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Abstract: This study investigates residential building damage model transferability between coastal
and fluvial flood hazard contexts. Despite the frequency of damaging coastal flood events, empirical
damage models from fluvial flooding are often applied in quantitative coastal flood risk assessments.
This assumes that building damage response is similar from the exposure to different flood sources.
Here, we use empirical data from coastal, riverine and riverine-levee breach flooding events to
analyse residential building damage. Damage is analysed by applying univariable and multivariable
learning models to determine the importance of explanatory variables for relative damage prediction.
We observed that the larger explanatory variable range considered in multivariable models led to
higher predictive accuracy than univariable models in all flood contexts. Transfer analysis using
multivariable models showed that models trained on event-specific damage data had higher predic-
tive accuracy than models learned on all damage data or on data from other events and locations.
This finding highlights the need for damage models to replicate local damage factors for reliable
application across different flood hazard contexts.
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1. Introduction

Economic losses from flooding hazards have increased annually in the last 20 years [1].
In coastal areas, rising sea levels in this century are anticipated to increase the frequency
and magnitude of losses from episodic flooding. Major coastal cities around the world
could surpass US $1 trillion by 2050 if no measures are taken to address this issue [2]. In
Europe, present-day expected annual damages from coastal flooding could increase three
orders of magnitude by 2100 in response to limited investment in flood adaptation [3].
Continual population and economic growth within low-lying coastal areas compound and
exacerbate the potential for these projections to manifest in the future.

Physical damage and financial loss estimations for buildings inform optimal risk
interventions to limit the social and economic harm from flooding. Building vulnerability
to damage and loss is an important model component in flood damage assessments. For
buildings, it often represents the physical damage and tangible loss from exposure to flood
hazard characteristics and their intensities. Models typically represent relative (i.e., ratio)
or absolute (i.e., financial value) damage, usually in response to increasing water depth [4].
These so-called ‘depth-damage’ functions (DDFs) or curves are a standard approach in
flood damage modelling. While DDFs for buildings are extensively developed for fluvial
hazard contexts [5], a paucity of empirical damage information collected from coastal
flooding events means that fluvial DDFs are regularly applied in coastal flood damage
assessments [3,6]. This approach assumes building damage in different locations is similar
for different flood hazard sources, characteristics and intensities.
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A major advancement in flood damage assessment for buildings is the application
of multivariable model approaches [7]. Univariable DDFs relating a single hazard charac-
teristic to relative or absolute damage often fail to represent local factors which influence
building damage. This can lead to uncertain damage assessment outcomes, particularly
when models developed for other locations or flood events are applied to predict local
damage [8]. On the other hand, multivariable models consider a broader range of explana-
tory damage variables and can analyse interactions between variables that lead to different
damage outcomes. Supervised and unsupervised learning algorithms such as Bayesian net-
works [9–11], neural networks [12] and regression and bagging trees [8,13,14] are commonly
applied in empirically based flood damage analyses for buildings. Several studies applying
these models have demonstrated their higher performance for local damage predictions
compared to univariable DDFs [8,12]. In contrast, models learned to predict damage for
specific locations transfer to other geographical or different fluvial or coastal flood hazard
contexts with lower predictive performance [14–17]. Understanding the transferability
of building damage models between locations with different flood hazard sources and
characteristics requires further investigation.

This study compares the performance of empirical residential building flood damage
models when transferred across coastal and fluvial flood hazard contexts. New Zealand
provides the study focus area, which in recent decades has experienced numerous dam-
aging fluvial flood events [18,19]. Residential building damage from storm-driven coastal
flooding events has been significantly lower during this period, meaning there have been
fewer opportunities for post-event damage data collection. In this case, the absence of
empirical data means damage models developed for fluvial hazard contexts are likely
to be applied in coastal flood risk analyses. It is thus important to understand the po-
tential limitations and implications of applying damage models across different flood
hazard contexts.

We analyse empirical damage data collected from several flood events representing
coastal, mixed coastal and fluvial, and fluvial sources. Our damage analysis has two
main objectives: (1) develop and evaluate the predictive performance of event-specific
univariable and multivariable models and (2) evaluate the capacity for model transfer
between locations and events. This paper first describes the empirical damage data for
model learning followed by univariable and multivariable damage model development
and evaluation methods. Variables important for causing direct damage are identified
and compared for each event, followed by evaluations of model predictive performance
across single and multiple events and locations. Finally, we discuss the findings and their
implications for flood damage assessments in coastal areas.

2. Materials and Methods
2.1. Residential Building Damage Assessments

Residential building damage data were collected from on-site assessments after three
New Zealand flood events (Figure 1). Each event represented damage caused by a
different flood hazard type. Riverine (Westport flood, 2021) and riverine-levee breach
(Edgecumbe flood, 2017) damage to buildings recorded and described in [20] represent
220 and 247 building samples, respectively (Table 1). Coastal flooding from Extra-Tropical
Cyclone Fehi on 1 February 2018 affected over 100 properties across the Tasman and
Nelson Regions in the South Island of New Zealand. Three weeks after the event, on-
site assessments following the methods in [19] were completed for 57 flood-damaged
buildings over a two-day period. Information on the flood hazard characteristics, phys-
ical and non-physical building characteristics and relative building component damage
was collected.



J. Mar. Sci. Eng. 2023, 11, 1960 3 of 14

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 15 

Figure 1. Flood events and locations of empirical building damage data analysed in this study. Flu-
vial (white circles) and coastal (red square) flooding events are denoted with Ex-Tropical Cyclone 
Fehi 2018 damage assessment locations shown in the right-hand panel. 

Table 1. Summary of damage samples collected from New Zealand flood events analysed in this 
study (adapted from [20]). Explanatory variables are presented in Table 2. 

Flood Event Date Location (Territory) Flood Type 
Data 

Samples 
Explanatory 

Variables 
Edgecumbe 2017 

(E2017) 
6 April 

2017 
Edgecumbe 

(Whakatane District) 
Riverine-Levee 

Breach 
220 28

Ex-Tropical Cy-
clone Fehi 2018 

(CF2018) 

1 Febru-
ary  

2018 

Ruby Bay  
(Tasman District), 
Monaco (Nelson 

City) 

Coastal 57 26 

Westport 2021 
(WP2021) 

17 July 
2021 

Westport  
(Buller District) 

Riverine 247 35 

Table 2. Residential building damage variables assessed in studied flood events (adapted from 
[17]). 

Variable Types or Description Data Type Unit or
Value 

Hazard  

Water depth above 
ground level 

Maximum water depth above 
ground level 

Decimal m 

Water depth above 
floor level 

Maximum water depth above first 
finished floor level Decimal m 

Flow Velocity 
Presence of flow velocity damage 
on building Boolean 

0 = false; 1 
= true 

Debris Presence of debris damage on 
building  

Boolean 0 = false; 1
= true 

Contamination Presence of contamination dam-
age on building  Boolean 0 = false; 1

= true 
Exposure Area Building roof outline area Integer m2 

Figure 1. Flood events and locations of empirical building damage data analysed in this study. Fluvial
(white circles) and coastal (red square) flooding events are denoted with Ex-Tropical Cyclone Fehi
2018 damage assessment locations shown in the right-hand panel.

Table 1. Summary of damage samples collected from New Zealand flood events analysed in this
study (adapted from [20]). Explanatory variables are presented in Table 2.

Flood Event Date Location
(Territory) Flood Type Data

Samples
Explanatory

Variables

Edgecumbe
2017 (E2017)

6 April
2017

Edgecumbe
(Whakatane

District)

Riverine-
Levee
Breach

220 28

Ex-Tropical
Cyclone Fehi

2018
(CF2018)

1 February
2018

Ruby Bay
(Tasman
District),
Monaco

(Nelson City)

Coastal 57 26

Westport
2021

(WP2021)

17 July
2021

Westport
(Buller

District)
Riverine 247 35

Damage data collection for Extra-Tropical Cyclone Fehi (CF2018) was concentrated on
the settlements of Ruby Bay (Tasman District) and Monaco (Nelson City) (Figure 1). On-site
assessments were consistent for the E2017 and WP2021 events (Table 1). Building attributes
included construction period, dwelling type, structural frame, floor height, foundation
type, number of storeys and wall cladding (refer to Table 2). In addition, building roof
outline area was measured in GIS. These attributes were categorised as nominal or ordinal
or as continuous data structures.

The water depths, as indicated by the water marks on buildings, represent the max-
imum inundation levels relative to both ground level and floor level (please refer to
Table 2 for details). When access was available, we measured the water depth above the
floor level by examining high water marks and debris lines visible on internal walls. In
situations where access was limited, depths were determined from external doorsteps.
Unfortunately, accurate measurements of other factors such as flow velocity, debris de-
position (e.g., sediment) and the presence of contamination were not possible during our
on-site assessments. Nevertheless, we documented any building damage resulting from
these characteristics.
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Table 2. Residential building damage variables assessed in studied flood events (adapted from [17]).

Variable Types or Description Data Type Unit or Value

Hazard

Water depth above
ground level

Maximum water depth above ground
level Decimal m

Water depth above
floor level

Maximum water depth above first
finished floor level Decimal m

Flow Velocity Presence of flow velocity damage
on building Boolean 0 = false; 1 = true

Debris Presence of debris damage on building Boolean 0 = false; 1 = true

Contamination Presence of contamination damage
on building Boolean 0 = false; 1 = true

Exposure

Area Building roof outline area Integer m2

Dwelling Type Detached; Joined; Attached; Apartment Text 4 classes

Structural Frame Brick masonry; Concrete masonry;
Timber; Steel Text 4 classes

Floor Height First finished floor level height above
ground level Decimal m

Foundation Concrete slab; Pile; Solid wall; Mixed Text 4 classes

Construction Period <1900; 1900–1920; 1920–1940; 1940–1960;
1960–1980; 1980–2000; 2000–2020 Text 7 classes

Storeys Number of complete building
floor levels Integer 1 to ∞

Wall Cladding
Brick masonry; Concrete block;
Fibre-cement; Fibrolite; Mixed material;
Roughcast; Sheet metal; Weatherboard

Text 8 classes

Damage Damage Ratio Relative damage to the residential
building or its components Decimal 0 to 1

We determined damage ratios (DRb), a dimensionless parameter ranging from 0 to 1,
which quantifies relative damage by comparing the cost to repair with the cost to replace
building components. To compute these ratios for damaged buildings in CF2018, we
employed the methodology outlined in [19]. This process involved two key steps. First, an
observed damage ratio (ODR) was calculated for individual components using an ordinal
scale from 0 to 1, with increments of 0.25 (e.g., 0% to 25% . . . 75% to 100%). Second, we
computed a construction cost ratio (CCR) for subcomponents based on their replacement
value relative to the total building replacement value on the date of the flood event using
local construction guidelines [19]. The estimation of CCR accounted for various factors,
including area, dwelling type, foundations, number of storeys, structural framework and
wall cladding. DRb was then enumerated from the ODR and CCR multiplicative for each
component. This provided a continuous value for predictive models of relative damage
caused by relationships between hazard and building variables.

2.2. Damage Model Development

Univariable and multivariable regression models were learned for DRb prediction
using the combinations of hazard and exposure variables shown in Table 2. Model learning
applied a train-test split procedure using two-thirds of the observed data for training and
one-third for validation. This procedure was repeated 1000 times, resampling the training
data for each iteration cycle. Model DRb prediction performance was then evaluated
using several common metrics for measuring regression performance, described further in
Section 2.3.

Univariable models established a correlation between DRb and the water depth mea-
sured above ground level. Several regression models, including linear, power, second-order
polynomial and square root functions, were employed to ascertain the relationship between
water depth and DRb. These regression models were trained and assessed for their ability
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to predict DRb. Nominal hazard variables, such as flow velocity, were not considered in
these univariable regression models.

We applied Random Forest (RF) and Extreme Gradient Boosting (XGB) as tree ensem-
ble models for DRb prediction. These regression models were chosen for several reasons:
(1) use of multiple explanatory variables for DRb prediction, (2) bootstrap sampling to
reduce potential for overfitting and (3) determination of non-parametric uncertainty dis-
tribution from variations amongst the tree ensemble predictions. RF and XGB algorithms
were implemented in Python using the scikit-learn [21] and Extreme Gradient Boosting
(XGBoost) [22] libraries, respectively.

The procedure was repeated 1000 times, with the training data resampled for each
iteration. The choice of hyperparameters is crucial for tree ensemble methods [23,24]. RF
models were configured to minimise out-of-bag (OOB) errors, which were calculated as the
sum of squared residuals following the recommendation in [13]. The RF tree and predictor
variable ranges were tested with 100 reproductions for each combination to find the optimal
combination that yielded the lowest OOB error. In this case, we used 1000 trees with
10 variables randomly sampled at each node. For the XGB model, tree growth was halted
when 10 trees were added without any further predictive improvement. The maximum
number of XGB model trees was set to 100, and the maximum tree depth was limited to 6.

Finally, variable importance for DRb was determined based on tree ensemble predic-
tions. Variable importance was measured using mean decrease accuracy [23]. Here, model
accuracy was initially computed for all variables and then for each variable individually
by excluding the other variables. The reduction in each variable’s accuracy relative to the
overall model accuracy was measured, with a higher mean decrease in accuracy indicating
the higher importance of the variable for DRb prediction.

2.3. Damage Model Evaluation

Univariable and multivariable model predictive performance for DRb was evaluated
using precision and reliability metrics based on [13] (Table 3). Models were evaluated using
10-fold cross-validation to produce regression error metrics [25]. For relatively small dam-
age samples for model learning (Table 1), cross-validation implements a folding technique
to shuffle and split damage samples into smaller subsamples. Models are then learned and
evaluated on each subsample to enumerate the mean performance value for each fold. Pre-
cision was represented by mean squared error (MSE), mean absolute error (MAE) and mean
bias error (MBE). MSE calculates the average squared deviation between the observed and
predicted DRb values, where smaller values indicate higher model performance. MAE is an
absolute metric that measures the average error between the predicted and observed DRb.
MBE then quantifies the mean difference between the predicted and observed DRb, with
positive and negative values representing overprediction or underprediction, respectively.
Reliability was analysed from the modelled DRb distributions. The quantile range (QR)
represents the prediction range of DRb values between the 5th (q5) and 95th (q95) quantiles,
indicating a 90% quantile range. A larger QR indicates higher prediction uncertainty. Hit
rate (HR) measures the proportion of DRb predictions within the observed QR, with high
prediction reliability represented by a value of 0.9 or greater [26].

Empirical data for different locations and events supported the spatial transfer evalua-
tion of model prediction performance. Data samples were separated into subsets for each
event prior to predictive modelling. Models were learned on data samples for each location
and event, then transferred to predict DRb for other locations and events. In addition,
models learned on data samples for all events were developed to evaluate and compare
prediction performance relative to models for specific locations and events.
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Table 3. Evaluation metrics for model DRb predictions (pred) relative to DRb observations (obs).

Performance Metric Formula

Mean Squared Error (MSE) MSE = 1
n

n
∑

i=1

(
pred − obs)2

Mean Absolute Error (MAE) MAE = 1
n

n
∑

i=1
pred − obs

Mean Bias Error (MBE) MBE = 1
n

n
∑

i=1
(pred − obs)

Quantile Range (QR) QR = 1
n

n
∑

i=1
predq95 − predq5

Hit Rate (HR) HR = 1
n

n
∑

i=1
hi ; h =

{
1 where predq5i

≤ obsi ≤ predq95i
0 otherwise

,

3. Results and Discussion
3.1. Variable Importance and Damage Relationships

The relative importance of explanatory variables for the relative damage returned by
RF and XGB models is presented in Figure 2. The models demonstrated the high importance
of water depth above floor level and ground level as causative factors for building damage
across all flood events. This is consistent with the global literature indicating water depth
being a principle explanatory variable for building damage (e.g., [5]). Water depth above
floor level showed a higher influence on damage, which can be attributed to damage to
non-structure components (e.g., internal finishes) located at or above floor level and with
a high susceptibility to damage upon water contact [16]. The presence of flow velocity
on damage was observed for events E2017 and CF2018. Despite comparatively fewer
observations (n = 13), the variable had a relatively high influence on building damage.
The limited observations indicated that conditions causing damage were highly localised.
Debris and contamination showed little influence on building damage for the studied
events. This could be influenced by high material susceptibility to damage on water contact
across all flood sources.

Building characteristics showed disparities in the importance of rankings between
RF and XGB models (Figure 2). The XGB model returned the highest importance for
foundation and floor height across all events. This could be expected, as both variables
influence water depth above floor level. The variables influenced damage more highly
for events WP2021 and CF2018. This could be attributed to the low influence of flow
velocity, elevating the importance of water depth for observed damage in these events.
While the RF model demonstrated moderately high importance for floor height, building
area highly influenced damage in events WP2021 and E2017. This could be attributed
to the prevalence of single-storey, timber-framed buildings exposed to flooding in these
events, which covered a smaller footprint area. These buildings are typically constructed
with internal finishes comprising timber and composite materials [27], forming a high
proportion of building replacement value [28] and having a high susceptibility to water
damage. The lower importance of storeys and the structural frame suggests that damage
susceptibility from non-structure components was influential in the damage outcomes
observed for different flood contexts.
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3.2. Event Damage Model Performance

The event damage predictions for univariable and multivariable models compared
to observations are presented in Figures 3 and 4, respectively. For consistency with inter-
national studies [5], univariable models predicted DRb in response to water depth above
ground level. Square root and second-order polynomial regression demonstrated the high-
est prediction precision and reliability overall for the univariable models tested (Figure 5).
Precision in terms of MSE and MAE was slightly higher (12% and 15%, respectively) than
the linear regression model, the simplest and lowest-performing univariable model. The
higher-performing square root regression was consistent with several international studies
which observed similar univariable model trends in fluvial flood hazard contexts. Univari-
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able hit rates (HRs) were higher for WP2021, ranging from 0.86 to 0.88, with a relatively
lower uncertainty for its QR (0.08 to 0.12) compared to other events. Models for E2017
and CF2018 returned similar HR values but demonstrated larger uncertainties with QR,
ranging between 0.18 and 0.23. Prediction uncertainties for these events could be attributed
to highly localised flow conditions due to levee-breach failure (E2017) or wave action
(CF2018), as indicated by the presence of flow velocity damage. Such conditions were not
observed for WP2021, with damage more highly influenced by water depth (Figure 2).
Additionally, larger uncertainties for CF2018 DRb predictions could be attributed to the
small damage sample (n = 57) for model learning. Here, univariable model predictions
demonstrated large variations relative to the 1:1 identity line shown in Figure 3. Model over-
and under-prediction represents the inability of simple univariable models to represent
the relationship between DRb and water depth above ground level when fewer damage
samples are available for model learning.
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Figure 3. Prediction performance for relative building damage (DRb) estimated from
univariable models.

Multivariable models assess interdependent relationships between various hazard
and exposure factors to determine a damage outcome [10]. Here, Random Forest (RF) and
Extreme Gradient Boosting (XGB) algorithms were learned for DRb prediction using two
sets of explanatory variables: (1) all hazard and exposure variables and (2) the variables
with cumulatively high importance for DRb prediction (i.e., mean decrease accuracy ≥0.2)
across the studied events. The highest-performing algorithm and variable combination
was then selected to compare model spatial transfer between different locations and flood
hazard contexts.
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Higher DRb prediction precision was observed for RF and XGB models compared
to the univariable models investigated (Figure 4). MSE and MAE precision increases of
over 40% were observed for multivariable models compared to square root and second-
order polynomial regression. Such improvements in model predictions are visualised
in Figure 4, whereby observed and predicted DRb returned by multivariable regression
models demonstrate closer proximity to the 1:1 identity line compared to univariable
models in Figure 3. Across all flood events, models learned on important explanatory
variables for damage demonstrated higher precision than models considering all variables.
This suggests that a larger explanatory variable range may cause model overfitting for
damage prediction [14], highlighting a need to replicate local damage factors for reliable
damage model applications.

RF and XGB models demonstrated similar predictive precision and reliability over-
all across flood events but showed relative variability for individual events (Figure 5).
XGB models showed slightly higher prediction precision (i.e., MSE and MAE) for E2017
and CF2018 but lower precision for WP2021. XGB models also underpredicted DRb
(i.e., MBE) for most events, whereas RF overpredicted more frequently. In addition, similar
prediction reliability with HR values between 0.87 and 0.89 was observed, although XGB
models demonstrated higher uncertainty (i.e., QR) for all flood events. Model uncertainty
was higher for E2017 and CF2018, with both events observing building damage from a
broader range of flood hazard characteristics (e.g., flow velocity). Limited damage-causing
hazard characteristics observed for WP2021 likely resulted in comparatively lower un-
certainties returned by multivariable models. These observations suggest that despite
their potential for higher predictive precision, multivariable models predict damage with
higher uncertainty when a larger range of hazard and exposure variables influence relative
building damage for a location or flood event.
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3.3. Model Transfer across Coastal and Fluvial Flood Events

Spatial transfer analysis was performed using the RF model and all explanatory
variables across the studied flood events. A combined model learned for damage prediction
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using the complete WP2021, E2017 and CF2018 datasets was included. Precision and
reliability metrics from transfer test models are presented in Figure 6.
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Models learned for location-specific flood events showed relatively higher precision
(i.e., MSE and MAE) for damage prediction compared to models learned for other locations
and events. The combined model produced higher precision metrics with lower uncertainty
(i.e., MBE) when applied to CF2018. This may suggest that explanatory damage variables
across studied fluvial and coastal flood events adequately represent hazard and exposure
characteristics leading to damage outcomes observed for CF2018. Buildings damaged
in CF2018 were located on coastlines bordering sheltered wave environments [29,30],
as confirmed by the importance of the water depth variable in explaining the observed
damage (Figure 2). While higher precision was observed, high QR values indicated greater
uncertainty in the combined model’s predicted damage outcomes for CF2018. This likely
reflects the combined model’s inability to determine highly localised hazard conditions
which influence building damage, such as wave impacts. This was also observed in fluvial
events, as indicated by the WP2021 model’s lower precision and reliability when transferred
to E2017, where high-velocity flows opposite a levee breach caused structure component
damage [19]. These findings indicate that additional damage collection and analysis for
buildings exposed to high-energy wave conditions are required to confirm the reliable use
for models learned on fluvial and coastal flood events across different hazard contexts.

Explanatory variables representing localised hazard and building characteristics are
critical for multivariable model applications in different flood hazard contexts [10]. Here,
we observed that event models learned for E2017 and CF2018 predicted damage with
higher precision for the combined event dataset compared with WP2021. The presence of
velocity damage was not observed for buildings affected by the WP2021 event. Therefore,
learned event model applications in flood contexts with high-energy conditions may return
unreliable damage predictions. This was confirmed with WP2021 having lower HR values
for E2017 and CF2018 (Figure 6) and conversely when these events were applied to WP2021.

While these findings indicate a need for location-based damage models which repre-
sent local damage conditions for coastal and fluvial flood hazard contexts, such approaches
are highly data-driven, resource-intensive and reliant on frequent damaging events in
locations of interest. With these limitations, future model improvements should focus
on heterogeneous flood damage data collection to form an empirical dataset for model
learning that is based on a broader range of hazard and building characteristics across
coastal and fluvial flood hazard contexts.

4. Conclusions

This study analysed building damage model transfer across coastal and fluvial flood
hazard contexts. We used empirical data from coastal, riverine and riverine-levee breach
flooding events to analyse residential building damage. Damage was analysed by learning
univariable and multivariable models to predict relative damage and determine the impor-
tance of explanatory variables for damage. We then evaluated the predictive performance
of each event model and the combined event model to determine the capacity for reliable
model transfer across different flood hazard contexts.

The damage analysis showed that a larger hazard and exposure explanatory variable
range improved damage prediction precision. Multivariable models using Random Forest
and Extreme Gradient Boosting algorithm implementations using all explanatory variables,
or important variables, for damage demonstrated higher precision than univariable models
learned to predict damage in response to water depth above ground. This finding supports
a move towards multivariable model applications that consider hazard and exposure
explanatory variables influencing building damage for the location or flood hazard context.

Multivariable model transfer analysis showed that models learned on event-specific
damage data frequently predicted damage with higher precision compared to models
learned on all damage data or data from other locations and events. Localised phenomena,
such as conditions leading to velocity damage, influenced model transfer performance.
Where local damage factors were not represented by models learned for other flood events,
damage prediction precision and reliability were reduced. These findings further highlight
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the need for damage models to replicate local damage factors for reliable application across
different flood hazard contexts.
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