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Abstract: Deep learning techniques have revolutionized the field of artificial intelligence by enabling
accurate predictions of complex natural scenarios. This paper proposes a novel convolutional neural
network (CNN) model that involves deep learning technologies, such as the bottleneck residual block,
layer normalization, and dropout layer, to predict wave overtopping at coastal structures under a
wide range of conditions. To optimize the performance of the CNN model, the hyperparameter
tuning process via Bayesian optimization is used. The results of validation demonstrate that the
proposed CNN model is highly accurate in estimating wave overtopping discharge from hydraulic
and structural parameters. The testing accuracy of the overtopping predictions using a prototype
dataset shows that the proposed CNN model outperforms those existing machine learning mod-
els. An example application of the CNN model is presented for predicting prototype overtopping
considering various crest freeboards of coastal structures.

Keywords: wave overtopping; deep learning technique; convolutional neural network; bottleneck
residual block; convolution layer; layer normalization; dropout layer; hyperparameter optimal tuning
process; Bayesian optimization; bootstrap resampling

1. Introduction

The accurate assessment of wave overtopping discharges is crucial for the appropriate
design of coastal structures that can prevent severe coastal flooding. Wave overtopping at
coastal structures has been studied extensively through various methods, including field
investigations, scale model measurements, and numerical simulations [1–7]. The CLASH
(Crest Level Assessment of Coastal Structures) project [8] conducted numerous physical
modeling and prototype investigations of wave overtopping discharge at various types of
coastal structures. Various empirical formulas are included in the EurOtop manual [9] for
the estimation of wave overtopping discharge. On the other hand, robust artificial neural
network (ANN) models, utilizing hydraulic and structural parameters sourced from either
the new EurOtop database [9] or the original CLASH database [10] as input variables, have
demonstrated efficient performance in predicting wave overtopping discharge at coastal
structures [4,7,11–14]. Each test in the EurOtop database is characterized by a reliability
factor (RF) and complexity factor (CF) [10], which are used to select reliable data for training
and improving ANN models.

Previous studies have proposed a variety of multilayer architectures for ANN mod-
els in the field of machine learning. Verhaeghe et al. [7] proposed a two-phase neural
network model, including a classifier–quantifier scheme, to distinguish negligible from
significant overtopping and avoid large overpredictions in areas of low overtopping. How-
ever, Zanuttigh et al. [11] argued that classifier–quantifier schemes do not truly improve
ANN performance and instead increase the complexity of the ANN architecture while
creating undesirable discontinuities in predictions. den Bieman et al. [12] presented a new
model using an advanced machine learning technique called XGBoost (XGB) associated
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with feature engineering, which generally outperforms conventional ANN models and
empirical formulas in terms of prediction accuracy. Bootstrap resampling techniques were
employed in these machine learning models to evaluate the uncertainties associated with
their predictions.

Accurately predicting wave overtopping discharge in complex scenarios remains a
challenging task. As an alternative to machine learning artificial neural networks (ANNs),
deep convolutional neural networks (CNNs) present a promising avenue to tackle this issue.
Originally developed for identifying the characteristics of individual images from large
datasets, CNNs have found applications in big data analysis and decision making [13,14].
Utilizing deep convolutional neural networks for the prediction of wave overtopping
discharge represents a relatively recent research area, yet it has already exhibited significant
potential. Through convolutional processing for feature extraction, CNNs can effectively
capture the distinctive attributes of data representations and employ filters to accentuate
the respective importance of each output task. As a result, CNNs may offer significant
improvements in the prediction accuracy of wave overtopping discharge.

This article presents a CNN model using a serial bottleneck residual block architecture
that incorporates convolution layers, layer normalization, and a dropout layer. The model is
designed to determine the relevance of hydraulic and coastal structure inputs for accurately
predicting wave overtopping discharge. This paper is organized as follows. Section 2
describes the new EurOtop database which is applied to train the CNN model. Then, we
explain the model expression, network layer architecture, and hyperparameter optimization
process used for training the CNN model. As applied in previous ANNs, the bootstrap
resampling technique is also introduced in training the CNN model. Next, we discuss the
accuracy of the CNN model predictions and compare them with those of existing ANN
models. An example application of the model for predicting prototype overtopping is also
presented. Finally, the conclusions of the study are addressed.

2. EurOtop Database

The proposed CNN model was trained using data from the new EurOtop database [9],
which is an extensive dataset containing over 17,000 tests. This dataset includes nearly
13,500 records specifically related to wave overtopping discharge. This new EurOtop
database is an extension of the original CLASH database, which was compiled from approx-
imately 10,000 schematized tests conducted worldwide. By utilizing this comprehensive
dataset, the CNN model can learn from a wide range of test scenarios and improve its
predictive capabilities for wave overtopping discharge. Figure 1 depicts the general ge-
ometric and relevant hydraulic parameters of coastal structures. Full descriptions of the
parameters, wave conditions, and structural cross sections in the database are provided in
the literature [9,11,12,15,16]. The overtopping experiments in the database are categorized
into seven groups based on the structure type and oblique wave attack conditions [9]; they
are rock permeable straight slopes (group A), rock impermeable straight slopes (group B),
armor units with straight slopes (group C), smooth and straight slopes (group D), structures
with combined slopes and berms (group E), vertical walls (group F), and oblique wave
attacks (group G).

The parameters selected for training the CNN model are listed in Table 1 and comprise
three hydraulic parameters of waves and thirteen structural parameters as inputs and one
parameter (wave overtopping discharge) as the output. The training dataset of the neural
network model consists of data derived from laboratory tests conducted at various scales.
To ensure the applicability of the model to prototype scenarios, the use of dimensionless
parameters is advantageous. Following [9,11,16], the significant wave height and water
depth at the structure toe are represented as the wave steepness Hm0,t/Lm−1,0,t and the
relative water depth h/Lm−1,0,t, respectively, by dividing the wavelength Lm−1,0,t, in which
Lm−1,0,t is calculated by 1.56T2

m−1,0,t, and Tm−1,0,t is the spectral wave period at the structure
toe. The parameters Bt, Gc, and B describing horizontal measures of structure widths
are normalized by the wavelength Lm−1,0,t and the parameters ht, Du, Dd, Ac, Rc, and



J. Mar. Sci. Eng. 2023, 11, 1925 3 of 17

hb describing vertical measures of structure heights are normalized by the wave height
Hm0,t. By incorporating dimensionless parameters, the neural network model can effectively
capture the underlying physics and behavior of wave overtopping, regardless of the specific
scale of the experiments.
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up/down slopes; β: incident angle of wave direction. 
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12 Ac/Hm0,t Relative crest freeboard of armor structure 
13 Rc/Hm0,t Relative crest freeboard of wall 
14 Gc/Lm−1,0,t Relative crest width of armor structure 

Figure 1. Schematic of structure based on CLASH, including geometric and hydraulic parameters [9].
Hm0,t: spectra significant wave height at the structure toe; Tm−1,0,t: spectral wave period at the
structure toe; h: water depth at the structure toe; ht: toe submergence; Bt: toe width; B: berm width;
hb: berm submergence; Ac: crest freeboard of armor structure; Rc: crest freeboard of wall; Gc: crest
width of armor structure; αu and αd : angles of armor structure slope part above/below the berm;
Du and Dd: sizes of the armor elements along up/down slopes; γ f u and γ f d: roughness factors for
up/down slopes; β: incident angle of wave direction.

Table 1. CNN input and output parameters.

# Parameters Definition of the Parameters

1 Hydraulic
parameters of waves

Hm0,t/Lm−1,0,t Wave steepness at the structure toe
2 h/Lm−1,0,t Relative water depth at the structure toe
3 β Wave obliquity

4

Structure
parameters

ht/Hm0,t Relative submergence of the toe structure
5 Bt/Lm−1,0,t Relative width of the toe structure
6 cotαd Cotangent of the structure slope below the berm
7 cotαu Cotangent of the structure slope above the berm
8 γ f d Roughness factor for cotαd
9 γ f u Roughness factor for cotαu

10 Dd/Hm0,t Relative size of the armor elements along cotαd
11 Du/Hm0,t Relative size of the armor elements along cotαu
12 Ac/Hm0,t Relative crest freeboard of armor structure
13 Rc/Hm0,t Relative crest freeboard of wall
14 Gc/Lm−1,0,t Relative crest width of armor structure
15 B/Lm−1,0,t Relative berm width
16 hb/Lm−1,0,t Relative berm submergence

1 Predicted
parameter qs Normalized wave overtopping discharge per unit width

Following [11,16], the wave overtopping discharge q in the database is scaled by a
normalized formula for training, which is defined as:

qs =
log10(qad)− min[log10(qad)]∣∣min[log10(qad)]− max[log10(qad)]

∣∣ (1)

in which qad is defined as

qad =
q√

gH3
m0,t

(2)
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where q is the original mean wave overtopping discharge value from the EurOtop database
and g is the gravitational acceleration (9.8 m/s2). Equation (2) represents a dimensionless
formula known as the relative wave overtopping discharge. As elucidated in [13], the
application of Equation (1) for normalization confines the fitted data within a range of 0 to
1, thereby mitigating the scale-dependent nature of the error. Subsequently, the predicted
output value qs generated by the trained CNN is reverted to obtain the corresponding
value of q.

A weight factor WF = (4 − RF)·(4 − CF) defined in [4] was adopted in previous
works for the selection of reliable data to minimize the influence of environmental un-
certainties and irregular structures. Higher WFs for the overtopping database indicate
greater reliability and simpler structural schemes. As the same in earlier prediction meth-
ods [11,16], excluding the data of very unreliable (RF = 4) or complex (CF = 4), q = 0, and
missing values, a total of 8653 records labeled as core data in the overtopping database are
used in the proposed CNN model. It is noted that the core data excluded the dataset of
prototype overtopping.

3. Method Description

3.1. Model Description

In this section, we present how the proposed CNN model learns the inputs of the
hydraulic and structural parameters corresponding to the output of wave overtopping
discharge. The overtopping database contains many different structure types and related
input parameters, but they may have the same distributions in the output parameters, as
known as a covariate shift problem. The general neural network model may require specific
feature engineering to select appropriate input parameters, preventing the model from
possibly misclassifying the data. Alternatively, the CNN gains experience by observing
a training set of input data and predicting the output without any feature assumptions.
Accounting for this problem, the convolutional layer [13], layer normalization [17], and a
dropout layer [18] are used for the proposed CNN, described as follows.

Convolutional Layer: This layer operates by traversing a compact filter across the
input data, enabling the detection of patterns and distinctive features. The equation of the
convolutional layers is expressed as follows:

x(l) = w·x(l−1) + b =
T

∑
τ=0

[
w[τ](l)x[t − τ + φ](l−1)

]
+ b[t] (3)

where the superscript l represents the index of each neutral network layer and t denotes
the index of the input parameters. In Equation (3), x(l−1) is a given input dataset, w is a
set of one-dimensional convolutional filter coefficients, and φ denotes the shift number.
Equation (3) can be described as the area under the function w[τ], which is weighted by
the function x[−τ], which is shifted by an amount t. As t changes, the weighting function
x[t – τ] emphasizes different components of the input weighting function w[τ] to extract
the significant features determined by the filter matrices. b[t] is the bias coefficient as the
constant of a linear function.

Layer normalization layer: The main objective of layer normalization is to reduce the
internal covariate shift that occurs during training, which helps stabilize the distribution of
the inputs to a layer. Layer normalization works by normalizing the values within a layer,
making their mean close to zero and their variance close to one. This normalization can
speed up training and allow for the use of larger learning rates. Additionally, it helps with
better gradient flow during backpropagation, which can lead to faster convergence and
more stable training.

Dropout layer: It is used to prevent overfitting in neural networks. During training, a
dropout layer randomly disables a fraction of the neurons or units in the layer by setting
them to zero for that particular pass. By introducing noise and preventing neurons from
relying too heavily on any particular input, dropout promotes learning more robust and
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generalized features. This regularization technique helps prevent overfitting and improves
the generalization of neural networks, making them more capable of performing well on
unseen data.

The proposed CNN consists of an input layer for inputting sequence data such as the
parameters shown in Table 1, hidden layers, and an output layer as the fully connected
layer to calculate a weighted sum of its inputs and is used to make predictions qs. In any
feed-forward neural network, the middle layers are referred to as hidden layers because
their inputs and outputs are masked by the activation function and final convolution. To
make a deeper CNN model, a bottleneck residual block [19] involving convolution layers,
layer normalization, and a dropout layer are applied to mitigate degradation (accuracy
saturation) and the overfitting problem [20] caused by combining many hidden layers. It
may also accelerate learning for our proposed CNN. For the architecture of the overall
connection model with the aforementioned network representations, the bottleneck residual
block adds a route for simple addition into each hidden layer connection as shown in
Figure 2.
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3.2. CNN Training with Hyperparameter Optimization

To obtain an optimal model, it is common practice to limit the number of learning
iterations or set a stopping threshold for the objective loss function in order to prevent over-
fitting. In this study, we employ the hyperparameter optimal tuning process (HOTP) [21,22]
to minimize the objective loss function and mitigate overfitting [20]. The objective loss
function combines the mean square loss function [23] and the Wasserstein distances W [24]
between two measures Pq̂ and Pq, which are the cumulative distribution functions of the
model predictions q̂ and the observed values q, respectively. The objective loss function L
can be mathematically defined as follows:

L = λ1
1
I ∑I

i=1

√
(q̂i − qi)

2 + λ2Ws
(

Pq̂, Pq
)

(4)

In Equation (4), I is the subsample number to be randomly extracted from the training
set. Each summand L is associated with the n-th observation in the subsample during
training. Here, λ1 and λ2 are constraints on the sensitivity of the squared error loss and
Wasserstein distances Ws

(
Pq̂, Pq

)
. To train the CNN, the adaptive movement estimation

algorithm, a backward propagation-based iterative method developed by Adam [25], is
employed for optimizing the objective function with desirable smoothness properties. The
learning rate is one of the key hyperparameters when training a deep learning neural
network model. It is determined through HOTP to find the value that results in the best
model performance.

Figure 3 provides an overview of the hyperparameter optimization (HOTP) process
utilized to develop an optimal CNN model. The primary objective of HOTP is to identify
the hyperparameters that yield the best performance of the CNN model, while avoiding
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overfitting. It is important to emphasize that the validation dataset used during HOTP is
distinct from the testing dataset and is not part of the training process.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

 𝐿 = 𝜆 ∑ 𝑞 − 𝑞 + 𝜆 𝑊 𝑃 ,𝑃  (4)

In Equation (4), I is the subsample number to be randomly extracted from the training 
set. Each summand L is associated with the n-th observation in the subsample during 
training. Here, 𝜆  and 𝜆  are constraints on the sensitivity of the squared error loss and 
Wasserstein distances 𝑊 𝑃 ,𝑃 . To train the CNN, the adaptive movement estimation 
algorithm, a backward propagation-based iterative method developed by Adam [25], is 
employed for optimizing the objective function with desirable smoothness properties. The 
learning rate is one of the key hyperparameters when training a deep learning neural net-
work model. It is determined through HOTP to find the value that results in the best 
model performance. 

Figure 3 provides an overview of the hyperparameter optimization (HOTP) process 
utilized to develop an optimal CNN model. The primary objective of HOTP is to identify 
the hyperparameters that yield the best performance of the CNN model, while avoiding 
overfitting. It is important to emphasize that the validation dataset used during HOTP is 
distinct from the testing dataset and is not part of the training process. 

In each iteration of HOTP, a new set of hyperparameters is evaluated by computing 
the associated loss using the validation dataset. The objective function aims to minimize 
this loss, enabling the identification of optimal hyperparameters that lead to a model with 
the lowest possible loss. Bayesian optimization [26] is employed in this study to conduct 
an exhaustive search of the hyperparameter space, focusing on a predetermined subset of 
hyperparameters. The optimization process involves exploring different combinations of 
hyperparameters based on previous observations, with the goal of refining the model's 
performance. 

Once the CNN model is trained using HOTP and the optimal hyperparameters are 
determined, it can be utilized to make predictions for overtopping values. This compre-
hensive approach ensures that the CNN model is fine-tuned to achieve optimal perfor-
mance and can provide accurate predictions for the given task. 

 
Figure 3. Schematic of hyperparameter optimal tuning process (HOTP) to create the CNN model. 

To configure hyperparameters for a CNN, first we define the network's architectural 
aspects according to Figure 2 and initialize the corresponding hyperparameters randomly, 

Figure 3. Schematic of hyperparameter optimal tuning process (HOTP) to create the CNN model.

In each iteration of HOTP, a new set of hyperparameters is evaluated by computing
the associated loss using the validation dataset. The objective function aims to minimize
this loss, enabling the identification of optimal hyperparameters that lead to a model
with the lowest possible loss. Bayesian optimization [26] is employed in this study to
conduct an exhaustive search of the hyperparameter space, focusing on a predetermined
subset of hyperparameters. The optimization process involves exploring different combi-
nations of hyperparameters based on previous observations, with the goal of refining the
model’s performance.

Once the CNN model is trained using HOTP and the optimal hyperparameters are
determined, it can be utilized to make predictions for overtopping values. This comprehen-
sive approach ensures that the CNN model is fine-tuned to achieve optimal performance
and can provide accurate predictions for the given task.

To configure hyperparameters for a CNN, first we define the network’s architectural
aspects according to Figure 2 and initialize the corresponding hyperparameters randomly,
such as the number of layers, filters, and size of neurons. Secondly, set general hyperpa-
rameters such as the neurons of convolution layers and fully connected layers, number
of residual blocks, learning rate, batch size, dropout rate, and weighting coefficients of
the loss function to fine-tune the training process. After establishing these foundational
settings, fine-tune the hyperparameters with HOPT on a validation set. Table 2 displays
a hypothetical interval of the hyperparameter space used during the HOTP process. The
aim of HOTP is to identify the optimal values for these hyperparameters, which are crucial
for the performance of the CNN model. Within Table 2, the optimal values of the hyperpa-
rameters are denoted by a star (*) symbol, indicating the configurations that yield the best
performance for the CNN model.

Table 2. Setup of hypothetical interval of hyperparameters for HOTP.

Hyperparameter Name Values Definition of the Hyperparameter

Convolution_filters [16, 24, 32, 64, 128, 256 *] Number of filters w in each convolution layer
Residual_block [1, 2 *] Number of residual block

Fully_connection_layer_neurons [32, 64, 128 *, 256, 512] Neurons in a fully connected layer
Learning_rate [0.0001 *, 0.0002, . . ., 0.1] Given range of learning rate for CNN training

Dropout_rate [0.1, 0.2, . . .0.7 *, 0.8, 0.9], Determines the probability of a neuron being
dropped out

λ1 [0.5, 0.6, . . ., 1.0 *] Given weights of RMSE term of L
λ2 [0.1, 0.2,. . ., 0.5 *, . . ., 1.0] Given weights for constraint term of L
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4. Results and Discussion

4.1. Training Setup

For the CNN model in this study, the training process was carried out with specific
configurations. In the context of neural network training, an epoch refers to a complete
iteration over the entire training dataset. During an epoch, the model goes through multiple
iterations, each involving a batch of training samples. The number of iterations per epoch is
determined by the batch size. In this study, each batch size was limited to a maximum size
of 256, while the remaining samples constituted the minimum quantity for the last batch
size. The training was performed with a maximum of 5000 epochs, and the early stopping
algorithm was employed to prevent overfitting. This algorithm continuously monitored
the validation performance and stored the model with the best results when a predefined
global training accuracy was achieved.

The training procedure took place on a computer equipped with a 3.4 GHz Intel Core
i7-6700 CPU and two NVIDIA GeForce GTX 1080 Ti GPUs. The implementation of the
CNN model was conducted using the Python programming language in conjunction with
the TensorFlow library [27]. This setup ensured efficient training and allowed for the
attainment of optimal outcomes.

In this study, the entire core dataset of the EurOtop overtopping database was utilized,
following the approach outlined in [12]. The database was randomly divided into two
portions: 80% for training the CNN model and 20% for validation. Similar to previous
machine learning models [4,11,12,16], we employed the bootstrap resampling technique
for the training of the CNN model. The bootstrap resampling technique involves creating
N resamples from the original database. Each resample forms a distinct training and
validation dataset. Subsequently, the CNN model is trained using each resample dataset,
and the predicted overtopping discharge is obtained by calculating the ensemble mean of
the predictions. This technique allows for the evaluation of the model’s performance under
various training conditions and provides a robust estimation of its predictive capabilities.

When dealing with a substantial volume of data, increasing the number of iterations in
bootstrap resampling typically results in more precise estimates derived from these resam-
ples [28]. However, in the context of the overtopping database, which contains relatively
modest-sized samples compared to fields with datasets comprising hundreds of thousands
of data points or more, excessively increasing the number of bootstrap resampling itera-
tions may not yield substantial improvements in predicting future outcomes. Moreover,
this practice can potentially create a deceptive sense of certainty if each model within the
ensemble exhibits notable levels of uncertainty.

In cases where a model already displays minimal variance in its prediction outcomes,
reducing uncertainty can be accomplished by examining only a limited number of bootstrap
samples. This approach not only aids in reducing training time but has also proven to be
effective. Therefore, it becomes crucial to determine the appropriate number of bootstrap
resamples required to construct a CNN model ensemble. In this study, we evaluate the
model’s performance across various numbers of bootstrap resamples, ranging from N = 1
to N = 500. It is noteworthy that the scenario with N = 500 aligns with the same number of
bootstrap resamples used in [4].

For the assessment of predicted quality, we employ the weighted root-mean-square
error (RMSE) as the error criterion, as defined in [12]. The weighted RMSE is calculated
using the following formula:

RMSE =

√
1

∑K
k WFk

∑K
k=1 WFk·[log10(q̂k)− log10(qk)]

2 (5)

where K is the observation number, and qk and q̂k are the observed and predicted values,
respectively. This error criterion takes into account the weights assigned to different
variables or data points, allowing for a more comprehensive evaluation of the prediction
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accuracy. By considering the weighted RMSE, we can assess the performance of the model
in a more nuanced and representative manner.

In Figure 4, the variation of the weighted root-mean-square error (RMSE) is de-
picted from the ensemble mean with bootstrap resample numbers ranging from N = 1 to
N = 500, along with the corresponding running time. It can be observed that as the boot-
strap resample number increases, the RMSE decreases. The RMSE value converges at
N = 10, as shown in Figure 4. Table 3 compares the RMSE values for N = 1, 10, and 500,
indicating that satisfactory accuracy can be achieved using N = 10. It is worth noting that
the computational time is significantly different between N = 10 (44 seconds) and N = 500
(2155 seconds). This finding suggests that employing N = 10 bootstrap resamples balances
accuracy and efficiency for the predictions. Figure 5 displays the predictions made by
the trained CNN model using N = 10 for both the training and validation datasets. The
proposed CNN model incorporated a strategy to mitigate overfitting, which was validated
by the strong performance observed in Figure 5, where the training and validation results
exhibited good agreement.
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Table 3. The comparison of predicted RMSEs for the training and validation datasets using different
numbers of bootstrap resamples.

Dataset (Size)
Bootstrap Resamples

N = 1 N = 10 N = 500

Training data (6922) 0.238 0.230 0.225
Validation data (1731) 0.246 0.214 0.215

4.2. Verification on the Overtopping Database

Following the precedent of earlier ANN models [4,11,14], the trained CNN model is as-
sessed for accuracy using the entire core dataset from the overtopping database. The trained
CNN model can be accessed online at https://github.com/fcuyttsai/overtoppingEve.git/
(accessed on 1 September 2023). The predictions of existing ANNs can be directly estimated
from their respective websites. These existing ANN models are the NN model [12] (on-
line at https://www.deltares.nl/en/software/overtopping-neural-network/ (accessed on
1 May 2023)), the NNb model [11] (online at http://overtopping.ing.unibo.it/overtopping/
(accessed on 1 May 2023)), and the XGB model [12] (online at https://www.deltares.nl/
en/software/overtopping-xgb/ (accessed on 1 May 2023)). In comparison to the deep
learning CNN model, the NN, NNb, and XGB models fall within the realm of machine
learning techniques. The NN model [4] employs the conventional back-propagation neural
network as its learning method. Meanwhile, the NNb model [11], which utilizes an ex-
tended CLASH database as its training dataset, builds upon the fundamental NN model
concept but integrates a quantitative classifier and three quantifiers. On the other hand, the
XGB model [14], as an alternative to both the NN and NNb models, leverages an advanced
machine learning technique known as XGBoost to predict overtopping discharge.

In Table 4, we present a comparison of the resulting weighted root-mean-square errors
(RMSEs) for wave overtopping discharge predictions, along with the Pearson correlation
coefficient (CC) and R2 as measures of agreement. The Pearson correlation coefficient (CC)
is given by:

CC =
∑n

i=1 (xi − x)(yi − y)
(n − 1)sxsy

(6)

where xi is the i-th value of observation, yi is the i-th value of prediction, x is the mean
value of observation, y is the mean value of prediction, sx is the standard deviation of the
observation, and sy is the standard deviation of the prediction. R2 is the square value of CC
that is the coefficient of determination.

Table 4. The comparison of predicted RMSEs of different models.

Dataset (Size) Model RMSE CC R2

Entire core data (8653)

NN 0.654 0.869 0.756
NNb 0.639 0.858 0.736
XGB 0.199 0.990 0.981
CNN 0.112 0.996 0.991

A: rock permeable
straight slopes (1131)

NN 0.702 0.768 0.590
NNb 0.687 0.791 0.625
XGB 0.247 0.977 0.955
CNN 0.153 0.989 0.978

B: rock impermeable
straight slopes (104)

NN 0.624 0.864 0.747
NNb 0.823 0.710 0.504
XGB 0.349 0.984 0.968
CNN 0.136 0.994 0.989

https://github.com/fcuyttsai/overtoppingEve.git/
https://www.deltares.nl/en/software/overtopping-neural-network/
http://overtopping.ing.unibo.it/overtopping/
https://www.deltares.nl/en/software/overtopping-xgb/
https://www.deltares.nl/en/software/overtopping-xgb/
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Table 4. Cont.

Dataset (Size) Model RMSE CC R2

C: armor units with
straight slopes (934)

NN 0.506 0.872 0.760
NNb 0.583 0.858 0.737
XGB 0.219 0.983 0.966
CNN 0.118 0.991 0.983

D: smooth and straight
slopes (2069)

NN 0.480 0.972 0.946
NNb 0.380 0.943 0.889
XGB 0.120 0.996 0.991
CNN 0.086 0.997 0.994

E: structures with
combined slopes and

berms (1631)

NN 0.784 0.838 0.703
NNb 0.670 0.877 0.770
XGB 0.204 0.987 0.975
CNN 0.093 0.997 0.993

F: vertical walls (1677)

NN 0.685 0.863 0.745
NNb 0.704 0.845 0.714
XGB 0.206 0.988 0.977
CNN 0.110 0.994 0.988

G: oblique wave attacks
(1107)

NN 0.760 0.777 0.603
NNb 0.872 0.772 0.595
XGB 0.228 0.983 0.965
CNN 0.128 0.989 0.978

As a result of the comparison, the RMSE value for the entire core dataset is 0.112
for the CNN model and 0.199 for the trained XGB. These values are significantly smaller
than the RMSE values obtained from the trained NN (0.654) and NNb (0.639) models.
Additionally, the CC and R2 values further demonstrate that both the present deep learning
model (CNN) and advanced machine learning model (XGB) outperform the conventional
machine learning models (NN and NNb). The corresponding quantile–quantile plot of
wave overtopping discharge predictions for each model is displayed in Figure 6.
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To demonstrate the adaptability of the current CNN model to different scenarios, we
directly extract the results of Figure 6 for the groups A–G of the EurOtop database, based
on structure type and oblique wave attack conditions. The predictions of each model are
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plotted in Figure 7a–g. The scatterplots in Figure 7a–g show a high correlation between the
predictions and observations for each group using the CNN model. The results indicate that
all models perform relatively well for group D, which represents the situation of coastal
structures with smooth and straight slopes. The CNN model also performs better for
group B data, despite it containing only a few observations compared to other categories.
Regarding the oblique wave attack prediction (group G), it is noted by [12] that the low
accuracy of the NN models may be due to the limited amount of training data, leading
to an improvement in the XGB model by incorporating new oblique wave cases into the
training data. However, as shown in Table 4, the group G dataset comprises 1107 cases,
which is larger than one-eighth of the total dataset. It can be observed that the current
CNN model achieves highly accurate oblique wave attack (group G) predictions without
the need for additional datasets.
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4.3. Testing/Prediction Using Prototype Overtopping Dataset

Designers expect prediction models to be applied to prototype scenarios. The testing
performance of the trained CNN model is evaluated using the prototype overtopping
dataset, which was not seen during the model’s training and validation processes. The
EurOtop database provides 150 wave overtopping measurement records from prototype
situations. These records include 11 measurements labeled as C-59.1 to C-59.11 [28] from
9 storms between 1999 and 2004 at Zeebrugge breakwater, 77 measurements labeled as
G-18.1 to G-18.77 [29] from 7 storms between 2003 and 2004 at Ostia breakwater, and
62 measurements labeled as F-18.1 to F-18.39 and G-12.1 to G-12.23 [30] from other sources.

The testing results of the trained CNN model are depicted in Figure 8, where the
predictions of the NN, NNb, and XGB models are estimated directly from their respective
websites using the same data inputs. It is important to note that all these models utilized
the entire core dataset (i.e., laboratory measured data) during the training and validation
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processes, with the prototype dataset remaining unseen. As illustrated in Figure 8 and
Table 5, the CNN model exhibits better performance in testing when applied to the pro-
totype dataset. It is worth noting that all models achieve high correlation coefficient (CC)
values. However, due to the larger scale of the prototype, the RMSE values reported in
Table 5 are understandably larger than those observed in the laboratory-scale data pre-
sented in Table 4. Furthermore, real-world prototype scenarios can introduce unanticipated
variables such as noise, surface irregularities, wind, spray, currents, and the scale effect
itself. These sources of uncertainty can contribute to more pronounced prediction errors.
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Table 5. The comparison of predicted RMSEs of different models for the prototype dataset.

Dataset (Size) Model RMSE CC R2

All testing data (150)

NN* 0.936 0.874 0.764
NNb 1.218 0.895 0.802
XGB 0.657 0.868 0.753
CNN 0.555 0.932 0.868

* For the NN model, it is out of range for the estimation of G-18.1 to G-18.77. This result only calculates 23 cases of
G-12.1 to G-12.23 for the NN model.

The prototype overtopping database can be divided into three categories: armor units
with straight slopes (C-59.1 to C-59.11), vertical walls (F-18.1 to F-18.39), and oblique wave
attacks (G-12.1 to G-12.23 and G-18.1 to G-18.77). Figure 9 presents the testing results for
these three types of datasets, extracted directly from the results of Figure 9. As mentioned
in [11], their model (i.e., NNb model) underestimated the predicted values of prototype
overtopping for the Ostia breakwater (i.e., G-18.1 to G-18.77), while the predictions for
Zeebrugge (i.e., C-59.1 to C-59.11) fell within the confidence bands. Figure 9a–c show
similar tendencies observed in [11] by the NNb model.
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4.4. Application of CNN for Prototype Various Crest Freeboards

In an example scenario, each model was applied to predict the prototype wave over-
topping discharge, considering various crest freeboards (Rc) of coastal structures. The
predictions were based on the observation labeled as G-12.22 in the prototype situations
of the EurOtop database. The input conditions are presented in Table 6. The predictions
started with Rc = 3.34 m and gradually increased to 7.50 m to observe the trend of the wave
overtopping discharge, with a measured observation available at Rc = 7.36 m.
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Table 6. Conditions for estimating overtopping discharge in example scenario.

Parameter Value Parameter Value Parameter Value

Hmo,t [m] 1.67 Rc [m] 3.34 to 7.50 Dd [m] 0.60
hb [m] 1.03 Ac [m] 3.34 Du [m] 0.00
ht [m] 3.28 Gc [m] 1.00 γ f d 0.55
h [m] 3.28 B [m] 8.00 γ f u 1.00

Lm−1,0,t [m] 59.39 cotαd 1.00 β [
◦
] 14

Bt [m] 0.00 cotαu 0.00

In Figure 10, the depicted results illustrate the predicted outcomes of relative wave
overtopping discharge concerning the relative crest freeboard for four different models:
the current CNN, XGB, NN, and NNb models. These results reveal a consistent trend
across all predictions, where a lower relative crest freeboard corresponds to a larger relative
wave overtopping discharge. Along the projected curve, the predictions generated by
the current CNN model closely align with the observed measurements at Rc = 7.36 m,
specifically at Rc/Hm0,t = 4.41. In contrast, the predictions produced by the NN, NNb, and
XGB models notably underestimate the relative wave overtopping discharge for various
relative Rc/Hm0,t values.
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5. Conclusions

In this paper, a novel convolutional neural network (CNN) model with deep learning
technologies is introduced for the accurate prediction of wave overtopping discharge at
various types of coastal structures, including those with complex geometries and under a
wide range of wave conditions. The proposed CNN model incorporates various hidden
layers, such as bottleneck residual blocks, which effectively extract features and scale input
sequences. For the enhancement of prediction accuracy, hyperparameters of the model
are optimized through Bayesian optimization to mitigate overfitting, and the model is
trained utilizing the bootstrap resampling technique. The results demonstrate that the
proposed CNN model outperforms traditional machine learning models, as evident from
comparisons of quantile–quantile plots and root-mean-square errors for estimations on
the overtopping database. Notably, the CNN model exhibits remarkable agreement with
observations across various structure types and oblique wave attack conditions. The
model also demonstrates satisfactory performance for prototype overtopping prediction,
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highlighting its value as a valuable tool for coastal engineers involved in the design and
maintenance of coastal structures.

Supplementary Materials: Our CNN model can be accessed online at https://github.com/fcuyttsai/
overtoppingEve.git/ (accessed on 1 September 2023).
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