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Abstract: Berth allocation is a critical concern in container terminal port logistics, involving the
precise determination of where and when arriving vessels should dock along a quay. With berth
space limitations and a continuous surge in container handling demands, ensuring an effective berth
allocation is paramount for the smooth and efficient operation of container ports. However, due
to the randomness of vessel arrival times and uncertainties surrounding container ship loading
capacities, berth allocation problems (BAP) often present discrete and dynamic challenges. This
paper addresses these challenges by considering real-world terminal operational factors, formulating
relevant assumptions, and establishing a model for dynamic berth allocation and efficient ship
berthing scheduling. The primary motivation stems from the parallels observed between the BAP
problem and ant foraging path selection, leading to the proposal of a novel Parallel Search Structure
Enhanced Ant Colony Algorithm (PACO). A proper set of parameters of the algorithm are selected
based upon sensitivity analyses on the convergence and parallelism efficiency of the algorithm. To
validate our method, a real-world case-container terminal operation in Shanghai Port was studied.
The experimental comparison results show that the PACO algorithm outperforms other commonly
used algorithms, making it more effective and efficient for the Discrete Dynamic Berth Allocation
Problem (DDBAP).

Keywords: berth allocation; parallel search structure; ant colony algorithm; container terminal;
dynamic scheduling

1. Introduction

The economic globalization accelerates the development of the marine transportation
industry, which necessitates higher efficiency and productivity in container terminals. A
container terminal in a harbor logistics operation consists of many physical resources such
as containers, vessels, handling equipment, berths, container yards, and communication
establishment [1]. The loading/unloading work is carried out by quay cranes (QCs), yard
cranes (YCs), and container trucks (CTs) at a container terminal [2]. Referring to Figure 1,
containers are delivered at a terminal by trucks and are stored in the terminal yard [3]. A
vessel, loaded with containers, is allocated to a berth once it reaches the port. After that, its
containers are unloaded and are temporally stored at the yard until being moved to trucks,
trains, or vessels to be further delivered. QCs standing on the rail tracks along the quayside
carry on the transshipment of containers from the waterside to the quayside [4].

One key issue in a particular container terminal (CT) is the scheduling of the quay
space and serving time to ships that must be handled at a terminal [4,5], which is generally
categorized as the berth allocation problem (BAP). Each of the vessels will go through the
following processes in a particular CT: in-bound to the port, waiting until the scheduled
berthing time, mooring at the assigned berth, containers’ loading/unloading, and then
leaving the port. Apparently, the main problem is how to allocate the corresponding
number of the berth to arriving vessels at the port, providing the berth time and location
within a planning horizon period. The decision horizon is generally one week, while this
may be updated based on the arrival and departure situation of vessels [6].
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Figure 1. Layout of a typical container terminal. 

One key issue in a particular container terminal (CT) is the scheduling of the quay 
space and serving time to ships that must be handled at a terminal 45, which is generally 
categorized as the berth allocation problem (BAP). Each of the vessels will go through the 
following processes in a particular CT: in-bound to the port, waiting until the scheduled 
berthing time, mooring at the assigned berth, containers’ loading/unloading, and then 
leaving the port. Apparently, the main problem is how to allocate the corresponding 
number of the berth to arriving vessels at the port, providing the berth time and location 
within a planning horizon period. The decision horizon is generally one week, while this 
may be updated based on the arrival and departure situation of vessels 6.  

BAP problems can be divided into static (SBAP) or dynamic (DBAP) 7. The static BAP 
model assumes that all vessels reach the terminal earlier than the starting planning time, 
while a dynamic model defines the ships arriving at an arbitrary time of the planning 
period given future arrival data 8. The BAP problem can be further divided into discrete 
and continuous variants 9. In discrete cases, strictly one vessel can be accepted for each 
berthing location, that is, “berth”—one of the partitioned quay sections, at one time, 
regardless of its size. For the continuous cases, the quay is not segmented, i.e., ships can 
berth at arbitrary places within the boundaries of the quay, and consequently, the 
corresponding berth planning is more complex than that in a discrete case with a 
superiority of better quay space’s utilization 10. 

Figure 2 shows the berth operation timeline for each vessel. The service time of a 
vessel at the port includes the waiting time between the arrival of the vessel and the vessel 
berthing time as well as the handling time for containers loading or unloading. For BAP, 
as an NP-hard scheduling problem [11], with the aim of a high efficiency in CT operations, 
researchers keep seeking for its better solution. Nevertheless, there is a distinct lack of 
comprehensive solutions that cater to the dynamic nature of container terminals. These 
solutions need to consider the evolving vessel type dynamics, arrival time, and distinctive 
handling time seamlessly. This gap underscores the need for a novel algorithmic approach 
that can adeptly address these multifarious factors. 

Figure 1. Layout of a typical container terminal.

BAP problems can be divided into static (SBAP) or dynamic (DBAP) [7]. The static
BAP model assumes that all vessels reach the terminal earlier than the starting planning
time, while a dynamic model defines the ships arriving at an arbitrary time of the planning
period given future arrival data [8]. The BAP problem can be further divided into discrete
and continuous variants [9]. In discrete cases, strictly one vessel can be accepted for
each berthing location, that is, “berth”—one of the partitioned quay sections, at one time,
regardless of its size. For the continuous cases, the quay is not segmented, i.e., ships
can berth at arbitrary places within the boundaries of the quay, and consequently, the
corresponding berth planning is more complex than that in a discrete case with a superiority
of better quay space’s utilization [10].

Figure 2 shows the berth operation timeline for each vessel. The service time of a
vessel at the port includes the waiting time between the arrival of the vessel and the vessel
berthing time as well as the handling time for containers loading or unloading. For BAP, as
an NP-hard scheduling problem [11], with the aim of a high efficiency in CT operations,
researchers keep seeking for its better solution. Nevertheless, there is a distinct lack of
comprehensive solutions that cater to the dynamic nature of container terminals. These
solutions need to consider the evolving vessel type dynamics, arrival time, and distinctive
handling time seamlessly. This gap underscores the need for a novel algorithmic approach
that can adeptly address these multifarious factors.
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Figure 2. Timeline of vessels staying at a port. 

Addressing this research gap begets pertinent questions: How can an algorithm that 
seamlessly integrates varying vessel types, safety regulations, and operational 
complexities while maintaining optimization efficiency be devised? How does the 
proposed algorithm perform across diverse operational conditions and constraints? 
Answering these questions is imperative to bridge the divide between theoretical 
optimization and the practical realities of container terminal operations. 

In the development of intelligent optimization algorithms, ant colony algorithms 
have been proven to be effective in solving various types of NP-hard problems [12]. On 
the basis of reviewing research work, this work’s primary contribution lies in the 
formulation and validation of the Parallel Search Structure Enhanced Ant Colony 
Algorithm (PACO). Designed to surmount the limitations of conventional methods, 
PACO introduces an innovative approach inspired by ant foraging behaviors. Its parallel 
search structure enhances exploration, minimizing the risk of converging towards local 
optima. Furthermore, this study introduces a holistic model that effectively marries 
theoretical optimization with the intricate dynamics of real-world container terminal 
operations. 

The rest of the paper is organized as follows. Section 2 expatiates on the related 
literature review; the detailed description of the problem and the mathematics models of 
DDBAP are addressed in Section 3; Section 4 introduces the ant colony algorithm and 
argues for the parallel ant colony algorithm for solving the DDBAP models; the case 
experiments and the analysis results are illustrated in Section 5; and the summary of the 
work is drawn in the last section. 

2. Literature Review 
The berth allocation problem (BAP) entails assigning incoming vessels to berth 

positions. Moreover, the BAP problems are often discrete and dynamic owing to the 
randomness of the arriving time of those container vessels and their loading capacities. At 
present, many scholars have proposed new solutions and methods for the berth allocation 
problem. Issam, E. H. et al. [13] investigated the Dynamic Berth Allocation Problem 
(DBAP) and provided a multi-objective mathematical model; the validity of the model 
was verified by numerical experiments. Hsu, H. P. [14] proposed a hybrid particle swarm 
optimization (PSO) algorithm, which combined the improved PSO algorithm with the 
event-based heuristic algorithm to solve the DDBAP problem and dynamic QCAP 
(DQCAP) seaside operation planning problems. Hu, Z. H. [15] proposed a multi-objective 
genetic algorithm (moGA) based on two-part representation to solve the two-objective 
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Addressing this research gap begets pertinent questions: How can an algorithm that
seamlessly integrates varying vessel types, safety regulations, and operational complexities
while maintaining optimization efficiency be devised? How does the proposed algorithm
perform across diverse operational conditions and constraints? Answering these questions
is imperative to bridge the divide between theoretical optimization and the practical
realities of container terminal operations.

In the development of intelligent optimization algorithms, ant colony algorithms have
been proven to be effective in solving various types of NP-hard problems [12]. On the
basis of reviewing research work, this work’s primary contribution lies in the formulation
and validation of the Parallel Search Structure Enhanced Ant Colony Algorithm (PACO).
Designed to surmount the limitations of conventional methods, PACO introduces an inno-
vative approach inspired by ant foraging behaviors. Its parallel search structure enhances
exploration, minimizing the risk of converging towards local optima. Furthermore, this
study introduces a holistic model that effectively marries theoretical optimization with the
intricate dynamics of real-world container terminal operations.

The rest of the paper is organized as follows. Section 2 expatiates on the related
literature review; the detailed description of the problem and the mathematics models
of DDBAP are addressed in Section 3; Section 4 introduces the ant colony algorithm and
argues for the parallel ant colony algorithm for solving the DDBAP models; the case
experiments and the analysis results are illustrated in Section 5; and the summary of the
work is drawn in the last section.

2. Literature Review

The berth allocation problem (BAP) entails assigning incoming vessels to berth posi-
tions. Moreover, the BAP problems are often discrete and dynamic owing to the randomness
of the arriving time of those container vessels and their loading capacities. At present, many
scholars have proposed new solutions and methods for the berth allocation problem. Issam,
E. H. et al. [13] investigated the Dynamic Berth Allocation Problem (DBAP) and provided a
multi-objective mathematical model; the validity of the model was verified by numerical ex-
periments. Hsu, H. P. [14] proposed a hybrid particle swarm optimization (PSO) algorithm,
which combined the improved PSO algorithm with the event-based heuristic algorithm
to solve the DDBAP problem and dynamic QCAP (DQCAP) seaside operation planning
problems. Hu, Z. H. [15] proposed a multi-objective genetic algorithm (moGA) based on
two-part representation to solve the two-objective model. Lin, S. W. et al. [16] studied a
DDBAP problem, whose objective is to minimize the total service time, and introduced an
iterative greedy (IG) algorithm to solve it. Türkoğulları. et al. [17] focused on the integrated
seaside operations, namely, the coordination of the berth assignment, quay crane allocation,
and quay crane scheduling problems For DBAP, Simrin et al. [18] introduced a new mathe-
matic model, where a non-linear mixed integer program was established to formulate the
problem, converting it to be an equivalent mixed integer program (MIP). Kovač N et al. [19]
proposed an enhanced evolution algorithm for the BAP to optimize the total waiting time
of all ships. Kordić S et al. [20] provided an accurate combinatorial method for addressing
the DBAP problem and the Hybrid BAP with given vessel loading/unloading times based
on the Sedimentation Algorithm (SA). Budipriyanto A. et al. [21] studied the influence
of uncertainty on the coordination between berths. It was verified that the cooperative
strategy can improve the total waiting time, container processing time, and total vessel
turnover time. Xiang, X. et al. [22] examined the berth allocation problem by analyzing
uncertainties, and a dual-target robust BAP model focused on economic effectiveness and
consumers’ satisfaction was developed.

It is not difficult to see from the above research that many scholars have designed many
different algorithms to solve the BAP problem from different directions. Since continuously
arriving vessels can be considered as jobs and discrete berths can be considered as parallel
machines, the DDBAP problem can be converted as a parallel-machine scheduling prob-
lem [23], which is NP-hard in a strong sense [24]. The general object of berth planning is to
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obtain quick and credible services for vessels, which are referred to the various objective
functions in the research articles. Among them, models are always formulated to optimize
the sum of the waiting and processing time of ships (i.e., the time of staying in a port) [4].
Thus, in this paper, DDBAP is still the focus, and the mathematics model that dynamically
allocates the berth and schedule vessels to the moor berth efficiently under the goal of
optimizing the sum of the waiting as well as the total processing time of vessels in the port
during a certain time is proposed with full consideration of related constraints.

Many heuristic algorithms, such as the Genetic Algorithm (GA), Differential Evolution
(DE), and Simulated Annealing (SA), have been applied to solve the BAP, as mentioned
previously. Ant Colony Optimization (ACO) has successfully shown feasibility in many
NP-hard combinatorial optimization problems, such as vehicle routing problems, quadratic
assignment problems, other scheduling problems, etc. [24]. GA offers global optimization
capabilities, yet it may be slower for dynamic scenarios. DE excels in non-linear optimiza-
tion but could struggle with complexity. SA has a probabilistic advantage but requires
parameter tuning. Ant Colony Optimization (ACO) is adept at combinatorial problems
but can be slow in large-scale scenarios. To better solve these problems, the improved
ACO is then proposed based on the original ACO algorithm. It increases the number of
slave processors and makes multiple processors perform calculations at the same time.
It can effectively improve the deficiencies of the ACO with the ease of sinking into the
local optimum.

After comparing and analyzing several typical logistics scheduling algorithms [25–31],
Randall, M et al. examined several parallel decomposition strategies and applied them to a
particular problem, that is, the travelling salesman problem, leading to a result of better
efficiency and computing speeds [26]. Yu M et al. proposed a predictive two-stage path
planning algorithm [27,28]. It alleviates traffic congestion, avoids collisions, improves the
efficiency of automated terminal loading and unloading, and considers road congestion
factors. Li H T et al. proposed a dynamic ant colony genetic algorithm on the basis of
the extensive research of the ant colony algorithm, genetic algorithm, and other related
algorithms [29]. Based on the efficiency of enterprise workshop distribution operations, the
allocation of the shop floor location is studied, and a coordinated optimization model of
automatic guided vehicle berth assignment and material box allocation based on a genetic
algorithm is proposed in the simulation environment [30]. Niu M et al. considered the time
and space constraints between the ship entry and exit and ship berthing, focused on the
realistic limitations caused by the berthing problem caused by the ship berthing priority,
designed an immunogenetic algorithm to solve this, and gave a berth allocation scheme,
a berthing scheme, and a ship entry and exit scheduling scheme [31]. The basic concepts
and ideas of the genetic algorithm are introduced. At the same time, the function of some
algorithms derived from the genetic algorithm is proposed. Zhang M et al. proposed an
improved ACO algorithm, namely, 3D-PACA, which was implemented to identify and
scan 3D terrains and achieved certain results [32].

To sum up, it can be seen from the above research that the parallel ACO algorithm, as
an improvement of the ACO algorithm, has been applied in other fields and can be used to
solve the practical problems. Therefore, it motivates us to apply it to the dynamic berth
allocation problems.

3. Problem Statement and Model Formulation

Since each container has a different transit time from its original storage area to its
assigned berth, each vessel has a different handling time at different berths. However, the
vessel handling time is assumed to be deterministic in most published BAP models because
the vessel handling time has been considered in different ways:

(a) It is known beforehand and regarded as immutable, i.e., it is fixed.
(b) It depends on where the vessels berthed.
(c) It depends on the quantity of cranes serving the vessels.
(d) The working schedule of the cranes is highly relied on.
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(e) All the mentioned conditions (b–c) need to be handled at the same time.

In this paper, the handing time relies on the number of cranes serving the vessel, the
transshipment volume of containers, and the working performance of the assigned cranes.
There are m vessels (i.e., vessels 1, 2, . . ., m) and mb berths (i.e., berths 1b, 2b, ..., mb). Assume
that each vessel is served by only one berth at a time and each berth can handle one vessel
at a time. If a vessel g starts serving at a berth, it will remain there continuously for the next
time unit.

The DDBAP considered here is considered to be a parallel machine scheduling prob-
lem, with vessels being jobs and berths being machines [33]. Job j has a processing time
pj, a lease date aj, a weight wj, and a set of machines that are capable of processing the job
j. The processing time pj, is determined by the quantity of working quay cranes and the
efficiency of the cranes (the processing time depends on the quantity of cranes serving the
vessels and the crane efficiency). To define our problem mathematically, the problem of
sequencing vessels at a single berth is defined first. And then, the problem of allocating
and sequencing vessels at multi-berths is modeled mathematically.

3.1. Notation

All notations of this paper are described in alphabetic order, including model-related
notations and algorithm-related notations.

Notation
Sets
B: Set of berths, B = {1, 2, . . ., nb};
C: Set of QCs, C = {1, 2, . . ., nc};
J: Set of incoming vessels during a planning period, J = {1, 2, ..., n};
Model-Related Notations
n: Number of incoming vessels within a planning period, positive integer;
nb: Number of available berths in a port;
nc: Number of quay cranes;
nj

cap: Container capacity of vessel j;
nj

l: Number of containers to be loaded/unloaded on vessel j;
Oi: An ordered subset of vessels to be loaded/unloaded at berth i;
tij

b: Moment of vessel j starting to berth at berth i;
tj

w: Arrival moment of vessel j to the waiting area, tj
w ≥ 0;

Tj
b: Time duration of a vessel to berth and leave, assumed to be fixed and the same for

different
vessels, Tj

b > 0;
tij

fl: The finishing moment of loading/unloading vessel j at berth i, tij
fl = tij

l + Tij
l;

tij
l: The beginning moment of loading and unloading vessel j at berth i;

Tij
l: Duration of loading and unloading vessel j at berth i; a function of nj

l, nj
cap, and nj

c;
PACO-Related Notations
dij’: Time distance between vessels j and j′;
e(j,j′): Edge connecting i and j;
tk(i): The length of time during which the kth ant starts from berth i to the end through all

sections of the path;
Q: Constant, the amount of information released by an ant after the complete path search
is complete;
Lk: The path length through which the kth ant passes;
nant: Quantity of ants in a colony;
ncon: Quantity of iterations of convergence;
nmax

itr: Maximum allowable number of iterations;
nitr: Current number of iterations;
nk(s): Notation of the number of nodes passed by the current ant k in the step s;
pjj’

k(oi): Probability of ants k choosing vessel j’ from vessel j as the next candidate within the
ordered subset of berth i;

α: Adjustable parameters controlling the relative impact of pheromone trajectories τjj′ (t);
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β: Adjustable parameters controlling the relative impact of heuristic desirability;
ρ: Constant, a coefficient of evaporation; 0 < ρ < 1(1 − ρ) expresses pheromone decay

during t and t + 1;
τjj′ (t): The intensity of the trail on edge (j,j′) at time t;
ηjj′ (t): A heuristic measure of the desirability of adding edge (j,j′) to the solution being built;
∆τjj′ : A total incremental quantity of the pheromones laid by all ants on edge (j,j ′′);
∆τjj′ = ∑m

k=1 ∆τk
jj′

∆τk
jj′ : An incremental quantity of pheromones laid by the kth ant on edge (j,j′) during time t

and time t + 1, which is a function of the length Lk of tour Tk(t):

∆τk
jj′ =

{
Q
Lk

0
if the kth ant passes path (i, j)

else
Variables
nj

c: Decision variable; number of quay cranes assigned to the vessel j;
xijo: Binary decision variable, with a value of one when vessel j at berth i is served at service

time t and a value of 0 otherwise;

3.2. Single-Berth Model

A single-berth allocation is just to sequence coming vessels in order to minimize
the turn-around time (i = 1). The scheme of berth allocation can be realized by the
following model:

Min TC = ∑
o∈O

∑
j∈J

((tb
1j − tw

j ) + (tl
1j − (Tb

j + tb
1j) + Tl

1j + 2Tb
j ))x1jo (1)

∑
o∈O

x 1jo ≤ 1, ∀j ∈ J (2)

∑
o∈O

∑
j∈J

x1jo = 1 (3)

(tb
1j − tw

j )x1jo ≥ 0, ∀j ∈ J (4)

(tl
1j − (Tb

j + tb
1j))x1jo ≥ 0, ∀o ∈ O (5)

x1jo ∈ {0, 1}, ∀j ∈ J, ∀o ∈ O (6)

The objective function (1) is to minimize the total time of the ship in a certain period
that is the overall waiting time (the sum of time spent waiting to be berthed and operated
by quay cranes), handling time Tij

l, and berthing/departure time. Constraints (2) mean
that each vessel has only one chance of berthing. Bind (3) ensures that one vessel or less is
restricted to the moor at one berth at any moment. Bind (4) is the setup time it takes for
vessel j to be processed with loading/unloading, which is no less than 0 to ensure that each
vessel must be served after arrival. Bind (5) means the vessel j waiting time; this is no less
than 0. Bind (6) announces a decision variable x1jk, being a 0–1 variable [28].

3.3. Multi-Berth Model

Mostly, there is more than one berth in every container terminal, so the multi-berths
allocation problem is to solve not only how to sequence the loading/unloading of vessels
but also to allocate berths to vessels to berth first.

The berth allocation model follows the following assumptions:

1. The vessels arrival time is random;
2. The vessel loading and unloading times are derived from the number of containers,

the quantity of QCs, the productivity of QCs, and other related factors;
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3. The mooring space must conform to the real conditions of the vessel (depth and length
of water) of the constraints;

4. The vessels moving from one berth to another will not be considered, where each
vessel has only one berth opportunity;

5. The number of assigned QCs does not exceed the number of QCs allowed to work si-
multaneously;

6. When a large quantity of Quay Cranes (QCs) operates on a single vessel simulta-
neously, they can influence each other, potentially affecting the overall utilization
rate of QC s. In cases where more than two terminal container cranes are operating
simultaneously, one of them operates at a reduced capacity, typically around 90%.

The berth assignment plays a significant role in the minimization of the turnaround
time, which is one of the key indicators in evaluating the port operations. The purpose of
berth allocation can be formulated as Equation (7).

Min TC =∑
i∈B

∑
o∈O

∑
j∈J

((tb
ij − tw

j ) + (tl
ij − (Tb

j + tb
ij)) + Tl

ij + 2Tb
j ))xijo (7)

∑
j∈J

xijo ≤ 1, ∀i ∈ B, ∀o ∈ O (8)

∑
i∈B

∑
o∈O

∑
j∈J

xijo = 1 (9)

Tc
j =

nl
j

nc
j p1k1k2(1− k3)

, ∀j ∈ J (10)

nc
j =



1 nl
j ≤ 150

2 151 ≤ nl
j ≤ 500

3 501 ≤ nl
j ≤ 700

4 701 ≤ nl
j ≤ 1000

5 1001 ≤ nl
j ≤ 2000

6 nl
j ≥ 2001

, j ∈ J

pc
j =


22 containers/hour ncap

j ≤ 500TEU

28 containers/hour 6500TEU < ncap
j < 500TEU, j ∈ J

30 containers/hour ncap
j ≥ 6500TEU

(11)

Here, p1 is the service efficiency of the quay crane loading and unloading container
vessel j; k1 is the conversion coefficient of TEUs; k2 is the co-operation rate of quay cranes;
when nj

c = 1, k2 = 1; otherwise, k2 = 90%; k3 is the reordering rate of containers for
container vessels.

(tb
ij − tw

j )xijo ≥ 0, ∀j ∈ J (12)

(tl
ij − (Tb

j + tb
ij))xijo ≥ 0, ∀j ∈ J (13)

Db
i ≥ Ds

j (14)

Lb
i ≥ Ls

j (15)

Dj
s is the draft depth of vessel j; Di

b is the draft depth of berth i; Lj
s is the length of

vessel j; Li
b is the length of berth i;

xijo ∈ {0, 1}, ∀j ∈ J, ∀i ∈ B, ∀o ∈ O (16)
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The terms of the equation were given in Section 3.1. The objective in (7) is to minimize
the total time of the container vessels in a port during a certain period, that is, the total
waiting time and processing time Tij

l. Constraint (8) represents that each vessel has a chance
to berth. Constraint (9) ensures that no more than one vessel is allowed to moor at one berth
at any moment. Constraint (10) is the estimation of the vessel handling time; Constraint (12)
is the loading and unloading time of vessel j, which is non-negative to ensure that each
vessel must be serviced upon arrival [28]. Constraint (13) means the vessel j waiting time,
which is non-negative. Constraints (14) and (15) emphasize that the distribution must
conform to the physical conditions of the berth (depth and length). Constraint (16) declares
that the decision variable xijo is a 0–1 variable.

4. Solution Algorithm

In this section, the basic principle of the ACO algorithm is discussed first, and then
the modified ant colony algorithm for DDBAP is proposed. By comparing the parallel
ant colony algorithm with the traditional ant colony algorithm, the parallel ant colony
algorithm and its advantages in solving the berth allocation problem are analyzed.

4.1. The Basic Principle of the Ant Colony Algorithm

Berths are the main resources in the container terminal, berth allocation is the primary
content of the formulation of the terminal loading and unloading operation plan, and the
operation arrangements of the container terminal are all carried out around the arrangement
of the berth allocation plan. The robustness of berth allocation stability in uncertain
environments is important.

Due to the limited number of berths at the terminal, the container terminal needs to
make overall arrangements in advance for the berthing location and berthing time of the
ships to be arriving during the planning period to improve the overall operational efficiency
and service quality of the terminal. According to the shipping company’s estimated arrival
plan, the terminal can obtain the estimated arrival time, estimated departure time, and
estimated loading and unloading time of each ship during the planning period and formu-
late the corresponding berth allocation plan accordingly. However, in the actual process,
the actual arrival time of the ship is often affected by a variety of uncertainties, and there
will be a certain deviation relative to the expected arrival time. However, the scheduling
plan for the other facilities at the terminal is based on the original berth allocation plan,
and this temporary adjustment will result in loading and unloading difficulties in terms
of both time and cost. Moreover, due to the inevitable blindness and short-sightedness of
temporary adjustments, frequent adjustments will seriously disrupt the normal operation
order of the dock and reduce the overall operation efficiency of the wharf. Therefore, when
formulating the berth allocation plan, it is one-sided to simply take the service efficiency
of the ship as an evaluation index, and the thinking on the anti-interference ability of the
plan in an uncertain environment should also be added, that is, the robustness of the plan.
The ant colony algorithm has strong parallelism and robustness when solving the berth
allocation problem.

At present, the intelligent algorithms used to solve difficult problems with high
complexity in time and space mainly include genetic algorithms, neural network algorithms,
taboo search algorithms, simulated annealing algorithms, and ant colony algorithms.
Genetic algorithms take the population as the solution unit, and the solution efficiency is
high and widely used. Neural network algorithms have strong self-learning and adaptive
abilities, but the algorithm is slow to converge. The probability of the contraindicated
search algorithm seeking the optimal solution is large, and the algorithm convergence is
good, but it has a strong laziness regarding the initial solution. The solution process of the
simulated annealing algorithm is simple and easy to combine with other algorithms, but the
solution time is long, and the performance of the algorithm is more sensitive to the selection
of parameters. The ant colony algorithm has strong parallelism and good robustness.



J. Mar. Sci. Eng. 2023, 11, 1931 9 of 23

Therefore, when formulating the berth allocation plan, it is one-sided to simply take
the service efficiency of the ship as an evaluation index, and the thinking on the anti-
interference ability of the plan in an uncertain environment should also be added, that is,
the robustness of the plan, so the text considers the use of the ant colony algorithm.

In ant colony optimization (ACO), it is known that ants communicate through aromatic
substances called pheromones, which are inspired by the collective behavior of ant colonies
searching for food [34,35]. Ants that find food return to their nests and mark their tracks
with pheromones. By laying and tracking these pheromone tracks, ants can find a good
proximity of the shortest path between the food source and nest [36].

The berth allocation and scheduling problem exhibits strong similarities with the
ant colony routing problem. In this context, each vessel can be seen as a dynamic node
seeking the optimal route to its destination within the terminal. It is well-documented
that the ant colony algorithm, when applied to routing problems, operates in a distributed
manner, offering positive feedback and demonstrating global convergence [37]. The idea is
that if ants must choose among different paths at a given point, the ants that are strictly
chosen by the preceding ants (i.e., those with high path levels) will be selected with a
higher probability.

4.2. The Basic Principle of the Parallel Ant Colony Algorithm

For large-scale optimization problems, solving with a parallel ant colony algorithm
will shorten the computation time and build a good foundation for the practical appli-
cation of the algorithm. In an artificial ant colony algorithm, each ant is independent of
the construction of the solution, and it can communicate with others indirectly through
pheromones. This natural parallelism of the ACO algorithm provides a good foundation
for the parallel implementation of the algorithm [38]. Therefore, it is feasible to transform
the serial ant colony algorithm into a parallel ant colony algorithm.

The basic idea of the parallel ant colony algorithm is to divide one ant colony (m ants)
in the original serial algorithm into P ant colonies. The number of ants in each ant colony is
m/P, and there is a processor for each sub-ant colony. The number of ants in different ant
colonies can be equal or unequal. If the processor performance is the same, the number of
ants is generally equal.

To solve the problem that the ant colony algorithm tends to fall into local optimal
solutions, each ant colony in a parallel ant colony algorithm separately searches the so-
lutions [39]. Each subprocessor follows the basic principles of the ACO algorithm and
calculates the best solution. After each iteration, each sub-processor needs to communicate
with the main processor and other sub-processors to obtain information from them. When
the termination condition of the parallel ACO algorithm is met, one of the processors
collects the optimal solution of each sub-ant colony and outputs the global optimal solution
which is shown as Figure 3.

4.3. PACO for BAP

Given n set of nodes {1,2,..., n} and the travel time between every two nodes, the goal
is to find a route that takes the minimum time to travel around every node and return
to the starting point. If each node is considered as one of the graph nodes, and the time
tjj ′ is sought for a weight connecting vertices vj and vj, then the objective is to discover the
shortest cycle within the complete graph with n nodes.

Artificial ant k (k = 1, 2 ... m) decides the direction in which to move according to the
amount of information on each path in the process of movement. Unlike the real ant system,
the ant colony system has a memory function, a certain vision in a discrete environment.
With the time passed, the information before was gradually faded, so after nitr moments
when the ant completes a cycle path, the amount of information should be adjusted. Each
artificial ant behavior should be in accordance with the following rules.

(1) According to the concentration of hormones on the path, the ant selects the next path
with the corresponding probability.
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(2) The ant no longer chooses nodes for the next path, which have been passed in this
cycle, by using a data structure (tabu matrix) to control.

(3) After completing a cycle, the ant releases pheromones in corresponding concentrations
according to the length of the path and updates the pheromone concentration of the
traversed path. In the initial stage, m ants are randomly placed on nodes with an
equal amount of information on each path.
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Suppose τjj′(0) = τ0 (τ0 is constant).
Ants autonomously choose the next path node based on the amount of information

on the path. At the moment t, ant k from node j to node j′ is the probability given as
Equation (17).

pjj′
k =


τα

jj′η
β

jj′

∑
j∈allowedk

τα
jj′η

β

jj′
, j ∈ allowedk

0 , else

(17)

where allowedk = {1, 2, ..., n}—tabuk means all nodes are permitted to go to the next step,
and tabuk records all of the passed nodes of ant k. When all nodes are put into tabuk, ant k
will finish one cycle, and the path traversed by ant k is a solution to the problem. ηjj′ is a
heuristic factor that represents the desired degree for the ant to move from node i to node j,
where ηjj′ = 1/Cjj′ and Cjj′ is the required time passing from node j to node j′. Parameters
α and β control the relative significance of the trajectories and [40]. Thus, the transition
probability is a balance between the visibility and trajectory strength at time t.

Let τjj′(t) be the intensity of the trail on edge (j,j′) at time t. Each ant chooses the next
node at time t, where it will be at time t + 1. At this point, the tension trajectory is updated
as Equation (18).

τij(t + 1) = ρτij(t) + ∆τij (18)

Here, the coefficient ρ is such that (1 − ρ) represents the evaporation of the trail
between time t and t + n.

∆τij =
n

∑
k=1

∆τk
ij

(19)
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where ∆τk
ij

is the number per unit of the length of the trail substance (the pheromone in
real ants) laid on the edge (j,j′) by the k-th ant between time t and t + n; it is given by
Equation (20).

∆τk
ij
=

{
Q
Lk if the k− th ant goes from ito j between time t and t + 1
0 otherwise

(20)

where Lk is the tour length of the k-th ant, which is equal to the sum of time taken on each
route for the k-th ant.

The greater the total path time is, the lower the unit pheromone concentration released.
Obviously, the ants do not release pheromones in any path they had not experienced.

In the ant-density model, trajectories of quantity Q are left on the edge (j,j′) when an
ant goes from i to j. In the ant-quantity model, an ant leaves a quantity Q/di of the trail on
the edge (j,j′) when it goes from i to j.

Therefore, in the ant-density model, the quantity per unit of length of the trail sub-
stance is as shown in Equation (21):

∆τk
jj′
=

{
Q if the k − th ant goes from j to j′ between time t and t + 1
0 otherwise

(21)

And in the ant-quantity model, the amount of trail material per unit length is as shown
in Equation (22):

∆τk
jj′
=


Q

djj′
if the k − th ant goes from j to j′ between time t and t + 1

0 otherwise
(22)

From these definitions, it is clear that the increase in edge trajectories (j,j′) as ants
go from j to j′ is independent of dij′ in the ant density model, whereas in the model, it is
inversely proportional to djj′ in the ant-quantity model (i.e., shorter edges are made more
desirable by ants in the ant-quantity model).

In addition, some parameters including α and β in the ant colony algorithm have a
great influence on the performance of the algorithm. Through the analysis of parameters in
the ant system by Oliver30, M. Dorigo has found that when α = {0.5, 1}, β = {1, 2, 3, 4, 5},
the ant system can always converge to the optimal solution, and when m (the number of
ants) is close to n (the number of nodes), the algorithm has a better performance.

4.3.1. Solution Encoding

A fixed-length solution is used in PACO to represent (Figure 4). It encodes the order
of vessels scheduling at each berth, not the berthing time. The order in which a vessel is
serviced does not imply that the vessel can only berth after the service of its predecessor
has been completed. It is used to specify the order in which a vessel begins to berth,
i.e., the vessel’s berthing time must be greater than or equal to the berthing time of its
predecessor. Given the dispatch order of vessels, their berthing time can be easily calculated
by considering Constraints (4)–(6) described in Section 4.3 of the problem formulation.

4.3.2. PACO for the Berth Allocation Problem

Berth assignment is known as a parallel machine scheduling problem, which is not
only about assigning berths to vessels but also about sequencing the service for the ves-
sel [28]. Considering the interaction between berths and storage yards, the collaborative
optimization of the berth allocation and storage yard is studied from the perspective of
ships in a certain planning period [40]. Each vessel is considered as a node (equivalent to a
city in the TSP problem).
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The travelling salesman problem (also called the travelling salesperson problem or
TSP) asks the following question: “Given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits each city exactly once and returns to
the origin city?” It is an NP-hard problem in combinatorial optimization and is important
in theoretical computer science and operations research. The steps of PACO for the berth
allocation problem are followed in Figure 5 [41].

During the initialization phase, suppose the time t = 0 and the cycle number
nirr = 0, and set the maximum number of cycles nitr

max. m ants are placed on n nodes
(arriving container vessels to berth), the initial quantity of information on each edge is (j,j′),
and τij′ (0) = const, where the initial quantity per unit ∆τij′ (0) = 0.

Fitness function evaluation steps:

(1) Individual ants select elements (container vessel) j to go according to the probability
calculated through the state transition probability formula (3), where j ∈ tabu k, cjj′ is a
time equal to vessel j’s time of completion minus vessel j’s arrival time, and lk is the
path of all nodes the ant has walked, namely, the total time of all vessels staying in
the port.

(2) Modify the tabu search list pointer that is for ant j to move to the new element
(container vessel) after choosing, and put the element (container vessel) into the
individual ant’s tabu search list.

(3) If the elements (container vessels) in Set C have not been traversed, which means
k < m, then k = k + 1; otherwise, continue.
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5. Numerical Experiments

In this section, the proposed PACO algorithm is verified based on a series of exper-
iments. This part of the research data is obtained by the investigation of Shanghai Port.
By analyzing the berth allocation data of container terminals for 24 consecutive hours, the
experimental results are reliable and authentic.

5.1. Determination of Parameter Values

In order to conduct numerical analysis, it is necessary to first determine the values of
a few parameters.

Based on a survey at a four-berth container terminal of the Shanghai Port (time,
reference number, and/or other information about the survey), when a group of 20 vessels
came into a port at the same time, a certain period was chosen at random. Table 1 shows
the time intervals in between the vessels’ arrival (to simplify, the first vessel’s arrival time is
used as a reference, and the time is set as 0) and the processing time for loading/unloading.
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Table 1. Intervals between the arrivals and times required for loading/unloading.

No. of Vessels 1 2 3 4 5 6 7 8 9 10

Inter-arrival time (h) 0.0 13.5 8.0 5.0 2.5 0.5 0.5 1.5 5.0 0.0
Loading/unloading time (h) 12.9 11.7 8.7 19. 7 22.0 11. 5 9.8 10.8 10.8 9.8

No. of Vessels 11 12 13 14 15 16 17 18 19 20

Inter-arrival time (h) 14.0 8.8 7.3 5.0 1.5 13.5 6.0 3.25 1.8 1.5
Loading/unloading time (h) 9.7 9.8 11.0 12. 5 14.7 10.7 6. 8 11.3 10.0 10.3

Note: The time interval between vessels arriving at the port refers to the time interval between two ships in a row,
such as the time interval between vessels one and two, which is 13.5 h, and the time interval between ships two
and three, which is 8 h.

5.2. Results of Single-Berth Allocation
5.2.1. Based on ACO

Using the arrival time and loading/unloading time of the 20 known vessels, the ant
colony algorithm can calculate the total time of arrival of all vessels in the port. In this
experiment, Q = 100; α = 1, β = 5, ρ = 0.5; the maximum number of iterations is 200 times
and the ant population Ca equals 5.

By MATLAB programming, the ant colony algorithm can solve the problem of berth
allocation. The total time of the 20 vessels in the port is 1095.02 h, and the berthing order is
as follows:

1–2–3–6–10–8–11–14–15–19–16–20–17–13–7–9–18–12–4–5
The abscissa shown in Figure 6 represents the number of iterations, while the ordinate

reflects the total time spent in the port by all vessels. As the number of iterations grows,
the total port time of the boats steadily lowers and ultimately stabilizes, as seen in Figure 6.
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5.2.2. Based on PACO

Referring to the basic concepts of the parallel ACO algorithm and the process of
solving the single-berth problem, the parallel ACO algorithm is programmed in MATLAB.
In this experiment, six computers are used as the sub-processors. The calculated total
ship processing time in the port is at least 1054.93 h. The order of the berthing of the ship
corresponding to this result is:

1–2–3–8–6–9–11–10–7–14–16–19–12–13–17–18–15–20–4–5
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The abscissa represents the number of iterations, while the ordinate reflects the total
time spent in the port by all vessels. As the number of iterations grows, the total port time
of boats steadily lowers and ultimately stabilizes, as seen in Figure 7.
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Compared with the result of the ant colony algorithm, it is shown that the PACO
algorithm outperforms the normal ACO algorithm. The minimum total ship processing
time has been improved from 1095.02 h to 1054.93 h, which makes the berthing time reduce
by more than 2 h per vessel. And the computing efficiency is highly improved, with a five-
times-faster convergence capability. Then, the PACO algorithm is proved to be feasible in
solving the problem of berth allocation in the port. When it is applied to actual production,
the operating efficiency of the container terminal can be improved.

5.3. Results of Multi-Berth Allocation
5.3.1. Based on ACO

The total actual stay time of the above 20 vessels in the port is 304. In 4 h, the PSO
model of the linear decreasing inertia of inertial weights is adopted, the maximum number
of iterations is set to 100 times, the best result obtained by continuously optimizing 10 times
is 257.2 h, and the worst result is 262 h.

According to the first-come-first-service rule, the actual total time of 20 vessels staying
in the harbor is 257.2 h. The specific allocation results are as follows:

Berth1: 1–4–8–13–17
Berth2: 2–5–12–18
Berth3: 3–7–10–11–15–20
Berth4: 6–9–14–16–19
The ant colony optimization is employed to optimize the berth scheduling problem.

Since Dorigo has found that when α = {0.5, 1}, β = {1, 2, 3, 4, 5}, the ant system can always
converge to the optimal solution, and when m (the number of ants) is close to n (the
number of nodes), the algorithm has a better performance, so the parameters are assumed
as follows:

Q = 100; α = 1, β = 5, ρ = 0.5;

Set the maximum number of iterations to 200 times with the ant population Ca equal-
ing 5.
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According to the first-come-first-service rule, the actual total time of 20 vessels staying
in the harbor is 257.2 h. The specific allocation results are as follows:

Berth1: 1–5–12–16–20
Berth2: 2–6–9–13–17
Berth3: 3–7–8–11–15–19
Berth4: 4–10–14–18
The ordinate shown in Figure 8 represents the average time of a vessel in the port in

four berths. Compared with the single-berth order of vessels, it can be seen that the sum of
the total port time of four berths is less than the total time of single-berth berths. It is found
that the addition of berths can improve the waiting time of the vessels, so as to increase the
loading and unloading efficiency of the vessels.
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5.3.2. Based on PACO

In a parallel ant colony algorithm, the value of the parameter is the same as that of the
ant colony algorithm, which can ensure the consistency of the experiments, and it is helpful
for comparative analysis. The results show the best results for 251.83 h. The scheduling
Gantt chart is shown in Figure 9, and the corresponding berth assignment of the vessel
berthing plan is as follows:

Berth1: 1–4–10–13–17
Berth2: 2–6–9–15–18
Berth3: 3–7–8–14–19
Berth4: 5–11–12–16–20
The ordinate shown in Figure 10 represents the average time of the vessel in the port in

four berths. Compared with the single-berth parallel ant colony algorithm, with the same
principle of the PACO algorithm, six computers are used to calculate the vessels’ time in
the port. Based on the results of different sub-processors, it is found that the final result of
the PACO algorithm is superior to that of the ACO algorithm in terms of both the objective
value and computing efficiency.

5.4. Sensitivity Analysis

In order to verify the validity of the number of ant colonies, under the same condi-
tions as those of other experiments, only one parameter was changed, and several other
experiments were carried out. When the ant population Ca was changed, the experimental
results are shown in Table 2 and Figure 11.
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Figure 10. Results of multi-berth allocation based on PACO.

The data in Table 2 also show that the smaller the quantity of ants, the earlier the initial
convergent algebra without changing other parameters. Since berth scheduling is a parallel
machine problem, each ant can only walk Nb/Cs nodes (in this case, the number of nodes
is five). Experiments show that when the number of ants is less than the number of nodes,
the optimization is easily convergent. As the number of ants increases, the calculated
time decreases and the convergence speed increases. At the same time, increasing the
number of ants will make the calculation time for each generation longer; thus, it increases
the burden on the processor. From the benchmarking results in Table 2, we found that
when the number of ants was chosen to be 5 or 10, the calculation result was better and
the calculation time was shorter. In other words, in the parallel ant colony algorithm
calculation, the number of ants should be approximately equal to the number of nodes.
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Table 2. Berth scheduling optimization results by changing Ca (hour).

Ca The Optimal Value (the Total Residence Time of All
Vessels in the Port)

Started Convergence
Algebra

1 257.75 7
2 256.84 5
3 256.42 5
4 257.76 1
5 251.83 5
10 251.83 3
20 251.83 2
30 251.83 2
40 251.83 1
50 251.83 1

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 20 of 25 
 

` 

 
Figure 11. Berth scheduling optimization results line chart by changing Ca. 

The data in Table 2 also show that the smaller the quantity of ants, the earlier the 
initial convergent algebra without changing other parameters. Since berth scheduling is a 
parallel machine problem, each ant can only walk Nb/Cs nodes (in this case, the number of 
nodes is five). Experiments show that when the number of ants is less than the number of 
nodes, the optimization is easily convergent. As the number of ants increases, the 
calculated time decreases and the convergence speed increases. At the same time, 
increasing the number of ants will make the calculation time for each generation longer; 
thus, it increases the burden on the processor. From the benchmarking results in Table 2, 
we found that when the number of ants was chosen to be 5 or 10, the calculation result 
was better and the calculation time was shorter. In other words, in the parallel ant colony 
algorithm calculation, the number of ants should be approximately equal to the number 
of nodes. 

After determining the number of ants, the next step is to determine the values of α 
and β in the parallel ant colony algorithm to ensure optimal calculation results. Therefore, 
Ca was defined as five in this experiment, and the influence of the values of α and β on the 
results was studied. When α = 0.5 or 1, β = {1, 2, 3, 4, 5, 6}, the total residence time of all 
vessels in the port and the started convergence algebra were calculated, respectively. The 
result is as shown in Table 3: 

Table 3. Berth scheduling optimization results by changing α, β (hour, Ca = 5). 

α β 
The Optimal Value (the Total Residence 

Time of All Vessels in the Port) 
Started Convergence 

Algebra 
0.5 1 257.35 53 
0.5 2 251.83 15 
0.5 3 251.83 21 
0.5 4 251.83 3 
0.5 5 251.83 3 
0.5 6 256.84 6 
1 1 262.92 22 
1 2 260.33 21 
1 3 255.51 6 
1 4 256.60 5 
1 5 251.83 3 
1 6 256.76 2 

Figure 11. Berth scheduling optimization results line chart by changing Ca.

After determining the number of ants, the next step is to determine the values of α
and β in the parallel ant colony algorithm to ensure optimal calculation results. Therefore,
Ca was defined as five in this experiment, and the influence of the values of α and β on the
results was studied. When α = 0.5 or 1, β = {1, 2, 3, 4, 5, 6}, the total residence time of all
vessels in the port and the started convergence algebra were calculated, respectively. The
result is as shown in Table 3:

Table 3. Berth scheduling optimization results by changing α, β (hour, Ca = 5).

α β
The Optimal Value (the Total Residence Time of

All Vessels in the Port)
Started Convergence

Algebra

0.5 1 257.35 53
0.5 2 251.83 15
0.5 3 251.83 21
0.5 4 251.83 3
0.5 5 251.83 3

0.5 6 256.84 6
1 1 262.92 22
1 2 260.33 21
1 3 255.51 6
1 4 256.60 5
1 5 251.83 3
1 6 256.76 2
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As can be seen in Figure 12, regardless of whether α is equal to 0.5 or 1, as long as
β = 5, the minimum total residence time of all vessels in the port is obtained, and the
minimum optimal value is 251.83 h.
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In comparison to the previous experiment, the value of Ca in this experiment was
changed to 10 and we obtained all the corresponding berth scheduling operations results
by varying α and β as presented in Table 4. As we can see in Figure 13, the values of α and
β have little effect on the experimental results. In other words, a = 0.5 or 1, β = {2, 3, 4, 5},
and the total residence time of all vessels in the port can be minimized.

Table 4. Berth scheduling optimization results by changing α, β (hour, Ca = 10).

α β
The Optimal Value (the Total Residence Time of

All Vessels in the Port)
Started Convergence

Algebra

0.5 1 256.18 29
0.5 2 251.83 22
0.5 3 251.83 8
0.5 4 251.83 2
0.5 5 251.83 2
0.5 6 251.83 17
1 1 256.10 14
1 2 251.83 6
1 3 251.83 5
1 4 251.83 2
1 5 251.83 2
1 6 255.85 2

Through the above two sets of experiments, an obvious rule can be found: if both
Ca and α remain unchanged, as the value of β increases, the started convergence algebra
gradually decreases. Moreover, if β is too small, it is poorly convergent. In addition, if
other conditions are consistent, α = 0.5 makes the optimization result easier to obtain than
α = 1. Overall, the optimal values obtained from the second set of experiments (Ca = 10) are
more stable. To consider the overall calculation results and the optimized speed, the values
of Ca, α, and β should be 10, 0.5, and 5.
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5.5. Benchmarking Analysis with Other Algorithms

To further validate the superiority of our proposed algorithm, we conducted exper-
iments on the same case using both the Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO).

In solving the berth allocation problem for the given case, we applied a Genetic Algo-
rithm (GA). GA is an iterative search technique designed to find optimal solutions through
successive generations. To adapt GA effectively to our specific case, we meticulously
selected and fine-tuned its control parameters, including the population size, crossover
probability, mutation probability, and maximum number of generations. Through experi-
mentation, we determined that a population size of 30, a crossover probability of 0.8, and a
mutation probability of 0.1, with 20 generations, yielded highly promising results. This
parameter configuration struck a balance between maintaining population diversity and
converging towards optimal solutions. As a result, our GA optimization achieved a total
port time of 254.17 h for the 20 vessels in the case.

In a parallel effort, we employed Particle Swarm Optimization (PSO) to address the
berth allocation problem in the same case scenario. PSO is a population-based optimization
algorithm inspired by the social behaviors of birds and fish. In PSO, a population of
potential solutions, represented as particles, navigates the search space to discover the
optimal solution. Each particle adjusts its position based on its individual experiences and
the experiences of neighboring particles. The primary goal of PSO is to find the best solution
by iteratively updating particle positions and velocities. Upon running the PSO algorithm
and optimizing the berth allocation, we calculated the total vessel time for the port. The
outcome of our experiments revealed that, under the PSO algorithm’s optimization, the
total vessel time for the port was reduced to 257.25 h.

Comparative results can be found in Table 5, highlighting the performance differences
among the actual condition, GA, PSO, ACO, and our proposed PACO.

Table 5. Comparison results for the case.

Actual GA PSO ACO PACO

The total port time for the
20 vessels in the case (h) 304.4 254.17 257.25 257.2 251.83

These comparisons underscore the effectiveness of our proposed Enhanced Ant Colony
Algorithm (PACO) in addressing the challenges posed by the Discrete Dynamic Berth
Allocation Problem (DDBAP) in the specified case.
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6. Conclusions

The problem of berth allocation for incoming vessels is discrete and random, which
brought difficulties in obtaining the optimum solution and largely affected the port opera-
tion efficiency. To address this issue, this paper built up a dynamic BAP model referring
to the truly practical environment of berth allocation in container terminals. A parallel
ant colony algorithm catering to berth allocation is designed to allocate berths for vessels
arriving at the right time. With the principle of the ant routing process, a parallel ant
colony algorithm is delivered to handle the BAP problem. Regarding the prematurity and
convergence of the optimization algorithm, the experimental analysis and tuning of the
parameters in the ant colony algorithm are carried out. To validate the feasibility of the
approach, a case study is provided.

The existing ship scheduling scheme and berth allocation scheme are relatively single,
and there is no strong flexibility or universality; for this reason, this paper proposes a
dynamic berth allocation scheme, which can be achieved under certain conditions and
can reduce the ship’s stay time in a port to a certain extent. In the numerical examples, it
can be found that the PACO algorithm effectively avoids the deficiencies of the premature
convergence of the ACO algorithm when solving the berth allocation problem. The superi-
ority of the PACO algorithm is proved. In addition, the different parameters of the PACO
algorithm are studied and compared to find the optimal value when solving the problem
of berth allocation. This not only ensures the accuracy of the calculation results but also
improves the calculation speed. Without increasing the number of large berths, the service
level of the terminal can be effectively improved based on better allocation planning via
the proposed method, and the shortage of berths at terminals can be alleviated. Moreover,
we conducted comprehensive comparisons with other common optimization algorithms
to showcase the superiority of the PACO algorithm. While our study considered limited
practical factors and operated under specific assumptions, we acknowledge the need for
future research to involve more practical constraints. In particular, we plan to conduct
experiments on a broader range of instances to ensure the robustness and generalizability
of our approach. This will further enhance the applicability of our algorithm to real-world
scenarios and contribute to the ongoing development of berth allocation solutions.
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