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Abstract: To study the features of resonant oscillations in the water column of the Peter the Great
Gulf of the Sea of Japan, in situ measurements were carried out on its shelf, combined with numerical
simulation of these processes. The observational data were obtained from autonomous bottom
pressure gauges in Novik Bay in the winter of 2016. In the calculations, a spectral-difference model
was used, modified to account for the ice cover, and implemented on an irregular triangular grid. The
atmospheric forcing used in the model had periods from 15 to 55 min. As a result, characteristic series
of spatio-temporal parameters for resonant oscillations of the studied water area were determined.
The locations of the peaks on the simulated resonance curves correspond to the locations of well-
defined maxima of the energy spectrum according to in situ measurements, hence indicating the
possibility of a significant resonant amplification of level fluctuations by wave and periodic wind
effects. The novelty of this study is inclusion of the winter period, when the surface of the bay is
partially covered with ice.

Keywords: resonant oscillations; seiches; Peter the Great Gulf; spectral analysis; numerical model

1. Introduction

Currently, research on natural phenomena that pose a threat to populations and vari-
ous structures in coastal zones remains relevant [1]. These natural hazards include tsunamis,
meteotsunamis, strong seiches, and storm surges. In each region, these phenomena have
their own characteristics and require separate research. This partly explains the constant
growth of publications on the subject. As an example, we mention relatively recent reviews
of tsunami studies [2,3] and meteotsunamis [4]. Large-amplitude seiche oscillations accom-
panied by flooding of coastal areas can be interpreted as one of the meteotsunami types [5].
Regional characteristics must be taken into account when studying the wave interactions of
coastal waters with a sea or ocean. For example, there may be some peculiar features of the
bottom topography [6] or reefs [7] between coastal waters and the sea. The task becomes
more complicated if the coastal water area is located in a bay and does not directly border
the sea. In this case, it is necessary to study and consider the resonant properties of the
bay. The problem becomes even more complicated when there are several bays or seas, as
is the case of the Mediterranean Sea. In this case, a complex oscillatory system becomes
the subject of study. In coastal waters, for example, tidal resonant oscillations of adjacent
waters can be observed [8].

The subject of this work is to study resonant oscillations in the Peter the Great Gulf
of the Sea of Japan. The water area of the gulf is exposed to the hazards of wave action
of seismic and meteorological origin [9]. The bottom topography of the northern part
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of the shelf of the Peter the Great Gulf of the Sea of Japan is shown in Figure 1. An
important component of the resonant oscillations study is the use of numerical modeling,
which allows us to reveal the spatial form of oscillations recorded at measuring stations.
Knowledge of the spatial structure of resonant oscillations makes it possible to determine
areas of the coast that are prone to flooding.
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Figure 1. Bottom topography of the northern part of the shelf of the Peter the Great Gulf of the Sea of
Japan. Isobaths are shown at intervals of 20 m. Insert: general view of the Peter the Great Gulf; grey
arrows mark the boundaries of the gulf.

The Peter the Great Gulf is a complex oscillatory system connected by a wide entrance
with the Sea of Japan. Previous studies [10–15] considered resonant oscillations in the Peter
the Great Gulf without ice cover. In this paper, we consider resonant oscillations in the
winter period, when the surface of the gulf is partially covered with ice.

One of the components of the oscillatory system of the northern part of the Peter the
Great Gulf shelf is Novik Bay. Novik Bay cuts deep into the northwestern part of Russky
Island, has length of more than 12 km, an area of 12.7 km2, and a maximum width of about
2 km. Its depth reaches 20 m between the entrance capes. The Novik Bay water area has
been an intracity water body of Vladivostok since 1991; nevertheless, it remains the least
studied. The bottom topography of Novik Bay is shown in Figure 2. Figures 1 and 2 do not
show isobaths in areas with abrupt changes in depth, where the distance between isolines
is less than the thickness of the curves.

The quiet and calm Novik Bay usually freezes by mid-December, freeing itself from
ice in early April. During this period, its waters, as a rule, are colder and saltier than in the
adjacent Amursky Bay, due to the shallow water and brine released during ice formation.
As a result, during freeze-up, due to the spatial density gradient, a flow of highly saline
waters forms in the near-bottom layer, directed northward to the exit from the bay [16].

To study the features of resonant oscillations in the water column of the Peter the Great
Gulf, the staff of the Pacific Oceanological Institute of the Far Eastern Branch of Russian
Academy of Sciences (POI FEB RAS) conducted in situ measurements on the shelf of the
gulf in the winter of 2016, with the installation of autonomous pressure gauges in Novik
Bay. Interpretation and joint analyses of the measurement results were performed using the
spatio-temporal parameters of resonant oscillations obtained at the Institute of Automation
and Control Processes (IACP FEB RAS) using a numerical model.
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intervals of 5 m. Symbol ♦ shows the position of the autonomous bottom pressure gauges PG1 and 
PG2. The digits in insert indicate: 1—Russky Island; 2—Amursky Bay; 3—Ussuriysky Bay; 4—
Novik Bay; 5—the Eastern Bosphorus Strait. 
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used two autonomous bottom gauges (loggers) of hydrostatic pressure [17]. The first in-
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N, 131°50.2′ E, and the second (8.7 m) at 43°00.644′ N, 131°53.05′ E. (Figure 2). At the time 

Figure 2. Bottom topography of Novik Bay of the Peter the Great Gulf. The isobaths are shown at
intervals of 5 m. Symbol � shows the position of the autonomous bottom pressure gauges PG1 and
PG2. The digits in insert indicate: 1—Russky Island; 2—Amursky Bay; 3—Ussuriysky Bay; 4—Novik
Bay; 5—the Eastern Bosphorus Strait.

2. Materials and Methods
2.1. In Situ Measurements

Field studies of spatio-temporal variability of the surface level of Novik Bay (Russky
Island), covered with a solid ice field, continued from 30 January to 15 March 2016. We used
two autonomous bottom gauges (loggers) of hydrostatic pressure [17]. The first instrument
was installed at a depth of about 14.5 m at the point with coordinates 43◦03.27′ N, 131◦50.2′ E,
and the second (8.7 m) at 43◦00.644′ N, 131◦53.05′ E. (Figure 2). At the time of their installa-
tion/removal, the ice cover had thickness of about 28/43 cm and 41/64 cm, respectively.

Data from the weather station WMO_ID = 31,960 (Vladivostok, the Archive of the
Primorsky Department of Hydrometeorology and Environmental Monitoring, http://rp5.ru;
accessed on 29 August 2023) showed about 46 mm of precipitation within the specified period,
an average air temperature of about −7 ◦C, and variations in its average daily values from
−18 ◦C to +2.5 ◦C. At the same time, the average values of the thermohaline characteristics of
the under-ice water column measured by an autonomous CTD profiler in Novik Bay were in
the range of −1.83 ◦C to −1.07 ◦C and from 33.82 psu to 34.37 psu.

http://rp5.ru
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The gauges used thermally stabilized strain gauge transducers D0.4-T with the max-
imum immersion depth of 40 m, sampling frequency of 10 Hz, and resolution of 0.01%,
which corresponds to 4 mm of water column [17].

When performing the analysis of oscillations from in situ measurements data, the
spectral analysis described in [18] was used.

2.2. Spectral-Difference Model

To calculate the forced oscillations, we used a modified spectral-difference model [11],
incorporating terms into the equations to account for ice effects. We assume the ice cover to
be absolutely flexible and smooth, and the points of its middle surface move only vertically.
The model is based on the system of linearized depth-averaged equations of motion and
continuity, written in spherical coordinates [19] (p. 596), in which components of the
wind stress are local in space and periodic in time, with frequency σ. Horizontal turbulent
exchange is not taken into account; bottom friction force is described by a linear dependence
on the velocity components with a coefficient rB:

∂u
∂t
− f v = − g

a cos φ

∂ζ

∂λ
− rB

max(H, HB)
u + Iice

Aτ B(r)
ρ0H

cos σt sin θτ , (1)

∂v
∂t

+ f u = − g
a

∂ζ

∂φ
− rB

max(H, HB)
v + Iice

Aτ B(r)
ρ0H

cos σt cos θτ , (2)

∂ζ

∂t
+

1
a cos φ

(
∂Hu
∂λ

+
∂Hv cos φ

∂φ

)
= 0, (3)

H = Hbathymetry + hcorr − hice
ρice

ρ0
, (4)

B(r) =


1, r ≤ r1,
1
2 cos π r−r1

r0−r1
+ 1

2 , r1 < r < r0

0, r ≥ r0

, r ≡ r(λ, φ; λτ , φτ), (5)

where a is mean radius of the Earth; λ and φ are geographic longitude and latitude; t is
time; g is gravity acceleration; u and v are components of the velocity vector by directions
λ and φ, respectively; ζ is elevation of the free surface above the undisturbed position;
ρ0 is characteristic density of water; ρice is characteristic ice density; H is thickness of the
undisturbed liquid layer; hice is ice thickness; HB is thickness of the near-bottom boundary
layer; Hbathymetry is depth from navigation charts and data bases; f = 2ωsinφ is Coriolis
parameter; ω is angular speed of rotation of the Earth; θτ is azimuth of wind action direction;
Aτ is the maximum amplitude of wind stress; λτ and φτ are coordinates of the center of the
wind forcing area; r is the distance between points (λ,φ) and (λτ ,φτ); Iice = 0 in the presence
of ice; Iice = 1 in ice-free water area; and hcorr is depth correction. The hcorr variable denotes
a group of terms with periods longer than one day, describing the contribution of long-
period tides, wind surges, atmospheric pressure, water exchange through straits, and also
compensating for errors in bathymetry data and ice thickness values. An “impermeable”
boundary condition is specified at the solid vertical boundary. A radiation condition is set
at the liquid vertical boundary [19] (p. 598).

The numerical solution of system (1)–(5) is sought in the form of steady forced oscilla-
tions with frequency σ. We employ the widely recognized transition to complex variables,
which is described, for example, in [13]. Difference analogs for the original differential
equations are constructed in accordance with [20] (3.2.1. The 2-D External Mode, 3.5. Finite-
Volume Discrete Methods in Spherical Coordinate System). To solve the resulting system
of linear algebraic equations, the SuperLU MT 3.0 linear algebra package [21] is used.

To construct the Hbathymetry model bottom topography, we employed navigation
charts [22] in the coastal area and GEBCO 2020 [23] data for the rest of the water area. The
technique for constructing the irregular triangular grid is described in [14]. The dimensions
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of the grid triangles of the model water area are determined by the depth values. The length
of the side of the smallest triangle ∆0 = 51 m. These triangles are used at depths greater
than H0 = 0.317 m. The lengths of sides of the triangles, ranked by size, are progressively
doubled step by step: ∆n = ∆0 × 2n, where n = 0, . . ., 6. Triangles with a side length ∆n are
employed for water areas with depths exceeding Hn = H0 × 22n. The largest triangles, with
a side length ∆6 = 3264 m, are used for water areas with depths exceeding H6 = 1300 m.
Figure 3 shows a fragment of the model grid for the Novik Bay water area; the insert shows
the entire grid area.
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Let us evaluate the influence of grid resolution on the spectral properties of grid waves.
the frequency equations for one-dimensional gravity-inertia waves in the continuous case
are as follows [24] (Equation (3.4) p. 48):

σ2 = f 2 + gHk2, σ =
2π

T
, (6)

and, for gravity-inertia waves on the grid of type (B) [24] (Equation (3.6)B p. 49):

σm
2 = f 2 +

4gH
d2 sin2 kd

2
, σm =

2π

Tm
, (7)

where k is the wave number, d is the grid step, and σm and Tm are the frequency and
period of the grid wave. In the approximation of high grid resolution, Equation (7) can be
presented in the following simplified form:

σm
2 ≈ f 2 + gHk2 − gH

12
k4d2 (kd� 1). (8)
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Let us denote the relative deviation of the frequency of the grid solution by variable ε

ε =
σ− σm

σ
� 1, (9)

and exclude the variables k and σm from the system of Equations (6)–(9). We obtain

d2 σ4 −
(

24gHε + 2 f 2d2
)

σ2 + d2 f 4 = 0. (10)

Let us consider the case when the frequency is much higher than the inertial frequency.
In this, approximation (10) is significantly simplified

d2 σ2 − 24gHε = 0 (σ� f ). (11)

Let T = T∗, d = d∗, H ≥ H∗ and

ε∗ =
π2

6g
d∗2

H∗T∗2 (12)

then the inequality ε ≤ ε∗ is true. When assessing the properties of waves on the triangular
grid in Equations (10)–(12), the grid step should be replaced by the longest side length of
the triangle. Let us substitute into (11) H∗ = H0 × 22n, d∗ = ∆0× 2n, H0 = 0.317 m, ∆0 = 51 m.
At T∗ = 60 min, we obtain ε∗ ≈ 0.0001; at T∗ = 15 min, we obtain ε∗ ≈ 0.0017. These values
indicate the limits of the range of the upper estimate of the relative deviation of the grid
waves frequencies considered in this work.

For the water area of Novik Bay hice, the ice thickness is set equal to 44 cm (the average
value for the observation period of 2016). Figure 4 shows two variants of the configuration
of the ice cover of the model area. The variant shown in Figure 4a is the main one. The
contours of the distribution of the ice cover thickness approximately correspond to the
satellite image from the site https://www.dvrcpod.ru/News.php?id_new=1686; accessed
on 29 August 2023, and the ice thicknesses are set by the characteristic values of 11, 33, and
55 cm. Figure 4b shows the auxiliary variant with constant ice thickness of 22 cm.
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ice thickness of 11, 33, and 55 cm are labeled 1, 2, and 3, respectively. The insert shows the area of
wind forcing in yellow. (b) Ice with uniform thickness of 22 cm.

https://www.dvrcpod.ru/News.php?id_new=1686


J. Mar. Sci. Eng. 2023, 11, 1973 7 of 14

Numerical solutions were obtained for the following variant of wind forcing. The
amplitude of the driving force was set equal to zero outside the circle of radius r0 = 25 km,
and a constant value inside the circle of radius r1 = 20 km. The coordinates of the center
of the wind effect area were set as (λτ ; φτ) = (131.6◦ E, 42.8◦ N). The location of the area
of the model wind forcing is shown in the insert in Figure 4. In the numerical model, the
coefficients rB = 1.5 × 10−5 m/s, HB = 2 m, and the characteristic density values were set
as ρ0 = 1028 kg/m3, ρice = 927 kg/m3. For each given value of σ, solutions are calculated
for northern (θτ = 0) and eastern (θτ = π/2) directions. A linear combination of these two
solutions with multipliers cos θτ and sin θτ , respectively, corresponds to the direction with
an arbitrary θτ .

3. Results
3.1. In Situ Measurements

Figure 5a,b and Figure 6a,b show non-averaged spectral estimations at stations PG1
and PG2 for the range of periods from 15 to 87 min. In the plots, the frequency axis is
displayed on a logarithmic scale. For each station, sections of the spectra are shown for
overlapping subranges from 15 to 57 min and from 52 to 87 min. The spectral peaks are
most pronounced for oscillations with periods of 28, 30.5, 39.5, 43, 43.7, 46.3, 48, 49, 53.7, 68,
72, 73.5, 79, 84.5, and 86.5 min. For individual spectral maxima, Figure 5a,b and Figure 6a,b
show the corresponding period values in minutes.
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3.2. Results of Numerical Modeling

At the initial stage of numerical modeling, based on the results of preliminary cal-
culations, the value of the correction to depths is selected. For the main calculation,
the value hcorr = 1 m is chosen, at which the location of the peaks of the resonance
curves approximately corresponds to the location of the peaks of the spectral curves
in Figures 5a,b and 6a,b. Figures 5c,d and 6c,d show the resonance curves of the solutions
for the model water area for the range of periods from 15 to 87 min. The vertical axis shows
the θτ maximum values of the amplitude of level oscillations normalized in all directions
at points with coordinates of PG1 and PG2. A comparison of Figures 5b,d and 6b,d shows
significant differences for periods over 57 min. Groups of spectral maxima correspond
to individual maxima on the resonance curves. We believe that these differences are the
consequence of the limitation of the applied numerical model, which is local in space.
Further, for the model Peter the Great Gulf, we limit the period range under consideration
to the upper value of 57 min.

We studied the properties of standing waves in Novik Bay using a numerical model.
Figure 7 shows solutions that are characterized by the presence of a nodal line at the
entrance to Novik Bay. In the inner part of the bay, during oscillations with periods of 39.3,
29.4, and 18.5 min, there are one, two, and three nodal lines, respectively. The oscillation
with period of 86.4 min is the fundamental (Helmholtz) mode for Novik Bay.
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Figures 8–10 show the spatial distributions of the amplitude and isolines of the so-
lutions phase with periods corresponding to the maxima on the resonance curves. The
solutions were obtained for the north–south direction of the wind forcing (θτ = 0). In
Figures 7–10, the phase isolines are shown with step of π/3. Let us note the specific behav-
ior of phase isolines in the vicinity of nodal lines—the isolines fill some small vicinity of
the nodal line. In the calculated value of the phase in the area of nodal lines, characterized
by small amplitude values, the contribution of the computational noise of the applied
numerical method becomes noticeable.
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the Great Gulf shelf (a) for the oscillation with a period of 54.2 min and with the main distribution of
ice thickness (Figure 4a), and (b) for the oscillation with a period of 53.1 min and with the additional
variant of ice thickness distribution (Figure 4b).

We believe that in the oscillation with period of 46 min (Figure 9a), the longitudinal
oscillations of Amursky and Ussuriysky Bays interact with one of the transverse modes of
the Peter the Great Gulf. The wave motion with a period of 47.7 min, shown in Figure 9b,
involves the water masses of both Amursky and Ussuriysky Bays, and also the Eastern
Bosphorus Strait [14] (p. 176). In this case, one nodal line reaches the middle of Amursky
Bay, another one reaches the middle of Ussuriysky Bay.

Figure 10 shows the forms of oscillations with a period of about 54 min obtained at
the main and auxiliary configurations of the ice field. In the first case, the maximum on the
resonance curve corresponds to the period of 54.2 min; in the second case, to 53.1 min. In
addition to the change in the resonant frequency, we also note the strong influence of the
ice cover configuration on the structure of the solution in Amursky Bay, especially in its
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northern part. The resulting solutions are characterized by pronounced manifestation of
the transverse mode of the Ussuriysky Bay.

4. Discussion

The use of a local numerical model with extended liquid boundaries imposes corre-
sponding restrictions on the obtained solutions. In this work, in order for the obtained
solution to have a physical meaning, transverse oscillations should play the main role in the
solution, for example in Amursky and Ussuriysky bays, or local oscillations, for example in
the Eastern Bosphorus Strait. The obtained solutions for oscillations with periods less than
55 min satisfy similar restrictions. For numerical study of oscillations with longer periods,
it is necessary to include the entire water area of the Sea of Japan in the model and locate
the liquid boundaries in the straits or in neighboring water areas. In this case, the grid
coverage of the waters of the Peter the Great Gulf will have to be made less detailed due to
limited computing resources.

The results presented in Figure 10 demonstrate the strong dependence of the solutions
on the configuration of the ice cover in relatively shallow parts of the water area. However,
determining the actual thickness of ice can be an extremely difficult task. Apparently, it is
necessary to install a distributed system of bottom pressure gauges in order to determine
the actual position of the nodal oscillation lines and try to refine the characteristics of the
ice cover.

5. Conclusions

To study the features of oscillations in the water column of the Peter the Great Gulf of
the Sea of Japan, in situ measurements were carried out on its shelf. The observational data
were obtained from two autonomous bottom pressure gauges in Novik Bay in the winter of
2016. The characteristic feature of the energy spectrum, according to the measured data, is
the presence of well-defined maxima with periods of 28, 30.5, 39.5, 43, 43.7, 46.3, 48, 49, and
53.7 min. Similar spectral peaks are characteristic of resonant oscillations. In the course of
interpretation and joint analysis of the measurements results and simulation, we obtained
a series of spatio-temporal parameters for resonant oscillations of the northern part of the
Peter the Great Gulf shelf. Calculations of forced oscillations in the form of a response to
local periodic wind forcing were carried out using a spectral-difference model that includes
the entire water area of the Peter the Great Gulf. The numerical model with difference
approximation on the irregular triangular spatial grid is based on the equations of shallow
water, taking into account the friction on the bottom and the ice cover. Due to the lack of
information on the ice cover configuration, the ice thickness was set by some characteristic
values. The location of the peaks on the model resonance curves corresponds to the location
of the energy spectrum maxima in in situ measurements data, which indicates the resonant
nature of these maxima and the possibility of a significant resonant amplification of level
oscillations in the bay by incoming wave packets.

Numerical studies of standing waves’ properties in Novik Bay showed that in the
inner part of the bay, during oscillations with periods of 39.3, 29.4, and 18.5 min, there
are one, two, and three nodal lines, respectively, and one more nodal line is located at the
entrance. The oscillation with period of 86.4 min is the fundamental (Helmholtz) mode for
Novik Bay.

In further studies of resonant oscillations in the Peter the Great Gulf in winter, it
appears advisable to expand the system of gauges in its coastal waters in order to identify
the positions of the nodal lines of resonant oscillations. For a numerical study of oscillations
with longer periods, it is necessary to include the entire area of the Sea of Japan in the
model and locate liquid boundaries in the straits. Detailed information on the distribution
and thickness of the ice cover in the waters of the bay is also necessary.
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