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Abstract: This paper presents a novel machine learning-based approach for detecting abnormal
ship movements using CCTV videos. Our method utilizes graph-based algorithms to analyze
ship trajectories and identify anomalies, with a focus on enhancing maritime safety and accident
prevention. Unlike conventional AIS data-dependent methods, our approach directly detects and
visualizes abnormal movements from CCTV videos, particularly in narrow coastal areas. We evaluate
the proposed method using real-world CCTV video data and demonstrate its effectiveness in detecting
abnormal ship movements, offering promising results in real-world scenarios. The findings of this
study have important implications to improve maritime safety and prevent accidents.

Keywords: maritime surveillance; anomaly detection; ship tracking

1. Introduction

Ship traffic has increased as the world emerges from the COVID-19 pandemic, leading
to a surge in global maritime activities. This escalation in ship movements underscores the
importance of preemptively identifying abnormal ship movements to prevent accidents.
Existing research on anomaly detection for ships displaying irregular movements has
predominantly relied on the integration of the automatic identification system (AIS) [1,2].
However, this approach has its limitations. Notably, significant data gaps exist in AIS
data communication. Consequently, accurately determining ship movements in narrow
coastal areas such as harbors becomes challenging, depending on data reception intervals,
as illustrated in Figure 1. Moreover, the lack of integration between AIS and visual data
yields non-intuitive insights. Thus, the exclusion of many ships, especially smaller ones
lacking AIS equipment, poses a substantial challenge.
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Figure 1. Visualization of AIS data in the port of Mokpo, Korea (https://www.vesselfinder.com/).
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Meanwhile, machine learning is evolving rapidly, driving significant advancements
across various areas, particularly in processing image and video data. Interestingly, this
surge of innovation has broad implications, influencing various fields such as safety, se-
curity, and surveillance. In response to this dynamic context, our research focuses on
diverging from conventional methods that heavily depend on AIS data for tracking ship
movements. Instead, we focus on harnessing the potential of closed-circuit television
(CCTV) video data to detect anomalies in maritime activities (Figure 2). Particularly, our
study represents a significant shift rooted in the vision of pioneering a new era in machine
learning-based anomaly detection for ship movements using CCTV videos.

At the core of our research lies the development of a novel machine learning-based
method that capitalizes on the rich insights embedded within CCTV video data. Specifi-
cally, this innovative method aims to overcome limitations tied to conventional AIS-based
techniques and unlock a more nuanced understanding of ship behaviors. As we delve
into new horizons, sophisticated graph-based analytics and nuanced insights from CCTV
video data emerge as guiding factors. Particularly, this direction shapes our efforts to
redefine how we identify anomalies in maritime activities. With this goal in mind, we aim
to contribute to enhancing maritime security in our ever-more connected world.
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Figure 2. Overall framework of our proposed method.

Specifically, this study focuses on identifying abnormal ship behaviors using object
detection and tracking techniques, utilizing data from maritime observation CCTV systems.
We aim to represent ship paths as graphs, enabling us to recognize regular routes and
deviations from them. This approach is particularly pertinent for detecting paths that
deviate significantly from the norm, indicating potentially unusual or unsafe activities.

Furthermore, our investigation capitalizes on real-time object tracking methods,
known for their ability to instantly process data, handle extensive datasets, adapt to various
contexts, enable live monitoring, and automate processes. Particularly, these attributes
align with our overarching goal: developing a service dedicated to accident prevention
through the analysis of CCTV video data. More specifically, we employ detection models
based on YOLO (You Only Look Once) [3] and utilize tracking algorithms grounded in
SORT (Simple Online and Realtime Tracking) [4] to achieve this objective.

The structure of the paper is as follows: Section 2 presents related research on anoma-
lous pattern detection in ships via CCTV and explores prior studies in identifying anoma-
lous ships through AIS integration. In Section 3, our method to identify abnormal ship
behaviors is presented and visualization techniques are introduced. Section 4 explores the
dataset, experimental methods, and results. Finally, in Section 5, the proposed approach is
summarized, highlighting avenues for future research.

2. Related Work

In this section, we summarize popular object tracking and detection algorithms, focus-
ing on well-established methods and the algorithms employed in our study: YOLOv7 [5]
for object detection and StrongSORT [6] for object tracking. In addition, we introduce
several algorithms adopted for identifying anomalous ship movements.
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2.1. Object Detection

Object detection entails recognizing and localizing meaningful objects within images
and videos. Specifically, it addresses various challenges, including face detection, video
tracking, and people counting. Conventional object detection methods involve feature
extraction using techniques, such as Haar features [7], scale-invariant feature transform
(SIFT) [8], and histogram of oriented gradient (HOG) [9], coupled with classification
algorithms such as support vector machine (SVM) and adaptive boosting (AdaBoost). More
recently, convolutional neural network (CNN)-based approaches have gained prominence,
divided into 1-stage and 2-stage detectors. The 1-stage detectors, exemplified by YOLO and
SSD [10], offer real-time processing, while 2-stage detectors such as Faster R-CNN [11] use
region proposal networks to enhance accuracy. YOLOV7 [5], a 1-stage detector, is selected
in this paper for its real-time capability and improved accuracy.

Meanwhile, Faster R-CNN [11] is a deep learning-based object detection algorithm
that improves the speed of R-CNN by using a region proposal network (RPN) to generate
candidate regions for object detection. Specifically, it extracts features using CNNs, trans-
forms regions, and performs classification and bounding box regression. EfficientDet [12]
focuses on maximizing efficiency and performance by minimizing model size. Particularly,
it uses EfficientNet as a backbone and introduces compound scaling to control network
size. In addition, BiFPN is utilized for feature fusion across different levels. YOLOvV7 [5] is
a regression-based object detection model that directly predicts bounding box coordinates
and class probabilities. Specifically, it improves performance through model reparameter-
ization and label assignment, maintaining real-time capabilities while achieving higher
accuracy [13].

2.2. Object Tracking

Object tracking identifies and continually tracks moving objects within image se-
quences or videos. Specifically, it interacts closely with object detection, enhancing detection
results with temporal consistency. Particularly, kernelized correlation filter (KCF) [14] and
DeepSORT [15] (that builds upon SORT), are notable tracking algorithms. DeepSORT inte-
grates deep learning and the Kalman filter to achieve more accurate tracking; its enhanced
version, StrongSORT [6], features improvements in appearance and motion estimation,
yielding superior performance.

KCEF [14] exploits pixel correlation to track objects in real time, utilizing a kernel func-
tion to measure the similarity between object and pixel values. DeepSORT [15] combines
deep learning with the Kalman filter to perform online object tracking, addressing chal-
lenges such as occlusion and fragmentation. Furthermore, StrongSORT [6] improves upon
DeepSORT by incorporating appearance features from a more robust backbone network
and a refined motion estimation algorithm, leading to enhanced performance.

2.3. Enhancing CCTV Image Quality

Abnormal tracks or behavior often occur at night or in heavy weather conditions when
visibility is poor. CCTV images under such conditions may be blurry and inconspicuous,
posing challenges for the detection of abnormal ship movements. To address these issues,
image preprocessing techniques can be applied to enhance the quality of CCTV video data.
Preprocessing can help remove noise and improve image clarity, enabling more accurate
identification of a ship’s trajectory and more effective detection of abnormal movements.
Such preprocessing methods hold the potential to significantly improve anomaly detection
performance, particularly in adverse weather or low-light conditions. To enhance the
quality of CCTV images affected by adverse weather conditions, researchers have explored
various image processing techniques. Shwartz et al. [16] studied methods for improving the
visibility of images degraded by atmospheric conditions. Similarly, Narasimhan et al. [17]
studied the challenges of restoring image contrast in weather-degraded conditions.
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2.4. Anomalous Ship Identification Studies

Existing studies focusing on identifying anomalous ship movements primarily utilize
AIS data. Some studies identify anomalies based on maritime big data to analyze ship
anomaly trajectories [18]. In particular, clustering-based approaches [19] compress AIS
data into lower-dimensional vectors, employing k-means and k-NN algorithms to group
and classify trajectories based on similarity metrics. However, AIS data have limitations,
including errors, limited coverage, and the absence of equipment on smaller ships. These
studies underscore the significance of ship anomaly detection but also highlight AIS data
limitations. Interestingly, integrating object detection and tracking methods can address
these limitations and offer a more comprehensive approach to anomaly detection in mar-
itime environments. Existing research on anomaly detection at the graph level could be
adapted for this purpose [20,21]. As most trajectories are normal, using this method to
identify anomalous trajectories can efficiently eliminate the need to select only normal
patterns during dataset preparation manually. However, it should be noted that these
approaches can be complex to implement in practice.

3. Methodology

In this section, we address the limitations observed in prior research concerning the
identification of anomalous ship movements by introducing the use of CCTV video data
as opposed to AIS data. Our study focuses on identifying anomalous ship behaviors
using CCTV videos, assuming consistent maritime scenes across different time frames.
In particular, we assume that the more significant the difference between a pre-learned ship
trajectory pattern and the pattern under comparison, the higher the likelihood of indicating
an anomalous path.

In this context, we propose a novel algorithm to differentiate between learned normal
trajectory patterns and distinctive anomalous trajectory patterns. More specifically, this
algorithm aims to identify deviations from established normal patterns and discern patterns
indicative of anomalous behavior, contributing to enhanced ship anomaly detection within
maritime environments.

3.1. Proposed Method

The methodology presented in this paper is summarized in Algorithms 1 and 2.
In Algorithm 1, normal ship movement patterns are acquired through learning training.
In Algorithm 2, these learned ship movement patterns are used to detect ships with
abnormal movements. This approach compares the ship’s trajectory being tested to the
learned patterns, facilitating the identification of anomalous ships.

Algorithm 1: Generating Pattern Graphs.

input :Training CCTV video Cj, positive integer M, N, threshold;

output: Detection of Abnormal Ship Behavior V;

Divide the training video C; into M x N intervals at regular intervals;

Create M x N nodes, each representing an interval;

Detect and track each ship in C; using StrongSORT and YOLOvV7;

By using StrongSORT and YOLOV?7, detect and track each ship in Cy, enabling the
extraction of positional coordinates Xc,,Y., and a unique identifier, denoted as
shipID m, for each ship;

Compute NodeNumber using X, and Ye,;

If m exists, connect the NodeNumber;

Generate a directed graph Gpattern using N odeNumber and m;

Remove graphs from Gpgttern where the size of a path is below the threshold;

return Gpattern;

=W N =
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Algorithm 2: Detecting Abnormal Ships.

input :Test CCTV video C;, pattern graph Gpattem, positive integer M, N;
output: Detection of Abnormal Ship Behavior V;

Set V = False;

Execute the same process as lines 1 through 7 of Algorithm 1 for Cy;
Generate a directed graph Gy using NodeNumber and m;

If there is no match between Gpgttern and Gyst, set V = TRUE;

return V;

G W N =

The algorithm’s process can be summarized as follows: First, the trajectories of ships
moving normally are transformed into graphs. These are achieved by dividing CCTV
video data into M x N segments within training data and tracking ships using a tracking
algorithm. The tracking results, presented in a text file, include frame numbers, object
identifications (IDs), and coordinates of bounding boxes, as depicted in Figure 3.

381118513366851-1-1110-1
38219641019358-1-1000-1
383-28618152204-1-1000-1
384043415621853-1-1000-1
38506791077434-1-1110-1
386-286212614785-1-1000-1
387059511311959-1-1000-1
481118513286863-1-1011-1
48219651029156-1-1000-1
483-28619153203-1-1000-1
484048616211047-1-1000-1
48506791077334-1-1110-1

Figure 3. Examples of tracking results. From left to right, it signifies frame, class, ID, vehicle side,
bounding box’s left, bounding box’s top, bounding box’s width, bounding box’s height, padding,
padding, departure/arrival decision flag, anomalous trajectory decision flag, padding, and padding.

Specifically, each segment traversed by a ship is depicted as a node, while connections
between sequential segments are denoted as directed links. These nodes and links collec-
tively constitute a directed graph, which is referred to as a “pattern graph”. The ship’s
traversal through these nodes is determined based on the ship’s coordinates, as illustrated
in Figure 3. These nodes are then connected to form the pattern graph. The equation to
derive the node from tracking results is given as follows.

YC 0

NOdeNumber - L XCO J +N X LW

width/N ) @

where X, and Y¢, represent the ship’s x and y coordinates within the video frame, with the
origin (0,0) located at the top-left corner and the maximum coordinates (1920, 1080) situ-
ated at the bottom-right corner.

Example 1. Given a video with a width of 1920 and a height of 1080, where M is 5 and N
is 7, suppose the detected ship’s x and y coordinates are 500 and 1000, respectively. In this
scenario, NodeNumber is calculated as [500/(1920/7)] + 7 x | (1000/(1080/5))|. Thus, it
equals 147 x 4, resulting in 29.
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Figure 4 illustrates an example graph with M x N = 5 x 7. Precisely, solid lines
represent the paths of individual ships and form a pattern graph. The pattern graph
generated by the proposed algorithm for normal ship movements demonstrates a relatively
simple structure with a limited number of participating nodes when compared to the total
number of nodes. In addition, the number of incoming and outgoing links within this
pattern graph is quite similar. This structured pattern graph provides a visual representation
of the typical movement patterns observed.

Figure 4. Examples of pattern graphs.

Furthermore, a threshold is set to remove stationary or falsely detected objects within
the generated directed graph. Graph paths with lengths below the threshold are eliminated,
resulting in a final set of learned pattern graphs representing normal ship movements.
This structured graph is referred to as the pattern graph. Particularly, the pattern graph
comprises nodes representing features and edges indicating connectivity information.
The division of ship trajectories into segments during the creation of the normal path
pattern graph prevents misidentification due to minor pixel differences or incomplete
learning of normal paths.

The same graphing process is applied for the ship under scrutiny for anomalous
movement identification, creating a target graph. By comparing the target graph with the
pattern graphs derived from training data, anomalous behavior is identified if no matching
pattern is found within the pattern graph. The identification result includes the ship’s ID,
coordinates, and indicates whether the detected behavior is true or false.

3.2. Visualizations

Expanding ship-traffic control zones, due to increased maritime traffic, has led to
a heightened workload for control personnel. Moreover, instances of traffic congestion
during peak hours can result in controllers failing to perceive potential risks. Along
with the automated identification of anomalous ship behavior, visualization techniques
were employed to facilitate the intuitive and straightforward detection of abnormal ships.
As shown in Figure 5, the results of ship tracking using StrongSORT and YOLOvV7 are
displayed in sequential order, demonstrating the successful tracking of ships as they
pass through.

Furthermore, Figure 6 employs distinct colors for bounding box visualization to iden-
tify ships with abnormal movements, utilizing the results obtained through the approach
proposed in this paper. Specifically, when a ship follows an anomalous path, its bounding
box is highlighted in red; conversely, if it follows a normal path, a different color is used
for the bounding box. This visual representation allows an immediate understanding of
where abnormal movements occurred on the sea, enabling faster decision-making. Figure 6
is an example from Experiment 3, Case 7, illustrating the distinction between abnormal
and normal paths. However, instances occurred where abnormal paths were misclassified



J. Mar. Sci. Eng. 2023, 11, 1956 7 of 15

as normal, or conversely, normal paths were classified as abnormal. Each of these cases has
been detailed in the experimental section.

Gunsan Bieung Port Gunsan Bieung Port Gunsan Bieung Port

Gunsan Bieung Port Gunsan Bieung Port

Figure 5. Examples of tracking results.

Gunsan Bieung Port Gunsan Bieung Port

Gunsan Bieung Port Gunsan Bieung Port

Figure 6. Examples of abnormal movements in tracking results.

4. Experiments
4.1. Experimental Environments

The hardware and environmental resources for conducting experiments on the pro-
posed method in this paper are outlined in Table 1.

Table 1. Hardware and environmental resources.

Experimental Environments

(O8] Ubuntu 22.04
CPU Intel Xeon W-2225 (4.1 GHz)
GPU NVIDIA GeForce RTX 3090 (CUDA 11.3)
Memory 128 GB
Language Python 3.8

4.2. Datasets

In this paper, we utilized ship movement collected through CCTV installed at Bie-
ung Port in Gunsan, South Korea. While the precise coverage area of the CCTV cameras
used in this study was not explicitly defined, it is noteworthy that the region generally
accommodates small to medium-sized vessels with an average length of approximately
24 m. More specifically, Table 2 provides information about the data for training the normal
pattern graph. Table 2 presents the count of ships demonstrating normal patterns, exclud-
ing those encountering issues such as stationary ships or detection errors. Particularly
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during nighttime or adverse weather conditions, there is an increased likelihood of object
identification errors due to reduced illumination in the videos. Therefore, we conducted
video data collection on days with abundant daylight. For this experiment, we consistently
used a total of 7 h of video data, recorded from 09:00 to 16:00, over three consecutive days.

Table 2. Summary of dataset.

Video Dataset
Resolution FHD (1920*1080)
FPS 30 fps
Video length 7 h*3 days
# of ships 319
# of normal ships 106

In ordinary ship movements, the likelihood of irregular behavior, such as deviating
from predetermined routes due to accidents, is extremely low. This indicates that there
is sufficient data for learning normal patterns, but there are limitations when it comes to
learning patterns of abnormal ship behavior in the context of machine learning. Despite
collecting CCTV videos for approximately two months, obtaining distinct examples of
abnormal ship behavior suitable for use as test cases proved to be challenging. We expe-
rienced challenges in finding cases that showed clear abnormal behavior, such as ships
drifting in circular patterns, exhibiting unusual curves during movement, or abruptly
stopping in the middle of their route.

Therefore, in order to identify abnormal ship movements, we assumed four cases
that followed paths as different as possible from the learned pattern graphs as abnormal
ships and conducted experiments using three normal cases. Table 3 presents the number
of target ships included in each case video, the total number of frames in the video, and a
comparison of the paths of target ships in the case video with the normal pattern graph.
Furthermore, Table 3 shows the count of frames that should be classified as normal paths
based on pattern matching and the count of frames that should be classified as significantly
different abnormal paths. As depicted in Table 3, cases 6 and 7 each encompass two ships
including abnormal patterns (i.e., objective # of ships). The experiments present outcomes
for an individual ship with an abnormal pattern, with the outcomes for case 6 indicated as
case 6-1 and case 6-2, and the outcomes for case 7 denoted as case 7-1 and case 7-2.

Table 3. Summary of information about test cases.

Test Cases Classification Objective # of Ships Total Frames Abnormal Frames Normal Frames
Case 1 Abnormal 1 133 0 133
Case 2 Abnormal 1 60 18 42
Case 3 Abnormal 1 60 16 44
Case 4 Abnormal 1 93 21 72
Case 5 Normal 1 90 0 90
Case 6 Normal 2 75 0 75
Case 7 Normal 2 150 0 150

4.3. Experimental Setup

The YOLOvV? and StrongSORT algorithms were employed in the detection and tracking
processes for the experiments, respectively. We employed the pre-trained YOLOv7-e6e
model for YOLOv?7, which had undergone training on the MS-COCO dataset [22], a widely
recognized dataset in the field of image recognition. In the case of StrongSORT, we utilized
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the pre-trained OSnet model sourced from the Market-1501 [23] and DukeMTMC-relD [24]
datasets. Furthermore, to mitigate coordinate jitter resulting from changes in bounding
box size during pattern learning and abnormal pattern detection, we conducted detection
and tracking at intervals of 20 frames in the CCTV video. Specifically, we conducted three
experiments using different values of N, M, and threshold. In the first experiment, M was
set to 48, and N was set to 27, resulting in a total of 1296 segments. We trained normal
patterns from these segments and generated pattern graphs. A threshold of 5 was set,
indicating that patterns with a length of five or fewer segments (i.e., those traversing fewer
than five segments) were considered stationary ships or misidentified objects and excluded
from abnormal path comparisons. In the second experiment, we configured M as 32, N as
18, and set the threshold to 3. For the third experiment, M was set to 16, N to 9, and the
threshold to 1. The experimental settings for each scenario are summarized in Table 4.

Table 4. Experimental setup.

N M Threshold
Experiment 1 48 27 5
Experiment 2 32 18 3
Experiment 3 16 9 1

4.4. Experimental Results

For each test case in the experiments, a confusion matrix was computed to calculate
the final results. In cases where detection was interrupted but not completely missed
from the start, it was assumed that the result for the ship in question was the same as its
previous detection.

4.4.1. Results of Experiment 1

In Figure 7, the visual representation illustrates the patterns of normal paths observed
in Experiment 1 and contrasts them with the CCTV video. Interestingly, the substantial
overlap observed among the majority of trajectories resulted in a reduced count of generated
patterns compared to the total number of ships used for training. In Experiment 1, larger
values of N and M led to the construction of more complex graphs compared to the
other two experiments. Precisely, the final count of distinct patterns, after eliminating
overlapping graphs, is 30, as indicated in Table 5. These patterns, primarily displaying
lateral movement characteristics, enable the differentiation of normal ship trajectories and
the detection of abnormal movements, which is clearly highlighted in Figure 7.

Gunsan Bieung Port

Figure 7. Examples of pattern graphs in Experiment 1.

Table 6 presents the outcomes of Experiment 1, illustrating the frame-level detection
results for various cases. The table provides a detailed breakdown of true positives (TP),
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false negatives (FN), false positives (FP), and true negatives (TN) for each case. In Exper-
iment 1, a comprehensive assessment of anomaly detection was conducted for different
scenarios, each represented by a specific case. True positives (TP) indicate the number of
frames correctly identified as abnormal ship movements. False negatives (FN) represent
frames depicting abnormal movements but were not detected as such. False positives (FP)
signify frames mistakenly classified as abnormal, while true negatives (TN) denote frames
accurately identified as normal ship movements.

Experiment 1 serves as the baseline, and its results provide insights into the algo-
rithm’s initial performance. It is noticeable that Experiment 1 exhibits a mixed performance
across different cases. Notably, Cases 1, 4, and 5 demonstrate competitive performance with
a substantial number of true positives (TP) while keeping false negatives (FN) relatively
low. These results indicate that Experiment 1 effectively detects abnormal ship movements
in these scenarios, particularly in scenarios with clear distinctions between normal and
abnormal behaviors. However, in Cases 2, 3, and 7-1, Experiment 1 faces significant chal-
lenges with the presence of false negatives. In these cases, some abnormal ship movements
were not correctly identified, highlighting areas where the algorithm can be improved.
Furthermore, the absence of false positives (FP) in all cases suggests that Experiment 1
tends to be conservative in labeling ship movements as abnormal, minimizing the risk of
false alarms but potentially missing some anomalies.

Table 5. Learned pattern graph of Experiment 1.

Pattern Graph Information

# of nodes 882
# of edges 852
# of patterns 30

Table 6. Results of Experiment 1.

TP FN FP TN
Case 1 71 62 0 0
Case 2 12 30 0 18
Case 3 20 24 0 16
Case 4 43 29 0 21
Case 5 79 11 0 0
Case 6-1 34 41 0 0
Case 6-2 59 16 0 0
Case 7-1 113 37 0 0
Case 7-2 98 52 0 0

4.4.2. Results of Experiment 2

Figure 8 visually compares and contrasts the patterns of normal paths from Experi-
ment 2 with the video. Table 7 provides information about the learned pattern graphs from
Experiment 2. Among the three experiments, Experiment 2 demonstrates a pattern count
similar to Experiment 1, with a segment size that falls in between. Due to smaller values of
N and M compared to Experiment 1, the segment size increased, leading to a simplification
of the patterns. As a result, due to the smaller number of segments, Experiment 2 pattern
graphs exhibit simpler movement patterns compared to the patterns in Figure 7.
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Table 7. Learned pattern graph of Experiment 2.

Graph Information

# of nodes 581
# of edges 552
# of patterns 29

Gunsan Bieung Port

Figure 8. Examples of pattern graphs in Experiment 2.

Table 8 displays the aggregated confusion matrix for the frame-level detection results in
Experiment 2. Experiment 2 represents adjustments in segment size (N and M) and provides
an opportunity to evaluate the algorithm’s sensitivity to these parameters. While it does
show improved performance in Cases 1, 4, and 5, where TPs are notably higher compared
to Experiment 1, it also introduces challenges in Cases 2, 3, and 7-1, where FP cases emerge.
One key observation in Experiment 2 is the ability to detect anomalies effectively when they
exhibit relatively distinct behavior patterns. Cases 1, 4, and 5 demonstrate the algorithm’s
potential for accurate detection when differences between normal and abnormal movements
are pronounced. However, the emergence of FPs in Cases 2, 3, and 7-1 underscores the
need for fine-tuning to reduce false positives in scenarios with more subtle deviations from
normal ship movements.

Table 8. Results of Experiment 2.

TP FN FP TN
Case 1 70 63 0 0
Case 2 21 21 6 12
Case 3 30 14 3 13
Case 4 69 3 8 13
Case 5 86 4 0 0
Case 6-1 46 29 0 0
Case 6-2 68 7 0 0
Case 7-1 142 8 0 0
Case 7-2 134 16 0 0

4.4.3. Results of Experiment 3

Figure 9 visualizes the patterns of normal paths from Experiment 3 and compares
them with the video. Given the largest segment size among the three experiments, there is
greater overlap among patterns, resulting in the smallest total count of patterns, which is
18. As N and M are at their smallest, the patterns also represent a more straightforward
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shape. Table 9 provides information about the learned pattern graphs from Experiment 3.
The segment count being smaller than in Experiments 1 and 2 allows for a much simpler
pattern graph of movement to be observed, particularly when compared to Figures 7 and 8.

2023.02.100

Gunsan Bieung Port

Figure 9. Examples of pattern graphs in Experiment 3.

Table 10 represents the confusion matrix for the frame-level detection results in Ex-
periment 3. Experiment 3 stands out with consistent and high-performance results across
various cases. It effectively addresses some of the challenges observed in Experiments 1
and 2. Notably, it excels in Cases 1, 5, 6-1, 6-2, 7-1, and 7-2, achieving high TP counts while
maintaining minimal FN, FP, or TN counts. One remarkable aspect of Experiment 3 is its
robustness in detecting abnormal ship movements across different scenarios. Cases 1 and 5
represent scenarios where the algorithm performs exceptionally well, and Cases 6-1, 6-2,
7-1, and 7-2 showcase its consistency in delivering high-quality results.

Table 9. Learned pattern graph of experiment 3.

Graph Information

# of nodes 189
# of edges 171
# of patterns 18

Table 10. Results of Experiment 3.

TP FN FP TN
Case 1 118 15 0 0
Case 2 38 4 8 10
Case 3 44 0 10 6
Case 4 71 1 11 10
Case 5 87 3 0 0
Case 6-1 70 5 0 0
Case 6-2 73 2 0 0
Case 7-1 149 1 0 0
Case 7-2 150 0 0 0

4.4.4. Summary of Results

Table 11 presents a comprehensive comparison of the experimental results for Experi-
ments 1, 2, and 3, based on key metrics including Recall, Precision, F1-score, and Accuracy.
The table presents the metrics averaged across various cases. Across all cases, Experiment 3
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consistently outperforms Experiments 1 and 2 in terms of Recall, achieving perfect or
near-perfect scores. This indicates Experiment 3’s superior ability to detect true positives.

In terms of Precision, Experiments 1 and 2 generally maintain perfect Precision scores,
while Experiment 3 exhibits slightly lower but still commendable Precision values. F1-
scores, which consider the balance between Recall and Precision, are notably high for all
experiments. Experiment 3 achieves the highest F1-scores across the majority of cases,
indicating its strong overall performance. Accuracy results show that Experiment 3 achieves
the highest accuracy scores, reflecting its ability to correctly classify ship trajectories.

In Experiment 1, the generated normal pattern graphs exhibit relatively complex paths
due to the division of segments into 4 x 27 (i.e., N = 27, M = 4). This complexity led to
anomalies being identified in cases where test paths closely resembled the patterns. These
findings suggest that further training with a larger dataset, possibly involving increased
segment counts, could offer advantages in identifying more detailed paths. Experiment 3,
on the other hand, produced notably favorable results. These outcomes can be attributed
to the appropriate segment division based on the dataset size. However, it is worth noting
that reducing segment size might bias the identification of test data as normal paths,
underscoring the challenge in selecting suitable test cases with anomalous movements.

Table 11. Comprehensive comparison of experimental results.

Metrics Experiment 1 Experiment 2 Experiment 3
Recall 0.533 0.526 0.887
Precision 1 1 1
Case 1
Fl-score 0.696 0.689 0.94
Accuracy 0.534 0.526 0.887
Recall 0.286 0.5 0.905
Precision 1 0.778 0.826
Case 2
Fl-score 0.444 0.609 0.864
Accuracy 0.5 0.55 0.8
Recall 0.455 0.682 1
Precision 1 0.909 0.815
Case 3
Fl-score 0.625 0.779 0.898
Accuracy 0.6 0.717 0.833
Recall 0.597 0.958 0.986
Precision 1 0.896 0.866
Case 4
Fl-score 0.748 0.926 0.922
Accuracy 0.688 0.882 0.871
Recall 0.878 0.956 0.967
Precision 1 1 1
Case 5
Fl-score 0.935 0.978 0.983
Accuracy 0.878 0.956 0.967
Recall 0.453 0.613 0.933
Precision 1 1 1
Case 6-1
Fl-score 0.624 0.76 0.965

Accuracy 0.453 0.613 0.933
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Table 11. Cont.

Metrics Experiment 1 Experiment 2 Experiment 3
Recall 0.787 0.907 0.973
Precision 1 1 1
Case 6-2
F1-score 0.881 0.951 0.986
Accuracy 0.787 0.907 0.973
Recall 0.753 0.947 0.993
Precision 1 1 1
Case 7-1
F1-score 0.859 0.973 0.996
Accuracy 0.753 0.947 0.993
Recall 0.653 0.893 1
Precision 1 1 1
Case 7-2
ase-op Fl-score 0.79 0.943 1
Accuracy 0.653 0.893 1

5. Conclusions

In conclusion, this paper presents a novel approach to maritime anomaly detection
using CCTV videos. We aimed to address the limitations of existing methods that rely on
AIS integration by directly identifying and visualizing anomalous ship behaviors. Our
experiments demonstrated the effectiveness of our approach, achieving high accuracy rates
in detecting abnormal movements within narrow coastal areas, where traditional AIS-based
methods often fall short. One key finding from our experiments is the significant impact of
segment size on the performance of our anomaly detection method. Properly configuring
the segment size is crucial for striking the right balance between collecting normal patterns
and maintaining discriminatory power.

While our model has shown promise, challenges related to occlusion, fragmentation,
and ID switching still pose important research questions. These challenges provide valuable
directions for future work, including the acquisition of additional datasets, fine-tuning
the model, and exploring the incorporation of diverse ship parameters into the anomaly
detection process. Additionally, broadening the scope of anomaly detection involves taking
into account diverse ship parameters, encompassing factors such as course, speed, yaw
angle, and yaw rate. This expanded approach to anomaly detection should be a key focus
of future research efforts, as it has the potential to make more efficient use of CCTV data
and enhance the overall accuracy and effectiveness of maritime anomaly detection.

In summary, our work represents a significant advancement in maritime anomaly
detection using CCTV videos, with the potential to enhance maritime safety and contribute
to accident prevention.
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