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Abstract: Based on the assumption of linear potential flow theory, the scattering problem of a compos-
ite breakwater placed in front of an impermeable back wall is theoretically investigated. The velocity
potential in each subregion is found using the eigenfunction expansion method. The boundary condi-
tions of the porous region are treated using Darcy’s law. The semi-analytical solution of a composite
breakwater placed in front of an impermeable back wall is then obtained based on the matching
conditions of the boundaries of the different regions. The effects of different parameters on the wave
loads and wave amplitudes are investigated. In addition, to better understand the performance of
the composite breakwater, the scattering problem of the composite breakwater without considering
an impermeable back wall is also investigated. The correctness of this theoretical model is verified by
comparing the results with previous work. Based on the results of hydrodynamic calculations and
analysis of various aspects of a composite breakwater placed in front of an impermeable back wall,
the study of the effect of a composite breakwater placed in front of an impermeable back wall allows
us to propose a long-term and cost-effective solution for the protection of various marine facilities
from wave attacks.

Keywords: composite breakwater; porosity; wave scattering; hydrodynamic force

1. Introduction

Studies have shown that porous breakwaters are effective at reducing wave forces
acting on structures and reducing wave run-up. Additionally, porous breakwaters can
prevent wave damage to coastal and offshore infrastructure. As sea levels rise due to global
warming, the use of porous breakwaters in coastal engineering for harbor and coastline
protection is increasing. Porous structures are very flexible and can be reused, which
helps to reduce costs. Due to the large number of porous structures used in the ocean, the
research on the use of porous structures in waves is increasing. Meanwhile, the use of
composite porous structures is increasing. The study of water waves and porous structures
can provide theoretical support for the design of marine structures, such as offshore fish
cages and tension-leg platforms, so it is important to study the interaction between water
waves and porous structures.

When studying porous breakwaters, it has been found that increasing the number
of layers of the porous plate can provide better wave dissipation. To investigate whether
increasing the number of layers of porous cylinders can also provide better wave attenua-
tion effects, a new type of porous structure—a composite porous structure—is proposed
based on practical engineering. The purpose is to design an efficient porous breakwater.
It is used to study the scattering problem of composite porous structures placed in front
of impermeable walls. Due to the advantages of non-directional hydrodynamic effects
and its frequent use on coastal and offshore structures, the composite porous structure
is designed with a cylindrical shape. The structure and research methodology used for
the model proposed in this paper share similarities with existing studies. Therefore, they
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can be adopted from existing studies. Meanwhile, there are many studies on cylindrical
structures that can provide a basis and foundation for the research performed in this paper.

In recent decades, many researchers have studied wave scattering orginating from vari-
ous types of porous structure, including horizontal porous plates (Liu et al. [1];
Athul Krishna et al. [2]), caisson breakwaters (Lee and Shin [3]; Zhao et al. 2020 [4]),
and partially perforated breakwaters (Li et al. 2005 [5]; Suh et al. 2006 [6]). Researchers
have made some important advances in water wave scattering originating from porous
structures. Jarlan [7] proposed the concept of a perforated-wall caisson breakwater, and
this type of breakwater is now named after him. Jarlan-type breakwaters consist of a
perforated front wall and a vertical impermeable back wall. The first analytical model
was based on acoustic theory (Jarlan [8]). Scholars have proposed a number of different
designs of perforated breakwaters based on the Jarlan-type breakwater, such as those of
Isaacson et al. [9] and Garrido and Medina [10]. Garrido used a new semi-empirical model
to study the coefficients of reflection for the single-hole and double-hole models of Jarlan-
type breakwaters. Yang et al. [11] studied the interaction of a linear water wave impinging
on a vertical thin, porous breakwater at a constant depth. A case was studied in which a
semi-submerged fixed rectangular obstacle was placed in front of it. Williams et al. [12]
proposed a simplified analytical solution for modeling the interaction between linear waves
and absorbing caisson breakwaters with one or two perforated or slotted front surfaces.
Li et al. [13] investigated the reflection of oblique incident waves from breakwaters consist-
ing of a double-layered perforated wall and an impermeable back wall. Liu and Li [14],
Liu et al. [15], Liu et al. [16], and Mohapatra and Sahoo [17] also conducted studies on
other models of impermeable and permeable types. In addition, porous structures placed
on a two-layer fluid/uneven seabed in front of an impermeable back wall have also been
studied (Behera and Sahoo [18]; Chang and Tsai [19]). The studies described above all
employed single porous structures. As research progressed, Tsai et al. [20] investigated the
placement of multiple porous structures in front of an impermeable back wall.

At the same time, the interaction of water waves with compound cylinders has a
certain stability that has also attracted the attention of several researchers, who conducted
an in-depth study of the key properties of concentric structures. The key properties include
the permeability coefficient and the inner and outer radius ratios, as these are the key factors
influencing the protective effect of the outer cylinder on the inner cylinder. More recently,
Zhai et al. [21] studied the diffraction problem of solitary waves interacting with two
thin concentric asymmetric porous arc-wall assembled structures using the eigenfunction
expansion method. In 2021, Zhai et al. [22] also used the eigenfunction expansion method
to conduct a theoretical study on the interaction between Airy waves and a perforated
concentric double-arc porous wall on a bottom-mounted surface. Williams and Li [23]
used the eigenfunction expansion method to theoretically study the enclosure problem of
a rigid vertical cylinder mounted on a storage tank. Sankarbabu et al. [24] investigated
the diffraction problem of an array of porous cylinders under the action of linear waves
using the eigenfunction expansion method. The model described in this paper includes a
porous outer cylinder and a rigid inner cylinder. Liu et al. [25] investigated the diffraction
problem of a cylindrical structure with a porous surface under the action of waves using the
semi-analytical scaled-boundary finite element method (SBFEM). The coaxial cylindrical
structure consisted of a rigid inner cylinder and two porous outer cylinders. Ning et al. [26]
investigated the diffraction problem of a composite truncated cylinder at a finite water
depth using the variable separation method and the eigenfunction expansion technique.
The truncated top cylinder included a porous upper sidewall and an inner cylinder. Park
and Jeong [27] investigated the diffraction problem of an array of porous cylindrical
structures using the eigenfunction expansion method. The porous cylinder consisted of
a rigid inner cylinder and a porous outer cylinder. Liu et al. [28] proposed an analytical
method for the study of coaxial porous cylindrical systems with arbitrary smooth cross-
sections. The multilayer coaxial porous cylindrical system consisted of a rigid inner cylinder
and a single-layer porous outer cylinder. Sarkar and Bora [29] studied a series of linear
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water waves incident on a bottom-mounted porous composite cylinder composed of two
coaxial cylinders using the eigenfunction expansion method. The upper cylinder is hollow
with thin, porous sidewalls, while the radius of the lower cylinder is greater than that of
the upper cylinder, and the lower cylinder is rigid.

The studies described above show that the structure placed in front of the impermeable
back wall consists of a single layer, and no research has been carried out on coaxial compos-
ite porous structures placed in front of impermeable back walls. Meanwhile, reading the
extensive literature reveals that the model described in this paper has not been studied. It
is a new, more complex structure than existing models. The model described in this paper
contains an outer cylinder and an inner cylinder, with holes in the walls of both the inner
and outer cylinders. Based on existing research, a new composite breakwater model is
proposed in which the porous structure and the composite cylinder are combined. As can
be seen from Figure 1b, the composite breakwater is a concentric and symmetric composite
cylinder with porosities in both the outer cylinder wall (z ≥ −h2) and inner cylinder wall
(−h2 ≤ z ≤ −h1), the lower wall of the outer cylinder (−d ≤ z ≤ −h2) is not porous, and
the remaining part of the cylinder wall (z ≥ −h2) is porous, the upper wall (z ≥ −h1) and
the lower wall (−d ≤ z ≤ −h2) of the inner cylinder are not porous, and the remaining
part of the cylinder wall (−h2 ≤ z ≤ −h1) is porous. The main work in this paper consists
of a theoretical study of the scattering problem of a composite breakwater placed in front
of an impermeable back wall at a finite water depth. Under the assumption of the linear
theory of potential flow, the eigenfunction expansion method is used to study this. It is also
compared with the results of existing research in order to verify the accuracy of the model
proposed in this paper. To understand the performance of an composite breakwater placed
in front of an impermeable back wall, the force and moment acting on it are calculated
and analyzed using various structural parameters. Meanwhile, to understand the hydro-
dynamic performance of the composite breakwater, studies are conducted on the effect of
the porosity G, the radius ratio a/b, and the ratio h2/h1 on the composite breakwater. The
composite breakwater is also studied using the same method. The results of this paper
can serve as a valuable reference for the subsequent predesign and study of breakwater
systems in practical engineering applications.
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Figure 1. Schematic diagram of the structures. (a) A composite breakwater placed in front of an
impermeable back wall (a 2D problem). (b) A composite breakwater (a 3D problem).

The structure of this paper can be described as follows: A mathematical description of
the problem is given in Section 2. The analytical solution of the velocity potential is given
in Section 3, where the wave force and wave elevation are calculated on the basis of the
velocity potential. The results of the model validation and parametric study are given in
Section 4, and the conclusions are given in Section 5.
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2. Mathematical Formulation
2.1. A Composite Breakwater Placed in front of an Impermeable Back Wall

A geometric schematic of the two-dimensional problem is shown in Figure 1a. This
paper uses the small-amplitude water wave theory to analyze the scattering problem of
a composite breakwater placed on a vertically impermeable back wall under finite water
depth conditions in a Cartesian coordinate system. Here, the parameter d denotes the
constant water depth. The parameter a denotes the radius of the outer cylinder, and the
parameter b denotes the radius of the inner cylinder. The parameter h1 denotes the height
of the impermeable part of the upper cylinder and of the inner cylinder, and h2 denotes the
height of the permeable part of the outer cylinder. The origin of the Cartesian coordinate
system (x, z) is located at the still-water level. The z−axis runs vertically upward along
the back wall of the solid, and the x−axis points out of the fluid domain. The composite
breakwater placed in front of an impermeable back wall is affected by normally incident
regular waves with a height of H (H = 2A, where A denotes amplitude) and an angular
wave frequency of ω. The whole fluid domain is divided into three regions: (1) region I:
x ≤ −2a, 0 ≤ z ≤ −d; (2) region I I: b− a ≤ x ≤ 0, − 2a ≤ x ≤ −b− a, −h2 ≤ z ≤ 0;
(3) region I I I: b − a ≤ x ≤ −a, − h2 ≤ z ≤ −h1. In this study, the thickness of both
the outer and inner cylinders is assumed to be zero. This is because their thicknesses are
very small compared to the incident wavelength. The fluid considered in this paper is
homogeneous, inviscid and incompressible. Additionally, the motion is non-rotational. The
velocity potential Φ(x, z, t) can be expressed as

Φ(x, z, t) = Re[φ(x, z)e−iωt], (1)

where Re denotes the real part, i =
√
−1 the imaginary unit, ω the angular wave frequency

of the incoming waves, t the time, and φ the spatial velocity potential.
Thus, in different regions, the spatial velocity potential φj, j = 1, 2, 3 in each fluid

region satisfies Laplace’s equation:

∂2φj(x, z)
∂x2 +

∂2φj(x, z)
∂z2 = 0, j = 1, 2, 3, (2)

where j represents the variables concerning the region j.
It is also necessary for the spatial velocity potential φj, j = 1, 2, 3 to satisfy the

boundary conditions in the different regions I, I I, I I I, respectively.
The boundary conditions at the free surface and on the seabed can be written

as follows:
∂φj

∂z
=

ω2

g
φj, z = 0, j = 1, 2, (3)

∂φ1

∂z
= 0, z = −d, (4)

∂φ2

∂z
= 0, z = −h2, (5)

∂φ3

∂z
= 0, z = −h1, (6)

∂φ3

∂z
= 0, z = −h2, (7)

∂φ2

∂x
= 0, x = 0. (8)
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The boundary conditions on the impermeable surface of the cylinder can be expressed
as follows:

∂φ1

∂x
= 0, x = −2a, −d ≤ z ≤ −h2, (9)

∂φ2

∂x
= 0, x = −a− b, −h1 ≤ z ≤ 0. (10)

The boundary conditions on the porous cylinder wall can be expressed as follows
(Williams and Li [12]; Williams et al. [30]):

∂φ2

∂x
= iG(φ2 − φ1), x = −2a, −h2 ≤ z ≤ 0, (11)

∂φ2

∂x
= ε

∂φ3

∂x
, x = −a− b, −h2 ≤ z ≤ −h1, (12)

φ2 = (m− i f )φ3, x = −a− b, −h2 ≤ z ≤ −h1, (13)

where G denotes the porous effect parameter, ε the porosity of the permeable material, m the
inertial coefficient, and f the linearized friction coefficient. The study by Williams et al. [30]
gives a detailed explanation of the porous effect parameter G = ρωγ/(µk), where µ denotes
the constant coefficient of dynamic viscosity, γ a material constant having the dimension
of length, ρ the fluid density, and k the incident wavenumber. In this article, when ε = 1,
m = 1, and f = 0, they have the same range as that described in Dalrymple et al. [31]
and Behera and Sahoo [18]. Barman and Bora [32] carried out a detailed study of the
resistance effect of porous materials on flow and derived the relevant equations for the
porous parameters.

Along the interfaces between region I and region I I, the spatial velocity potential
should satisfy the following matching condition:

∂φ1

∂x
=

∂φ2

∂x
, x = −2a, −h2 ≤ z ≤ 0 (14)

2.2. A Composite Breakwater

To fully understand the performance of the composite breakwater, especially without
considering the presence of an impermeable back wall, relevant research is conducted. In
this paper, we consider a three-dimensional problem in a cylindrical coordinate system
(r, θ, z), with the origin located on the mean free surface z = 0 and with the z−axis up. This
paper also considers a train of the small-amplitude wave propagating from−∞ towards the
composite breakwater. The scattering problem for a composite breakwater is considered,
as shown in Figure 1b. The fluid domain is divided into the following three regions:
(1) region I: r ≥ a,−d ≤ z ≤ 0; (2) region I I: b ≤ r ≤ a,−h2 ≤ z ≤ 0; (3) region I I I:
0 ≤ r ≤ b,−h2 ≤ z ≤ −h1. The fluid is inviscid and incompressible. The motion is non-
rotational. According to the linear potential flow theory, the fluid flow can be described by
introducing the velocity potential as follows:

ψ(r, θ, z, t) = Re[ϕ(r, θ, z)e−iωt], (15)

where Re denotes the real part of the argument, i =
√
−1, ω the angular wave frequency of

the incoming waves, t the time, and ϕ the spatial velocity potential.
In the flow region, each potential needs to satisfy Laplace’s equation:

∇2 ϕj = 0, j = 1, 2, 3, (16)

where ϕj, j = 1, 2, 3 denotes the velocity potential in each region.
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The boundary conditions at the free surface and the seabed are as follows:

∂ϕj

∂z
− ω2

g
ϕj = 0, z = 0, j = 1, 2, (17)

∂ϕ1

∂z
= 0, z = −d, (18)

∂ϕ2

∂z
= 0, z = −h2, (19)

∂ϕ3

∂z
= 0, z = −h1, (20)

∂ϕ3

∂z
= 0, z = −h2. (21)

The boundary conditions on the surface of the rigid cylinder are as follows:

∂ϕ1

∂r
= 0, r = a, −d ≤ z ≤ −h2, (22)

∂ϕ2

∂r
= 0, r = b, −h1 ≤ z ≤ 0. (23)

The boundary conditions on the porous cylinder wall are as follows (Williams and Li [12];
Williams et al. [30]):

∂ϕ2

∂r
= iG(ϕ2 − ϕ1), r = a, −h2 ≤ z ≤ 0, (24)

∂ϕ2

∂r
= ε

∂ϕ3

∂r
, r = b, − h2 ≤ z ≤ −h1, (25)

ϕ2 = (m− i f )ϕ3, r = b, −h2 ≤ z ≤ −h1, (26)

where G denotes the porous effect parameter, ε the porosity of the permeable material,
m the inertial coefficient, and f the linearized friction coefficient. These parameters take the
same values as those described above.

Along the interfaces between region I and region I I, the spatial velocity potential
should satisfy the following matching condition:

∂ϕ1

∂r
=

∂ϕ2

∂r
, r = a, −h2 ≤ z ≤ 0. (27)

At infinity, the velocity potential in the exterior region must satisfy the Sommerfeld
radiation condition, that is:

lim
r→∞

√
r
[

∂(ϕ1 − ϕI)

∂r
− ik(ϕ1 − ϕI)

]
= 0, (28)

where ϕI is the incident velocity potential.

3. Analytical Solution of Velocity Potential
3.1. A Composite Breakwater Placed in front of an Impermeable Back Wall

The velocity potential φ1 satisfies Equations (2)–(4), and using the separation of vari-
ables method, it can be found that

φ1(x, z) = − igH
2ω

[
eik(1)0 (x+2a)Z(1)

0 (z) +
∞

∑
m=0

Amek(1)m (x+2a)Z(1)
m (z)

]
, (29)
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where Am (m = 0, 1, 2, . . . ) are the unknown expansion coefficients. The depth-dependent
functions Z(1)

m (z) (m = 0, 1, 2, . . . ) can be defined as

Z(1)
m (z) =


cosh k(1)0 (z+d)

cosh k(1)0 d
, m = 0

cos k(1)m (z+d)

cos k(1)m d
, m ≥ 1

. (30)

The wave numbers k(1)0 and k(1)m (m = 1, 2, . . . ) are the positive real roots of the
following dispersion relations (as shown in the study by Losada et al. [33]):

ω2 = gk(1)0 tanhk(1)0 d = −gk(1)m tan k(1)m d, m = 1, 2, . . . . (31)

The velocity potential φ2 and φ3, satisfying Equations (2),(3) and (5)–(8), can be ob-
tained as follows:

φ2(x, z) = − igH
2ω

∞

∑
q=0

BqZ(2)
q (z)(ek(2)q x + e−k(2)q x), (32)

φ3(x, z) =− igH
2ω

∞

∑
n=0

(Cneκnx + Dne−κnx) cos
nπ(z + h2)

h2 − h1
, (33)

where Bq (q = 0, 1, 2, . . . ), Cn (n = 0, 1, 2, . . . ), and Dn (n = 0, 1, 2, . . . ) are the unknown
expansion coefficients.

The depth-dependent functions Z(2)
q (z) are given by the following forms:

Z(2)
q (z) =


cosh k(2)0 (z+h2)

cosh k(2)0 h2
, q = 0

cos k(2)q (z+h2)

cos k(2)q h2
, q ≥ 1

. (34)

The wave numbers k(2)0 and k(2)q (q = 1, 2, . . . ) are the positive real roots of the
following dispersion relations (as shown in the study by Losada et al. [33]):

ω2 = gk(2)0 tanhk(2)0 h2 = −gk(2)q tan k(2)q h2, q = 1, 2, . . . . (35)

In this paper, matched porous boundary conditions are used to solve for the unknown
complex coefficients Am, Bq, Cn, and Dn. A system of linear algebraic equations is generated
to solve these unknown complex coefficients via the truncation of an infinite series over a
particular finite term for the unknown coefficients Am, Bq, Cn, and Dn. In this paper, the
standard matrix technique is used to solve this problem. After the unknown expansion
coefficients Am, Bq, Cn, and Dn have been derived, the force and moment can be obtained
by integrating over the velocity potential.

The horizontal wave force Fx and the moment Mx are given as follows:

Fx1 = iρω
∫ 0

−h2

(φ1 − φ2)dz, x = −2a, (36)

Mx1 = iρω
∫ 0

−h2

(φ1 − φ2)(d + z)dz, x = −2a (37)

Fx2 = iρω
∫ −h1

−h2

(φ2 − φ3)dz, x = −2b, (38)

Mx2 = iρω
∫ −h1

−h2

(φ2 − φ3)(d + z)dz, x = −2b, (39)
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where Fx1 and Mx1 denote the wave force and moment acting on the outer cylinder, respectively.
Fx2 and Mx2 denote the wave force and moment acting on the inner cylinder, respectively.

The surface elevation η(x) of water waves can be obtained as follows:

η(x) = − iω
g

φ(x, z), z = 0. (40)

3.2. A Composite Breakwater

The separation of variables method is applied to each region to obtain an expression
for the associated velocity potential. The velocity potential ϕ1 for the region I takes the
following form:

ϕ1(r, θ, z) = − igH
2ω

∞

∑
m=0

[
S0(z)K0(r)im +

∞

∑
q=0

AmqT(1)
mq (r)Z(1)

q (z)

]
eimθ , (41)

where Amq (q = 0, 1, 2, 3, . . . ) are the unknown expansion coefficients.

The wave number κ
(1)
0 and κ

(1)
q (q = 1, 2, 3, . . . ) can be derived using the following

dispersion relations (as shown in the study by Losada et al. [33]):

ω2 = gκ
(1)
0 tanhκ

(1)
0 d = −gκ

(1)
q tan κ

(1)
q d, q = 1, 2, 3, . . . . (42)

The radial eigenfunctions T(1)
mq (r) are as follows:

T(1)
mq (r) =


H(1)

m (κ
(1)
0 r)

H′(1)m (κ
(1)
0 a)

, q = 0

Km(κ
(1)
q r)

K′m(κ
(1)
q a)

, q ≥ 1
, (43)

where H(1)
m denotes the Hankel function of the first kind, Km the modified Bessel function

of the second kind, H′(1)m the first derivatives of the Hankel function, and K′m the first
derivatives of the modified Bessel function.

The vertical eigenfunction Z(1)
q (z) can be obtained as follows:

Z(1)
q (z) =



√
2 cosh κ

(1)
0 (z+d)√√√√1+

sinh2κ
(1)
0 d

2κ
(1)
0 d

, q = 0

√
2 cos κ

(1)
q (z+d)√√√√1+

sin 2κ
(1)
q d

2κ
(1)
q d

, q ≥ 1

. (44)

S0(z) and K0(r) can be obtained as

S0(z) =
cosh κ

(1)
0 (z + d)

cosh κ
(1)
0 d

, (45)

K0(r) =
Jm(κ

(1)
0 r)H′m(κ

(1)
0 a)− J′m(κ

(1)
0 a)H(1)

m (κ
(1)
0 r)

H′m(κ
(1)
0 a)

, (46)

where Jm denotes the Bessel function of the first kind, J′m denotes the first derivative of the
Bessel function.
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The velocity potential ϕ2 is obtained as follows:

ϕ2(r, θ, z) = − igH
2ω

∞

∑
m=−∞

∞

∑
n=0

BmnT(2)
mn (r)Z(2)

n (z)eimθ , (47)

where Bmn (n = 0, 1, 2, 3, . . . ) are the unknown expansion coefficients.
The wave number κ

(2)
0 and κ

(2)
n (n = 1, 2, 3, . . . ) can be derived using the following

dispersion relations (as in the study by Losada et al. [33]):

ω2 = gκ
(2)
0 tanhκ

(2)
0 h2 = −gκ

(2)
n tan κ

(2)
n h2, n = 1, 2, 3, . . . . (48)

The radial eigenfunctions T(2)
mn (r) are as follows:

T(2)
mn (r) =


H(1)

m (κ
(2)
0 r)

H′(1)m (κ
(2)
0 a)

, n = 0

Km(κ
(2)
n r)

K′m(κ
(2)
n a)

, n ≥ 1
. (49)

The vertical eigenfunction Z(2)
n (z) can be obtained as

Z(2)
n (z) =



√
2 cosh κ

(2)
0 (z+h2)√√√√1+

sinh2κ
(2)
0 h2

2κ
(2)
0 h2

, n = 0

√
2 cos κ

(2)
n (z+h2)√

1+ sin 2κ
(2)
n h2

2κ
(2)
n h2

, n ≥ 1

. (50)

The velocity potential ϕ3 is obtained as follows:

ϕ3(r, θ, z) = − igH
2ω

∞

∑
m=0

∞

∑
l=0

CmlVm
l (r)Ul(z)e−imθ , (51)

where Cml (l = 0, 1, 2, 3, . . . ) are the unknown expansion coefficients.
Vm

l (r) and Ul(z) can be obtained as

Vm
l (r) =


( r

a
)|m|, l = 0

Im

(
lπr

h2−h1

)
Im

(
lπb

h2−h1

) , l ≥ 1
, (52)

Ul(z) =


1
2 , l = 0

cos lπ(z+h2)
h2−h1

, l ≥ 1
, (53)

By solving for the unknown coefficients using the same method as described above,
the horizontal wave force fx can be determined as follows:

fx1 = iρω

(∫ 2π

0

∫ 0

−h2

ϕ1 cos(π − θ)dθdz−
∫ 2π

0

∫ 0

−h2

ϕ2 cos(π − θ)dθdz
)

, x = a, (54)

fx2 = iρω

(∫ 2π

0

∫ −h1

−h2

ϕ2 cos(π − θ)dθdz−
∫ 2π

0

∫ −h1

−h2

ϕ3 cos(π − θ)dθdz
)

, x = b, (55)

where fx1 and fx2 denote the wave force on the outer cylinder and the inner cylinder, respectively.



J. Mar. Sci. Eng. 2023, 11, 1878 10 of 19

The wave amplitude ζ(x) of water waves can be obtained as follows:

ζ(x) = − iω
g

ϕ(r, θ, z), z = 0. (56)

4. Numerical Results and Discussion
4.1. Validation

The reduced model proposed in this paper is equivalent to the models used in previous
studies. The computational results of the reduced model are compared with those of
existing models in order to verify the correctness of the results reported in this paper.

Wu et al. [34] investigated the reflection of water waves by a vertical wall with a
porous structure. A comparison of the reflection coefficient KR obtained using our model
with that obtained by Wu et al. [34] is shown in Figure 2a. The calculated parameters
are G = 0, h/L = 0.25 and b/h = 0.2, where G denotes the porous effect parameter,
h the water depth, L the wavelength, and b the submerged depth of the structure. It
can be observed that the results reported in this paper are consistent with the results
of Wu et al. [34].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

4. Numerical Results and Discussion 
4.1. Validation 

The reduced model proposed in this paper is equivalent to the models used in previ-
ous studies. The computational results of the reduced model are compared with those of 
existing models in order to verify the correctness of the results reported in this paper. 

Wu et al. [34] investigated the reflection of water waves by a vertical wall with a po-
rous structure. A comparison of the reflection coefficient RK  obtained using our model 
with that obtained by Wu et al. [34] is shown in Figure 2a. The calculated parameters are 

0,  / 0.25G h L= =  and / 0.2b h = , where G  denotes the porous effect parameter, h  the 
water depth, L  the wavelength, and b  the submerged depth of the structure. It can be 
observed that the results reported in this paper are consistent with the results of Wu et al. 
[34]. 

MacCamy and Fuchs [35] applied the theory to the calculation of wave forces on rigid 
cylindrical surfaces. Figure 2b shows the calculation results obtained when using the re-
duced model in comparison with the data reported by MacCamy and Fuchs [35]. The cal-
culated parameters are ,  2a d β π= =  and 0G = , where a  denotes the radius, d  the 
water depth, β  the wave incidence angle, and G  the porous effect parameter. The com-
parison results are shown in Figure 2b, and the results are in good agreement. 

Mackay et al. [36] calculated the hydrodynamics of the porous outer cylinder. Figure 
2c shows the result of a comparison of the present model with surface porosity and that 
of Mackay et al. [36]. The seabed porosity parameter was set to 1 0G = , the cylinder wall 
surface porosity 0.1G = , and / 1/4a d = , where a  denotes the radius and d  the draft 
of the outer cylinder from the free surface. The comparison results are shown in Figure 2c, 
and the results are in good agreement. 

In summary, the correctness of the results derived using our model formulation 
proves the validity the model. 

 
Figure 2. Comparison of the results obtained in the present work with those previously reported by 
(a) Wu et al. [34], (b) MacCamy and Fuchs [35], and (c) Mackay et al. [36]. 

4.2. Results and Discussion 
To study the hydrodynamic performance of the composite breakwater, a computer 

program was written to implement the above analytical solution. First, the convergence 
of the method in which the expansion coefficients are calculated using the truncation num-
bers M  and N  is investigated. The results of the horizontal wave forces 1xf  acting on 
the outer cylinder of the composite breakwater for different values of M   and N   are 
shown in Table 1. Here, the basic parameters are: 1 20   / 4,  / 10,  / 5 / 4a b d h d hβ = ° = = =，  
and   1G =  . It can be clearly seen from the table that the truncation number M = 15  
should be selected. For the other model (the composite breakwater placed in front of an 
impermeable back wall) in this paper, the same method is used to obtain M 25= . 
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MacCamy and Fuchs [35] applied the theory to the calculation of wave forces on
rigid cylindrical surfaces. Figure 2b shows the calculation results obtained when using
the reduced model in comparison with the data reported by MacCamy and Fuchs [35].
The calculated parameters are a = d, β = 2π and G = 0, where a denotes the radius,
d the water depth, β the wave incidence angle, and G the porous effect parameter. The
comparison results are shown in Figure 2b, and the results are in good agreement.

Mackay et al. [36] calculated the hydrodynamics of the porous outer cylinder. Figure 2c
shows the result of a comparison of the present model with surface porosity and that of
Mackay et al. [36]. The seabed porosity parameter was set to G1 = 0, the cylinder wall
surface porosity G = 0.1, and a/d = 1/4, where a denotes the radius and d the draft of the
outer cylinder from the free surface. The comparison results are shown in Figure 2c, and
the results are in good agreement.

In summary, the correctness of the results derived using our model formulation proves
the validity the model.

4.2. Results and Discussion

To study the hydrodynamic performance of the composite breakwater, a computer
program was written to implement the above analytical solution. First, the convergence of
the method in which the expansion coefficients are calculated using the truncation numbers
M and N is investigated. The results of the horizontal wave forces fx1 acting on the outer
cylinder of the composite breakwater for different values of M and N are shown in Table 1.
Here, the basic parameters are: β = 0◦, a/b = 4, d/h1 = 10, d/h2 = 5/4 and G = 1. It can
be clearly seen from the table that the truncation number M = 15 should be selected. For
the other model (the composite breakwater placed in front of an impermeable back wall) in
this paper, the same method is used to obtain M = 25.
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Table 1. Convergence of forces fx1 for different values of M and N.

Truncation
Numbers

Forces fx1

ka = 0.1 ka = 0.2 ka = 0.3 ka = 0.4 ka = 0.5 ka = 0.6

5 0.227671 0.167398 0.567639 1.170995 1.10001 1.006249
10 0.639971 0.188992 0.407563 0.671492 0.884464 1.104123
15 0.306343 0.375348 0.420938 0.357601 0.161683 0.498337
20 0.306343 0.375348 0.420938 0.357601 0.161683 0.498337
25 0.306343 0.375348 0.420938 0.357601 0.161683 0.498337
30 0.306343 0.375348 0.420938 0.357601 0.161683 0.498337

In order to validate the present solution, a detailed parametric study is conducted to
investigate the effects of the porosity G, radius ratio a/b, and the ratio h2/h1 on the wave
force and moment acting on the composite breakwater placed in front of an impermeable
back wall. In all subsequent calculations, the wave force and moment of the model (the com-
posite breakwater placed in front of an impermeable back wall) are non-dimensionalized
by ρgHd and ρgHd2, respectively. The wave force of the model (the composite breakwa-
ter) is non-dimensionalized by ρgHπa2, and the magnitude of free-surface elevation is
non-dimensionalized by H/2. Additionally, we make the wavenumber dimensionless
(the wavenumber is multiplied by the radius of the outer cylinder) in order to obtain
the dimensionless wavenumber ka. In the following calculations, the angles of incidence
are all β = 0◦.

4.2.1. A Composite Breakwater Placed in front of an Impermeable Back Wall

In Figure 3, the dimensionless wave force |Fx1/ρgHd| and the dimensionless moment∣∣Mx1/ρgHd2
∣∣ for a composite breakwater placed in front of an impermeable back wall are

plotted against the dimensionless wavenumber ka for various values of G corresponding to
a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦. For G = 0.5, the dimensionless wave force
and moment distributions of the outer cylinder follow the same trend as that observed
when G = 1.0 and 1.5. It can be seen that the maximum force on the outer cylinder occurs
around the dimensionless wavenumber of 0.65, and the maximum moment on the outer
cylinder occurs around the dimensionless wavenumber of 0.05. Furthermore, as shown in
Figure 3a, when the porosity G is increased, the dimensionless force acting on the outer
cylinder decreases. This force initially increases monotonically, reaching its maximum
near the dimensionless wavenumber ka = 0.65, before starting to decrease with increasing
values of the dimensionless wavenumber ka. In the vicinity of ka = 0.65, the dimensionless
wave force reaches its highest value, as the wave reflectivity of the outer cylinder is higher,
and the dissipation also decreases. As shown in Figure 3b, the dimensionless moment
attains smaller values for higher values of porosity G. It can be observed that the variations
in the dimensionless moment are smaller for various values of the porosity G at low
frequency. This phenomenon was also described in the study by Ning et al. [26].

In Figure 4, the dimensionless wave force |Fx2/ρgHd| and the dimensionless moment∣∣Mx2/ρgHd2
∣∣ are plotted for a composite breakwater placed in front of an impermeable

back wall against the dimensionless wavenumber ka for various values of G corresponding
to a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦. The variation in the inner cylinder
moment is similar to the variation in the force of the outer cylinder. It is worth noting
that the effect of variations in porosity is mostly concentrated in the lower-frequency
region. From Figures 3 and 4, it can be observed that the curves are not smooth, and
exhibit peaks and troughs. The strong reflection of the rigid inner wall can lead to this phe-
nomenon. According to the derived formulas, it can be found that complex special functions
(i.e., the Bessel function, the Hankel function, and their derivatives) affect the roughness of
the curves.
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∣∣.
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∣∣Mx2/ρgHd2
∣∣.

Therefore, it can be concluded that the wave loads on the composite breakwater placed
in front of an impermeable back wall with smaller values of porosity G are higher than
those on the composite breakwater placed in front of an impermeable back wall with higher
values of porosity G. Increasing porosity values G can result in a reduction in force and
moment acting on the structure. However, with increasing porosity G, the safety factor and
stability of the porous structure decrease. Therefore, high porosity G cannot be considered
in practical engineering, and a suitable porosity G needs to be employed.

In Figure 5, the dimensionless wave force |Fx1/ρgHd| and the dimensionless moment∣∣Mx1/ρgHd2
∣∣ are plotted for a composite breakwater placed in front of an impermeable

back wall against the dimensionless wavenumber ka for various values of the ratio h2/h1
corresponding to a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦. In Figure 6, the
dimensionless wave force |Fx2/ρgHd| and the dimensionless moment

∣∣Mx2/ρgHd2
∣∣ are

plotted for a composite breakwater placed in front of an impermeable back wall against
the dimensionless wavenumber ka for various values of the ratio h2/h1 corresponding to
a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦. It can be observed that the dimensionless
wave force and the dimensionless moment of the outer and inner cylinders increase when
the value of the ratio h2/h1 increases. For the ratio h2/h1 = 6, the dimensionless wave
force and the dimensionless moment distribution of the outer and inner cylinders follow
the same trend as that observed when h2/h1 = 4 and 5, but are significantly higher than in
the other cases because of the large area of the porous region. Increasing values of the ratio
h2/h1 mean that the area of the porous region has also increased. It can be concluded that
the larger the area of the porous region, the greater the influence the water waves will have
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on the cylinder. Meanwhile, the presence of an impermeable back wall allows for periodic
variations in the force and moment of the structure.
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ite breakwater placed in front of an impermeable back wall for different values of h1/h2 when
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∣∣Mx1/ρgHd2
∣∣.
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Finally, it can be concluded that the dimensionless wave force and moment acting
on the composite breakwater in front of the seepage-proof back wall can be reduced if an
appropriate value is chosen for the ratio h2/h1. The composite breakwater placed in front
of an impermeable back wall can be chosen properly for practical engineering, which is also
beneficial for structural stability. According to the calculations in this paper, it is possible to
choose a smaller value of the ratio h2/h1.

In Figure 7, the dimensionless wave force |Fx1/ρgHd| and the dimensionless moment∣∣Mx1/ρgHd2
∣∣ are plotted for a composite breakwater placed in front of an impermeable

back wall against the dimensionless wavenumber ka for various values of the radius ratio
a/b corresponding to h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦. In Figure 8, the
dimensionless wave force |Fx2/ρgHd| and the dimensionless moment

∣∣Mx2/ρgHd2
∣∣ are

plotted for a composite breakwater placed in front of an impermeable back wall against the
dimensionless wavenumber ka for various values of the radius ratio a/b corresponding to
h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦. It can be seen that as the radius ratio a/b in-
creases, generally speaking, the dimensionless force and the dimensionless moment on the
outer and inner cylinders increase and then decrease. Some of the phenomena in this paper
can be found in the same phenomena in the study by Wang and Ren [37]. Additionally, it
can be observed that the dimensionless forces on the outer and inner cylinders show a cycli-
cal variation, increasing and then decreasing with increasing values of the dimensionless
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wavenumber. The reason for this is the occurrence of constructive interference between the
incident and reflected waves. Furthermore, when the dimensionless wavenumber ka > 1,
the dimensionless force and the dimensionless moment on the outer and inner cylinders
change pronouncedly when the radius ratio is set to a/b = 5. Three values of radius ratio
are considered in this paper, and from the results of the calculations, the radius ratio of
a/b = 4 was found to be the most suitable for effective control of wave loads. Therefore,
it can be concluded that choosing the right radius ratio a/b reduces the degree to which
wave forces act on the inner and outer cylinders. It is clear from the calculations in this
paper that, in addition to choosing a suitable radius ratio a/b, a smaller wavenumber can
also be chosen to reduce the force and moment acting on the structure.
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Figure 7. The magnitude of the dimensionless wave force Fx1 and moment Mx1 of the compos-
ite breakwater placed in front of an impermeable back wall for different values of a/b when
h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦. (a) |Fx1/ρgHd|, (b)

∣∣Mx1/ρgHd2
∣∣.
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Figure 8. The magnitude of the dimensionless wave force Fx2 and moment Mx2 of the compos-
ite breakwater placed in front of an impermeable back wall for different values of a/b when
h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦. (a) |Fx2/ρgHd|, (b)

∣∣Mx2/ρgHd2
∣∣.

The amplitudes of the waves on the surface of the composite breakwater placed
in front of an impermeable back wall—the dimensionless wave amplitudes |η1/A|
and |η2/A|—are shown in Figure 9 as polar plots. The calculated parameters are
a/b = 2, h1/d = 1/10, G = 3 and h2/d = 9/10. |η1/A| and |η2/A| denote the am-
plitude of the dimensionless wave on the outer cylinder and the inner cylinder, respectively.
The dimensionless wave amplitude at the free surface is considered for five different di-
mensionless wavenumber values: ka= 0.1, 0.2, 0.3,0.4 and 0.5. It can be seen that the
change in the dimensionless wavenumber has a greater effect on the outer cylinder and a
smaller effect on the inner cylinder at higher frequencies, with the wave creep being more
significant at high frequencies. This is because the impermeable back wall affects the outer
cylinder more than the inner cylinder. The presence of the impermeable back wall causes
the wave amplitude on the outer cylinder to vary significantly with wavenumber.
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Therefore, in practical engineering, the study of structures placed in front of an imper-
meable back wall can be undertaken by choosing a smaller wavenumber, thus reducing the
wave amplitude acting on the cylinder.
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Figure 9. The dimensionless wave amplitude |η1/A| and |η2/A| at the free surface when
a/b = 2, h1/d = 1/10, h2/d = 9/10 and G = 3. (a) the amplitude of the dimensionless wave
on the outer cylinder, (b) the amplitude of the dimensionless wave on the inner cylinder.

4.2.2. A Composite Breakwater

In order to understand the influence of these parameters on the composite breakwater,
a study is carried out on the outer cylinder of the composite breakwater, focusing on the
variation in the outer cylinder. In Figure 10, the dimensionless wave force

∣∣ fx1/ρgHπa2
∣∣ for

the outer cylinder is plotted against the dimensionless wavenumber ka for various values
of G corresponding to a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦. The dimensionless
wave force acting in Figure 10 is similar to the dimensionless wave force presented in
Figures 3a and 4a. As shown in Figure 10, lower values are attained for the dimensionless
wave force with higher values of porosity G. It can be seen that the maximum force on the
outer cylinder occurs around the dimensionless wavenumber of 0.7. Therefore, it can be
concluded that the wave loads on the composite breakwater with lower values of porosity
G are higher than those on the composite breakwater with higher values of porosity G.
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Figure 10. The magnitude of the dimensionless wave force fx1 of the composite breakwater for
different values of G with a/b = 3, h1/d = 1/5, h2/d = 4/5 and β = 0◦.

In Figure 11, the dimensionless wave force
∣∣ fx1/ρgHπa2

∣∣ for the outer cylinder is
plotted against the dimensionless wavenumber for various values of the ratio h2/h1 corre-
sponding to a/b = 3, d/b = 10, G = 1 and β = 0◦. When the dimensionless wavenumber
1.6 ≤ ka ≤ 2.0, the dimensionless wave force acting in Figure 11 is similar to the dimension-
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less wave force presented in Figures 5a and 6a, and when the dimensionless wavenumber
1.0 ≤ ka ≤ 1.6, the dimensionless wave force acting in Figure 11 is not the same as the
dimensionless wave force presented in Figures 5a and 6a, because the impermeable back
wall has a greater impact on the composite breakwater at low frequencies.
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Figure 11. The magnitude of the dimensionless wave force fx1 of the composite breakwater for
different values of h2/h1 with a/b = 3, d/b = 10, G = 1 and β = 0◦.

In Figure 12, the dimensionless wave force
∣∣ fx1/ρgHπa2

∣∣ for the outer cylinder is
plotted against the dimensionless wavenumber for various values a/b corresponding to
h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦. The dimensionless wave force acting in
Figure 12 is not the same as the dimensionless wave force presented in Figures 7a and 8a.
Because there is no impermeable back wall, the dimensionless wave force acting on the
outer cylinder shows a certain pattern as the radius ratio a/b changes. When a/b = 4,
the distribution of dimensionless wave force and the dimensionless moment in the outer
cylinder follows the same trend as when a/b= 5 and 6. It can be observed that all curves of
the dimensionless wave force on the outer cylinder initially increase, and then decrease with
increasing dimensionless wavenumber values. This shows a cyclical pattern. From this, it
can be found that the dimensionless wave force on the outer cylinder can be reduced by an
appropriate radius ratio a/b. The dimensionless wave loads can be effectively controlled
by choosing the appropriate radius ratio a/b of the composite breakwater.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 20 
 

 

decrease with increasing dimensionless wavenumber values. This shows a cyclical pat-
tern. From this, it can be found that the dimensionless wave force on the outer cylinder 
can be reduced by an appropriate radius ratio /a b . The dimensionless wave loads can 
be effectively controlled by choosing the appropriate radius ratio /a b  of the composite 
breakwater. 

Special attention needs to be paid to the fact that, for coaxial structures, the oscillation 
of water waves inside the system space can slowly destroy the structure. Therefore, a suit-
able radius ratio needs to be considered for safety purposes in practical engineering. 

 
Figure 12. The magnitude of the dimensionless wave force 1xf  of the composite breakwater for 
different values of /a b  when 1 2/ 1 / 10,  / 4 / 5,  2h d h d G= = =  and   0β = ° . 

The amplitudes of the wave on the surface of the composite breakwater—the dimen-
sionless wave amplitudes | / |Aζ —are shown in Figure 13 as polar plots for / 2a b = , 

1 2/ 1/10,  / 9 /10h d h d= =   and   3G =  . | / |Aζ   denotes the dimensionless wave ampli-
tude on the outer cylinder. The dimensionless wave amplitude at the free surface is con-
sidered for three different dimensionless wavenumber values. In Figure 13, it can be seen 
that when the wavenumber is small, the change in wave run-up is not obvious, and when 
the dimensionless wavenumber becomes larger, the wave run-up increases more signifi-
cantly. Additionally, as the angle increases, the dimensionless wave run-up becomes 
larger. This is due to the interaction of the incident and scattered waves causing a change 
near the cylinder. 

 

Figure 12. The magnitude of the dimensionless wave force fx1 of the composite breakwater for
different values of a/b when h1/d = 1/10, h2/d = 4/5, G = 2 and β = 0◦.



J. Mar. Sci. Eng. 2023, 11, 1878 17 of 19

Special attention needs to be paid to the fact that, for coaxial structures, the oscillation
of water waves inside the system space can slowly destroy the structure. Therefore, a
suitable radius ratio needs to be considered for safety purposes in practical engineering.

The amplitudes of the wave on the surface of the composite breakwater—the di-
mensionless wave amplitudes |ζ/A|—are shown in Figure 13 as polar plots for a/b = 2,
h1/d = 1/10, h2/d = 9/10 and G = 3. |ζ/A| denotes the dimensionless wave amplitude
on the outer cylinder. The dimensionless wave amplitude at the free surface is considered
for three different dimensionless wavenumber values. In Figure 13, it can be seen that
when the wavenumber is small, the change in wave run-up is not obvious, and when
the dimensionless wavenumber becomes larger, the wave run-up increases more signif-
icantly. Additionally, as the angle increases, the dimensionless wave run-up becomes
larger. This is due to the interaction of the incident and scattered waves causing a change
near the cylinder.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 20 
 

 

decrease with increasing dimensionless wavenumber values. This shows a cyclical pat-
tern. From this, it can be found that the dimensionless wave force on the outer cylinder 
can be reduced by an appropriate radius ratio /a b . The dimensionless wave loads can 
be effectively controlled by choosing the appropriate radius ratio /a b  of the composite 
breakwater. 

Special attention needs to be paid to the fact that, for coaxial structures, the oscillation 
of water waves inside the system space can slowly destroy the structure. Therefore, a suit-
able radius ratio needs to be considered for safety purposes in practical engineering. 

 
Figure 12. The magnitude of the dimensionless wave force 1xf  of the composite breakwater for 
different values of /a b  when 1 2/ 1 / 10,  / 4 / 5,  2h d h d G= = =  and   0β = ° . 

The amplitudes of the wave on the surface of the composite breakwater—the dimen-
sionless wave amplitudes | / |Aζ —are shown in Figure 13 as polar plots for / 2a b = , 

1 2/ 1/10,  / 9 /10h d h d= =   and   3G =  . | / |Aζ   denotes the dimensionless wave ampli-
tude on the outer cylinder. The dimensionless wave amplitude at the free surface is con-
sidered for three different dimensionless wavenumber values. In Figure 13, it can be seen 
that when the wavenumber is small, the change in wave run-up is not obvious, and when 
the dimensionless wavenumber becomes larger, the wave run-up increases more signifi-
cantly. Additionally, as the angle increases, the dimensionless wave run-up becomes 
larger. This is due to the interaction of the incident and scattered waves causing a change 
near the cylinder. 

 
Figure 13. The dimensionless wave amplitude |ζ/A| at the free surface for a/b = 2, h1/d = 1/10,
h2/d = 9/10 and G = 3.

5. Conclusions

The current work presented a theoretically study of the interaction of linear water
waves with a composite breakwater placed in front of an impermeable back wall. Addition-
ally, to fully understand composite breakwaters, the same method was used to develop a
composite breakwater. In this paper, the problem of Laplace equation control was solved by
using the eigenfunction expansion approach and the separation of variables technique. The
complete mathematical formulation was given based on the potential flow theory using
the eigenfunction expansion method and Darcy’s law. The conclusions are as follows:

1. The dimensionless wave force and the dimensionless moment acting on the outer
and inner cylinders decrease when the porosity G increases. Although increasing the
porosity can reduce the force and moment acting on the structure, too much porosity
can have an impact on the safety and stability of the structure. Therefore, the porosity
needs to be chosen to have the minimum impact on the outer and inner cylinders.

2. The dimensionless wave force acting on the outer and inner cylinders is smaller in
the case of short waves, and vice versa. Additionally, the selection of larger h2/h1 can
minimize the dimensionless wave force on the composite breakwater to be beneficial
for structural stability. However, for a composite breakwater placed in front of an
impermeable back wall, because of the presence of the impermeable back wall, it is
necessary to select a smaller ratio h2/h1.

3. With the coaxial structure, the oscillation of water waves inside the system space can
slowly destroy the structure. Choosing the right radius ratio a/b reduces the wave
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forces acting on the inner and outer cylinders, and the wave loads can be effectively
controlled.

Finally, the reflection coefficient of the upright wall was not calculated in this paper,
and will be investigated in detail in future studies. Considering the actual situation of
the present study, it is believed that additional research could be performed to better
understand the stability of a composite breakwater when placed in front of an impermeable
back wall. Future investigations considering the role of bottom undulation in the interaction
of waves with a composite breakwater placed in front of an impermeable back wall in the
presence of a porous seabed could be of significant interest.
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