gap. This knowledge gap extends
to other critical infrastructures like electricity, fuel, and telecommunications [22]. The
present study contributes to overcoming this knowledge gap by developing quantitative
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fragility curves for three-waters and railway infrastructure components impacted by the
2015 Illapel tsunami.

The 2015 Illapel tsunami occurred on the 16th of September following an Mw 8.3 earth-
quake off the central coast of Chile at 7:54 p.m. local time (Figure 1 [23,24]). The Illapel
tsunami prompted several post-event field surveys [24–26]. A post-event field survey car-
ried out by Paulik et al. [25] recorded the tsunami inundation depth watermarks and levels
of damage to the built environment in Coquimbo. Areas of interest that were included
in this post-event survey are shown in the four insets in Figure 1. Subsequent studies
have utilized these data to develop fragility curves for roads [2,27]. However, three-waters
and railway survey data from Paulik et al. [25] are yet to be used for the development of
fragility curves.
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This research uses empirical post-event hazard [22] and asset damage [25] data from
the 2015 Illapel tsunami in Chile (Section 2.1) to develop tsunami vulnerability models for
three-waters and railway network components (Section 2.2). The resulting fragility curves
are discussed (Section 3) with respect to their limitations (Section 3.4), applications and
recommendations for future research (Section 3.4).

2. Materials and Methods
2.1. Survey Data

Empirical damage data were collected from on-site assessments of three-waters and
railway infrastructure components in Coquimbo affected by the 2015 Illapel tsunami [25].
Here, we used attribute and damage characteristics of stormwater (manholes, culverts,
drain inlets), wastewater (pipeline), potable water (hydrant, pump station), and railway
tracks. The damage was categorized using four ordinal damage levels (DLs), ranging
from DL0 (No damage) to DL3 (Complete damage) (Table 1). Damage-level definitions
relevant to the components included in the present study are displayed in Table 1. In total,
314 water network components and 2.05 km of railway were surveyed in the study [28].
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Out of the 314 water infrastructure components, 19 were removed from the dataset due
to low component-specific empirical data, which included hydrants, pipelines, and pump
stations. The remaining 295 components (including railways, culverts, manholes, and drain
inlets) were considered in the development of the fragility curves. Water infrastructure
data considered in this survey were spatially refined by co-locating it with other assets
(e.g., adjusting drain inlets to be better co-located with roads).

Table 1. Damage level (DL) descriptions of water and railway infrastructure network components in
Coquimbo. Adapted from Paulik et al. (2021) [25].

Component
Type

DL0 DL1 DL2 DL3

No Damage Partial Damage, Repairable Partial Damage, Unrepairable Complete Damage

Railway - Minor scour of ballast, tracks
in place

Scour to ballast, tracks pushed
off ballast

Complete washout of ballast
and tracks

Culvert - Minor scour around the
culvert, may be blocked

Culvert heavily scoured out but
in place, scour or aggradation
may render culvert useless

Culvert completely scoured
out, washed away

Manhole -
Minor scour around
manhole/foundation, minor
damage to cover

Moderate–major damage to
manhole surface or cover, shaft
in place

Manhole shaft scoured out,
washed away

Drain Inlet -

Minor damage to grate, no
damage to subsurface,
temporary blockage or
capacity reduction

Grate damaged, drain blocked,
scour around drain, requires
sediment removal or
replacement

Drain inlet completely
scoured out, washed away

Surveyors from Paulik et al. [25] recorded 655 flow depths, ranging from 0.1 to 4.7 m
(Figure 2). Williams et al. [27] utilized these watermarks to interpolate the tsunami depth
across the study area. This hazard interpolation adopted a spline-type ‘tension’ to represent
the data more accurately and to avoid exaggerating inundation [27]. The present study used
this hazard model to represent the tsunami hazard intensity (HIM variable). The inundation
depth ranged from a height of 0 m to 4.86 m. Inundation depths up to approximately 4.8 m
were observed (Figure 2).
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Figure 2. Tsunami inundation measured via watermarks around Coquimbo and interpolated by the
spline method.

2.2. Developing Fragility Functions

This study applied a cumulative link model (CLM) method to fit the fragility curves [20,29].
CLMs plot ordinal damage data (e.g., damage levels) into cumulative probabilities simul-
taneously. This method prevents synthesized curves from crossing paths, as is the case
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with previous studies that used a general link model method. The CLM method for fitting
fragility curves in this study is represented by:

P(DL ≥ dl|HIM) = Φ(β̂ j + β̂21n(HIM)) (1)

where Φ is the standard cumulative normal distribution function and P is the probability
of the asset equaling or exceeding a given damage level in reference to a given hazard
intensity metric (HIM, which in this study refers to the inundation depth). β̂ j represents the
intercept of the curve, while β̂2 represents the slope coefficient. Evaluation of the derived
fragility curves involved using a classification performance metric of ‘accuracy’. This metric
measured the percentage of correctly predicted attributes [30].

3. Results and Discussion
3.1. Network Component Damage Distribution

The distribution of the three-waters infrastructure components and their assigned
damage levels can be viewed in Figures 3b–d and 4, and they have been summarized in
Table 2. Across the three-waters infrastructure (manholes, culverts, and drain inlets), higher
damage levels (DL2 and DL3) can generally be seen at high inundation depths that are
3 m and over (Figure 3b–d). Components sustaining unrepairable damage and complete
damage were observed in the western parts of Coquimbo near the port and in the neigh-
borhood of Baquedano (Figure 4). Proportionally, culverts sustained the highest damage,
with approximately 23% of culverts sustaining complete damage (DL3). In contrast, only
1% and 5% of manholes and drain inlets sustained complete damage, respectively.
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Table 2. Tsunami exposure and damage levels of three-waters and railway infrastructure affected
from the 2015 Illapel tsunami.

Infrastructure Type
Flow Depth Damage Level

<1 m m >2 m DL0 DL1 DL2 DL3

Manholes 56 64 69 147 12 28 2
Culverts 3 5 18 5 1 14 6

Drain Inlets 9 29 41 10 8 57 4
Hydrants 6 4 4 4 1 9 0

Pipes - 2 - - 1 - 1
Pump Stations - 1 - - - 1 -

Railways 50 m 550 m 1100 m 500 m 300 m 250 m 650 m

The distribution of the railway damage levels can be viewed in Figures 3a and 5, and
it has been summarized in Table 2. Approximately 2.05 km of the railway, which connects
Coquimbo Port to the national railway network, was inundated by the 2015 tsunami [25].
Approximately 1.2 km of this track sustained damage from the tsunami (a damage level
above 1), with 0.65 km of railways sustaining a damage level of 3 (complete damage). It
was observed by Paulik et al. [25] that a seawall failure caused a reduction in the protection
of the railway, causing the greater embankment to experience scour which removed the
track support. Spatially, there is a distinct concentration of high damage levels (DL3) in
the western corner of Coquimbo near the port and in Baquedano (Figure 5). Bordering this
area are railway segments with lower damage levels (DL < 3) (Figure 5).

3.2. Three-Waters Infrastructure Fragility Curves

In the following text (Sections 3.2 and 3.3), a 2 m inundation depth is used as a standard
reference value across the results. This inundation depth was chosen as it represents an
accepted, approximate hazard intensity threshold required to mobilize large debris and
enable damaging hydrodynamic forces [31–34].

The fragility curve parameters for the three-waters and railway infrastructure are
presented in Table 3 and displayed in Figure 6. Overall, manholes have the lowest damage
probability at 2 m of inundation across all three damage levels, with the probability of
manholes reaching or exceeding DL1, DL2, and DL3 being 0.23, 0.17, and 0.01, respectively
(Figure 6a). Manholes have a 0.5 probability of reaching or exceeding DL1, DL2, and DL3
at 4.6 m, 5.6 m, and >20 m respectively. There is a minimal difference between culverts and
drain inlets across their three designated damage levels at 2 m of inundation (Figure 6b,c).
Culverts, however, show a higher probability of reaching or exceeding DL3 at 2 m (0.46)
when compared to drain inlets (0.43). For culverts, there is a 0.5 probability of reaching or
exceeding DL1, DL2, and DL3 at 0.4 m, 3.4 m, and 5.2 m (Figure 6b). For drain inlets, there
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is a 0.5 probability of reaching or exceeding DL1, DL2, and DL3 at 0.2 m, 3.6 m, and 8.6 m
(Figure 6c).
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Table 3. Fragility curve parameters for the three-waters and railway infrastructure network components.

Fragility Curve Damage Level µ σ Accuracy

Manholes DL1 1.51 1.09 83%
DL2 1.74 1.09
DL3 3.21 1.09

Culverts DL1 −1.48 9.16 12%
DL2 1.18 9.16
DL3 1.63 9.16

Drain Inlets DL1 −2.12 8.58 19%
DL2 1.23 8.58
DL3 2.13 8.58

Railways DL1 1.65 8.94 29%
DL2 1.98 8.94
DL3 2.41 8.94

Culverts show the highest vulnerability to the tsunami hazard among the assessed
infrastructure network components in this study. The probability of complete damage (DL3)
for culverts at 2 m of inundation depth is 0.46, whereas for drain inlets, manholes, and
railways, the probability of complete damage is 0.43, 0.1, and 0.42, respectively. As culverts
and outfall pipes are designed to drain surface water, they are inherently exposed to the
effects of contraction scour, which is caused when the flow becomes contracted and forced
through a structure, increasing the velocity and shear stress around the structure [22,35].
Drain inlets performed very similarly to culverts, with a damage probability of 0.43. Again,
considering the built function of drains being to channel excess water, this higher damage
probability may be expected from contraction scour [35].

Manholes show the least vulnerability to tsunamis out of the studied infrastructure
components, with a complete damage (DL3) probability of 0.01 at 2 m of inundation depth.
This may be because manholes are inset and flat in roads, reducing exposure to turbulent
flow [36], potentially alleviating damage.

3.3. Railway Infrastructure Fragility Curves

At 2 m of inundation depth, the probability of railways reaching or exceeding DL1,
DL2, and DL3 at 2 m of inundation depth is 0.46, 0.44, and 0.42, respectively (Figure 6d).
Comparatively, the railway damage probability for complete damage at 2 m is lower than
those of drain inlets and culverts; however, it remains higher than manholes. There is a
0.5 probability of railways reaching or exceeding DL1, DL2, and DL3 at 5.4 m, 7.4 m, and
11.2 m (Figure 6d).

Overall, across all the infrastructure components considered, culverts have the highest
overall damage probability across all three damage levels at 2 m of inundation. Manholes
have the lowest damage probability across all three damage levels at 2 m of inundation;
however, at higher inundation depths (of 8 m and above), manholes have the highest
damage probability for DL1 and DL2 compared to all the other components (Figure 6a).
The damage potential for railways is consistently lower than for all the other components
across all the damage levels and inundation depths (Figure 6d).

Railways perform relatively similar to drain inlets and culverts within their fragility
curves, with railways obtaining a damage probability of 0.42 for complete damage (DL3) at
2 m of inundation compared to culverts and drain inlets, which have probability values
of 0.46 and 0.43, respectively. Railways obtaining a lower probability may stem from
them being less disruptive to water flows as they are more level with the ground surface.
However, this probability is not as low as the probability for manholes (0.01), which may
stem from the reduced protection the railways had after an observed seawall failure, which
resulted in embankment scour and removal of track support to much of the railways
(causing an overall greater proportion of DL3) [25].



J. Mar. Sci. Eng. 2023, 11, 1991 8 of 11

3.4. Fragility Curve Comparison with Network Components

The synthesized fragility curves (Section 2) vary in terms of consistency with those
from comparable studies (Table 4). The fragility curves obtained for culverts, drain inlets,
and railways in this current study are higher than the results derived from both [2,27].
These three infrastructure components lie within the damage probability range of 0.4–0.5
for complete damage (DL3) at 2 m of flow depth, whereas the road and pole components
from Williams et al. [27] and Williams et al. [2] showed probabilities < 0.15 (Table 4). This
may be attributed to culverts, drain inlets and railways having more protruding/sunken
structures, which may cause greater turbulent flow than poles or flat-lying roads, which in
turn may cause greater damage [37].

Table 4. Probability of reaching or exceeding DL3 at a 2 m flow depth for infrastructure components
damaged in the 2015 Illapel tsunami.

Infrastructure Type DL3 Probability at 2 m
Inundation Depth Source

Manholes 0.01

Present studyCulverts 0.46
Drain Inlets 0.43

Railways 0.42

Mixed Roads 0.07

Williams et al. [2]
Asphalt Roads 0.09
Concrete Roads 0.04

Mixed-Attribute Utility Poles 0.13

Mixed Roads ≈0.05 Williams et al. [22]

This study used the tsunami inundation depth as the hazard intensity model for
developing fragility curves from the Illapel 2015 tsunami event. However, it is well
documented that the distribution caused by tsunami damage to assets is influenced by
more factors than the inundation depth alone. Other tsunami hazard intensity measures that
may be driving the impacts include the velocity, duration, hydrostatic force, hydrodynamic
force and scour [19,27,34,35]. It has been considered that the inundation velocity is just
as important as the inundation for damage or impact [35,36]. Because of this importance,
ideally, future hazard models would incorporate both depth and velocity measures to
inform impact and risk models more accurately. Conversely, Williams et al. [27] correlated
the inundation depth strongly (relative to other HIMs) with the damage (for damaged
infrastructure in the 2015 Illapel tsunami), so it could be said that the inundation depth
remains a fair proxy for assessing tsunami vulnerability and impact, at least in the case of
the present study. Future infrastructure-based tsunami fragility curves might consider a
multivariate hazard model including the flow depth, velocity, and debris impact [27,31].

Although the infrastructure damage data collected by Paulik et al. [25] contain a high
level of detail, the data represent a relatively small empirical study (i.e., in comparison
to the 2011 Tohoku and 2004 Indian Ocean tsunami data) and a small sample size for the
development of fragility curves. Having too small of a data sample size can result in large
confidence bounds [37] and less accurate estimations of the damage probabilities for assets.
While testing for confidence intervals in the dataset was outside the scope of this study,
accuracy estimates were provided as a way to validate the fragility curves. Due to the small
sample of empirical data collected, some three-waters infrastructure assets were omitted
from this study when the data were insufficient, which included hydrants, pipes, and
pump stations. Alongside the differing infrastructure types, case studies utilizing fragility
functions developed from Coquimbo may have different topographic conditions. It is
known that topography (among other factors) has an important influence on the inundation
depth and flow velocity, and therefore, it has a strong influence on the damage [38]. When
using fragility curves that only consider the inundation depth, such as the ones developed
in this study, the limitations of topography should also be considered. Future work may
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consider using a different tsunami case study (previously collected or future data) to obtain
a similar damage survey to Paulik et al. [25] with sufficient data quantities.

4. Conclusions

Fragility curves for critical infrastructure are crucial for ensuring tsunami risk assess-
ments can be implemented. This study is a first for tsunami fragility curves for three-waters
and railway infrastructure. The vulnerability models were developed using post-event
field data from the 2015 Illapel tsunami, Coquimbo, Chile. The fragility curves were fitted
using a cumulative link model (CLM) method. A damage classification using four levels of
infrastructure damage was used, ranging from DL0 ‘no damage’ to DL3 ‘complete damage’.

The synthesized curves present manholes as showing the lowest vulnerability to
tsunamis, with a 0.01 probability of reaching or exceeding DL3 at 2 m of inundation.
The remaining infrastructure—culverts, drain inlets, and railways—showed similar vul-
nerability (probabilities of 0.46, 0.43, 0.42 of reaching or exceeding DL3 at 2 m of in-
undation, respectively), with culverts showing the highest vulnerability out of all the
components considered.

The limitations of the local hazard and sample size should be considered in the appli-
cation of these synthesized fragility functions in other future case studies. Utilization of the
developed fragility curves in subsequent international tsunami impact and risk assessments
could better inform mitigation and response strategies for tsunami risk reduction. Future
work in this research field should consider the use of multivariate hazard models and
post-event field surveys.
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