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Abstract: In previous AUV designs, the thrusters were often placed outside the vehicle, resulting
in their performance being significantly influenced by the shape of the vehicle. Additionally, this
placement also leads to the generation of strong radiated noise that propagates in all directions,
making noise reduction challenging. Taking inspiration from the shape of sharks, this paper proposes
a slender, shark-inspired AUV. The model features a continuous passageway in the middle where a
pump-jet thruster is installed to provide propulsion. The walls of the passageway are then covered
with sound-absorbing materials to reduce radiated noise. To address the problem of low design
efficiency caused by multiple design parameters, a multi-objective optimization method is proposed
to optimize the shape of the AUV. The performance targets of speed, displacement, and energy
consumption are determined as objective functions, and a multi-island genetic algorithm is used
as the optimization algorithm to build the multi-objective optimization process. An automated
optimization platform was then developed which integrates parametric modeling, mesh partitioning,
the CFD calculation, and the optimized design. To enhance the efficiency of optimization, a surrogate
model was developed to approximate the CFD calculation. Using the optimal Latin hypercube
method, experimental factors were designed, and a surrogate model was constructed based on the
radial basis function approach. Following optimization, the resistance was reduced by 9.1%, while
the displacement volume was increased by 10.7% and energy consumption was decreased by 6.3%.
By analyzing the velocity and entropy production distribution of the AUV, the effectiveness of the
optimization method was verified.

Keywords: underwater vehicle; bionic design; CFD simulation; multi-objective optimization

1. Introduction

As an important tool to accomplish various underwater tasks, autonomous underwater
vehicles (AUVs) are widely used in military and scientific fields. Low noise and high
endurance are necessities for AUVs to accomplish their intended missions. In terms of
safety, high-intensity noise will affect the operation of the equipment of the navigation
hull, and in the military field, the presence of noise will directly affect the concealment
of the hull and seriously reduce its survivability. In the design of AUVs, endurance is
one of the primary considerations. Resistance is the main cause of energy consumption
and reduced sailing speed, making reducing the resistance of the hull the most intuitive
and effective way to reduce energy consumption and improve endurance. To decrease the
resistance of the hull, automatic optimization design methods have been widely used in
AUV design. When designing AUVs, underwater organisms provide new ideas. Through
hundreds of millions of years of evolution, aquatic organisms have formed unique shapes
and movement characteristics. By imitating the shape, surface texture, swimming style, or
movement of aquatic organisms, the performance of AUVs can be effectively improved.
This biomimetic design method has been widely applied to hull shape, propeller design
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optimization, and other aspects. Therefore, combining natural design ideas with artificial
intelligence can bring more possibilities for future AUV design.

The design of the craft usually considers hydrodynamic performance, range, and sta-
bility. Traditional optimization methods are generally carried out in a series-by-series way.
In sophisticated design workflows, there is a complex coupling between disciplines and the
whole system does not consist of a simple addition or combination of subsystems. There-
fore, optimization methods that take into account the coupling between systems and are
able to integrate the interactions between the various subsystems are crucial. For example,
Zhao et al. [1] employed the reference vector-guided evolutionary algorithm (RVEA) to se-
lect the appropriate influential factors and combined surrogate models with multi-objective
optimization algorithms to address computationally expensive multi-objective problems.
Li et al. [2] divided the AUV system into five sub-disciplines for optimization design,
with the AUV mass and payload as objective functions, and used the MOGA algorithm to
obtain the PATERO solution set. Zhang et al. [3] used collaborative subspace optimization
(CSSO) for the structural design of the vehicle, and the performance of the optimized
model was significantly improved. Wu et al. [4] proposed a hybrid polynomial-based
optimization method to establish Pareto bounds, with the hybrid polynomial consisting of
power functions and trigonometric functions.

Suitable optimization methods provide clear approaches to the optimization of un-
derwater navigational vehicles; however, the selection of optimization algorithms is also
one of the issues that need to be addressed. Optimization algorithms can be divided into
two categories according to the structure of the algorithm. The first category is gradient
optimization algorithms, with the method of feasible directions (MFD), the method of
single-level inequality constraints optimization (MOSI), and sequential quadratic program-
ming (SQP) being the most commonly used. The second category is the global optimization
algorithm, including the multiple island genetic algorithm (MIGA), simulated annealing
algorithm (SA), and particle swarm optimization (PSO). These optimization methods can
obtain the global optimal solution but converge more slowly than gradient optimization
algorithms. In practical engineering problems, the objective function may exhibit multiple
peaks and discontinuities, making it more suitable to employ global optimization algo-
rithms to address such issues (Luo et al. [5]). Bidoki [6] used a particle swarm optimization
algorithm to optimize underwater vehicles. Tian et al. [7] combined back propagation neu-
ral networks (BPNN) and genetic algorithms (GA) to investigate two underwater vehicle
formation layout strategies. Yan et al. [8] proposed a whale algorithm based on perception,
decision-making, and control systems to address the optimal path-planning problem for
AUVs during navigation. The objective of their approach was to enable AUVs to efficiently
avoid hazardous areas while minimizing energy consumption and completing a task in the
shortest possible time.

Another problem that also needs to be taken into account is how to obtain accurate hy-
drodynamic performance of the model. Many researchers use CFD numerical simulations
to evaluate the hydrodynamic performance of AUVs (Fuglestad et al. [9], Inoue et al. [10],
and Safari et al. [11]). Jin et al. [12] designed the fairing section of an autonomous remotely
operated vehicle (ARV) based on simulation results while Sener et al. [13] studied the effect
of changes in the head shape of the model on the overall flow characteristics.

Optimization problems often involve a large number of repetitive calculation pro-
cesses. Integrating the CFD calculation module directly into the optimization process
can significantly reduce efficiency. To improve optimization efficiency, researchers have
proposed using surrogate models to replace the CFD module’s calculation tasks. Surrogate
models are widely used in optimizing designs in fields such as aviation, vehicles, and
ships. Jouhaud et al. [14] optimized the shape parameters of a wing using the optimal
interpolation method based on the Kriging model. Luo et al. [15] employed the radial basis
function method to construct a dynamic surrogate model and optimized the hull form of
an AUV using this optimization scheme. Hu et al. [16] applied the self-adaptive surrogate
ensemble model to the design of AUVs.
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In recent years, researchers have applied bionics to the design of underwater vehicles.
Their inspiration has come from many marine creatures for different design objectives,
such as drag reduction and maneuverability. For example, Ardakani et al. [17] established
a V-shaped groove rib theory with a high Reynolds number based on the surface groove
of shark scales to guide the parameter optimization of surface texture and realize drag
reduction in underwater vehicles. Wang et al. [18] designed a jet-propelled bionic scallop
that imitates the opening and closing of a scallop shell to achieve forward motion. Xu
et al. [19] studied the bionic swim bladder system of underwater animals and found that it
can enhance the maneuverability of robots.

Taking into account speed, endurance, and displacement, this paper applies a multi-
objective genetic optimization algorithm to the shape optimization of the bio-inspired
shark-like AUV proposed by the author. In order to reduce noise, the biologically-inspired
AUV proposed in this paper is equipped with a hollow channel inside its body, and the
propulsion device is built inside the boat to facilitate the laying of sound-absorbing and
vibration-reducing materials to ensure the AUV’s stealthiness. The CFD method is used to
compute the resistance of the AUV. In order to verify the accuracy, the resistance simulation
results of the DAPRA SUBOFF model are compared with publicly available experimental
data first. In Section 3, we describe the parameterization of the proposed shark-inspired
AUV model and determine its influencing factors. Due to the long response time of the
CFD method and considering efficiency and design economics, a surrogate model based on
radial basis functions (RBF) is used. Before establishing the surrogate model, the optimal
Latin hypercube method is used to determine the required experimental matrix, and Isight
is used to build the Fluent automatic calculation platform to obtain the sample point set
to construct the database. In Section 4, the automatic optimization process integrating
3D modeling, mesh pre-processing, CFD result analysis, and the optimization module
on the Isight platform will be introduced. Finally, the flow field information before and
after model optimization will be compared and analyzed to prove the effectiveness of
the optimization.

2. CFD Method

An efficient and accurate method to analyze the hydrodynamic performance of an
AUV is the CFD method. This method has been a research hotspot in the fields of ship and
ocean engineering and has achieved remarkable research results. In this study, FLUENT
software was first used to perform numerical calculations on the bare hull of a DAPRA
SUBOFF. To validate the accuracy of the CFD method, the detailed experimental values
were used for simulations. The external shape of the DAPRA SUBOFF model is shown in
Figure 1. The model has a length of Ls = 4.356 m and a maximum diameter of Ds = 0.508 m.
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2.1. Governing Equations

In the field of turbulence research, numerical simulation methods mainly include
direct numerical simulation (DNS), Reynolds-averaged Navier–Stokes simulation (RANS),
and large eddy simulation (LES). The DNS method can theoretically obtain exact solutions,
but it requires extremely high computational resources and cannot be used for engineering
projects. On the other hand, the prerequisite for using the LES (large eddy simulation)
method is the requirement of a high-precision grid and a significant number of compu-
tational resources. Considering both the computational accuracy and cost, the RANS
equation is used as the governing equation. By performing time averaging on the momen-
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tum conservation equation and continuity equation, the RANS equation can be represented
by the following form:

∂ui
∂xi

= 0 (1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p
∂xi

+ uj
∂

∂xj
(

∂ui
∂xj
− ρu′iu

′
j) + Si (2)

where ui and uj are velocity components and ρu′iu
′
j is the Reynolds stress.

In addition, the RANS equation requires the use of an additional turbulence model
for closure. In this study, the SST k-ω model is chosen as the turbulence model. According
to experimental evidence from researchers, it has been proven that the SST k-ω model
accurately predicts the resistance of a ship (Pena et al. [20], Huang et al. [21]). Won
et al. [22] successfully simulated the propulsion process of a ship using the SST k-ω model,
and the simulation results were consistent with experimental data. The k and ω equations
of the SST k-ω turbulence model are defined as follows.
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where µt is the turbulent viscosity and Pk represents the turbulence production term caused
by the viscous forces:

µt = ρ
α1k

max(a1ω, SF2)
(5)

Pk = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
∂xi
− 2

3
∂uk
∂xk

(
3µt

∂uk
∂xk

+ ρk
)

(6)

2.2. Computational Domain and Meshing

It is crucial to choose a suitable computational domain for the model (Luo et al. [15]
and Hu et al. [23]). Figure 2 shows the computational domain and boundary conditions of
the modal. The distance from the inlet of the computational domain to the top of the head
of the hull is 1Ls, and the distance from the afterbody cap to the outlet of the computational
domain is 2Ls. The fluid domain is set as a column-shaped area with a diameter of 2Ls. The
inlet boundary condition is set as the velocity inlet and the outlet boundary is set as the
pressure outlet. The value of the inflow velocity corresponds to the speed at which the
body travels when moving at a constant velocity. In this validation case, the speed of the
DARPA SUBOFF is set to 3.0455 m/s, and the pressure value at the outlet boundary is set
to 1 atm.
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In order to achieve automatic optimization, an unstructured grid division is adopted
in this study. Following the findings of Hu et al. [16], prism layer elements with a growth
rate of 1.1 are added near the wall surface to maintain a non-dimensional wall distance
(y+) below 5. To effectively manage the number of grid cells, the mesh is generated using
minimum grid sizes of 2.18 mm, 4.36 mm, 6.54 mm, 8.72 mm, and 10.9 mm. Figure 3
illustrates the grid of the entire computational domain, including the surface grid of the
submarine. The grid size gradually increases towards the outer wall of the cylindrical
fluid domain. By utilizing an octree grid generation algorithm, the maximum grid size is
automatically set to 32 times the minimum size. Figure 3b provides an enlarged view of
the submarine’s head and tail.
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CFD simulations are performed on a workstation equipped with a 48-core INTEL(R)
Xeon(R) Platinum 8174 CPU. The resistance for different schemes at a speed of 3.0455 m/s
is shown in Table 1. As the number of grids increases, the resistance value gradually
decreases. The difference in resistance values between Scheme 4 and Scheme 5 is only 0.4%,
but the computation time of Scheme 5 is increased by 96% compared to Scheme 4. In order
to ensure the accuracy of the CFD method, Scheme 4 is selected as the subsequent grid
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partitioning strategy. It should be noted that the minimum size of Scheme 4 is 4.36 mm,
which is approximately one-thousandth of the model length, Ls.

Table 1. Comparison of the drag values using different grid schemes.

Grid Scheme Minimum Size
(mm)

Number of
Grids (104)

Computational
Time (h) Resistance (n)

1 10.9 152 1.2 92.86
2 8.72 283 2.1 91.41
3 6.54 422 3.8 90.93
4 4.36 875 5.3 90.61
5 2.18 1341 10.4 90.42

2.3. Verification

The fourth grid scheme was used for different speeds, and the comparison between
the calculated values and the experimental values (Liu et al. [24]) is shown in Table 2. The
results indicate that the error between the CFD simulated values and experimental values
is within 5%, validating the reliability of the CFD method in simulating ship resistance.

Table 2. Comparison of CFD simulation and experimental values.

V (m/s) CFD (N) Experiment (n) Error

3.0455 90.61 87.4 3.54%
5.1444 240.3 242.2 0.78%
6.0910 329.6 332.9 1.00%
7.1610 447.8 451.5 0.83%
8.2311 576.58 576.9 0.06%

3. Optimal Design Method
3.1. Original Model

In terms of shape, underwater vehicles can be primarily classified into glider-type,
flat fish-shaped, multi-rotor, and cylindrical bodies [25]. Glider-type AUVs utilize net
buoyancy and adjustments in attitude angle to generate propulsion. This design results in
lower energy consumption and stronger endurance, although typically at lower speeds.
The flat fish-shaped AUV’s exterior is advantageous in reducing vertical surface resistance
and facilitates ascent and descent operations. However, it requires complex control systems
and often necessitates the use of multiple thrusters and rudders in combination. Multi-rotor
AUVs offer flexible maneuvering capabilities, but generally experience higher resistance,
resulting in shorter endurance at higher speeds. The slender and rotating body design of
the cylindrical AUV is widely utilized due to its low resistance, stable navigation, and ease
of installation and manufacturing. However, in previous designs, the thrusters were often
placed outside the vehicle, resulting in their performance being significantly influenced by
the shape of the vehicle. Additionally, this placement also led to the generation of strong
radiated noise that propagated in all directions, making noise reduction challenging [26].
Sharks have evolved naturally to effortlessly navigate in the deep sea, making their body
shape a valuable reference for optimizing deep-sea vehicles. This paper proposes a shark-
inspired AUV with a slender shape and built-in thrusters. The initial model is a shark-like
AUV (Figure 4) featuring a continuous passageway with a pump-jet thruster installed inside
to provide propulsion and reduce noise levels by employing sound-absorbing materials.
In the figure, the black dashed line represents the direction of water flow, while the red
dashed line shows the internal flow channels of the AUV. Among them, D1 = D2 = 300 mm
and D3 = 250 mm. Figure 5 shows the outer profile curve of the model. The preliminary
design of the vehicle is divided into three sections: the forebody, the middle body, and the
afterbody. The overall length L is 8 m. The water flows through the propulsion system and
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is ejected at a certain speed from the nozzles to provide power; four wing-shaped devices
are mounted to control the direction.
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To ensure the stability of the AUV during travel, the AUV’s hull features a revolved
body shape at both its bow and stern. The Myring equation is used as a reference to
describe the profile equations of the forebody and afterbody, which are represented by
Equations (7) and (8), respectively. The parameters of the forebody are shown in Figure 6
and the parameters of the afterbody are shown in Figure 7.

r(x) =
1
2

d1

[
1−

(
x− a

a

)2
]1/n

(7)

r(x) =
1
2

d2 −
(

3d2

2c2 −
tan θ

c

)
(x− LA − LB)

2 +

(
d2

c3 −
tan θ

c2

)
(x− LA − LB)

3 (8)

where d1 is the diameter of the forebody; d2 represents the maximum diameter of the
afterbody; the symbols n and θ are used to represent the degree of saturation for the
afterbody and forebody shapes, respectively, with higher values indicating a fuller shape;
and x is the distance from the point on the horizontal axis to the head of the AUV.
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Figure 7. Afterbody lines.

In order to establish the equation of the AUV’s shape line, the coordinate origin is set
at the center point of the left end section, and the coordinates of the important points (Lx
and Bx) and shape angles (α1, β1, α2, and β2) of the external shape are selected as design
variables. Figure 8 shows the top and front views, where the characteristic points of the
hull are represented in three-dimensional coordinates, and the angle of the key lines are
represented in the two-dimensional projection view as vector angles (the angle between
the arrow and the X-axis).
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The critical contour lines of the AUV are defined through a two-dimensional projection
based on a uniform n-th order B-spline curve. The two-dimensional projection function
and its derivatives for these key contour lines are defined as follows:

S(u) =
m

∑
j=0

PjBn
j
(u) = (X(u), Y(u)) =

m

∑
j=0

(
XjBn

j (u), YjBn
j (u)

)
(9)
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S′(u) =
m

∑
j=0

PjB′nj
(u) = (X(u), Y(u)) =

m

∑
j=0

(
XjB′nj (u), YjB′nj (u)

)
(10)

where Pj =
(
Xj, Yj

)
(j = 0, 1, · · ·m), u ∈ [0, 1], Bn

j is the jth B-sample basis function. The
basis function expressions are Equations (11) and (12). The 2nd and 3rd order B-sample
basis functions with three and four control points and their derivatives derived from the
Cox-de Boor formula are shown in Table 3.

B0
j (u) =

{
1
(
u ∈

[
uj, uj + 1

])
0
(
u /∈

[
uj, uj + 1

]) (11)

B0
j (u) =

u− uj

uj+n − uj
Bn−1

j (u) +
uj+n+1 − u

uj+n+1 − uj+1
Bn−1

j (u) (12)

Table 3. The 2nd and 3rd order B-sample basis functions and derivatives.

j B’2
j B’3

j B2
j B’2

j

0 (1− u)3 −3(1 − u)2 (1 − u)2 −2(1 − u)

1 3u(1 − u)2 3(1 − u)2 – 6u(1
− u)

2u(1 − u) 2 – 4u

2 3u2(1 − u) 6u(1 − u) − 3u2 u2 2u
3 u3 3u2 0 0

The 2D projection of the chord in the top view starts from the initial point S0 (0, Bs),
passes through the transition point SX (LX, BX), and ends at the final point S2 (L,0). The
chord is a B-sample curve controlled by four points S0, P1 (XP1,YP1), P2 (XP2,YP2), and S2,
as shown in Figure 9. The chord can be expressed by Equations (13) and (14). By using
the constraint conditions, a system of equations can be formed to solve for the unknown
variables. Similarly, the two-dimensional projection of the chord in the front view, from
the start point through the transition point to the end point, is shown in Figure 10. The
functions are represented by Equations (15) and (16).

sp(u) = B3
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3.2. Surrogate Model and Multi-Objective Optimization Method
3.2.1. Overview of Multi-Objective Optimization Methods

The problem of multi-objective optimization is prevalent in all areas of reality and
focuses on the simultaneous optimization of multiple numerical objectives in specific
environments. In practice, there are limitations to achieving optimal solutions for each
objective simultaneously. The subobjectives are commonly associated with each other and
the optimization of a single objective often leads to a reduction in the performance of the
other objectives. To solve this problem, it is necessary to coordinate various objectives,
aiming to achieve the optimal solution for all sub-objectives as much as possible. The
expression of multi-objective optimization problems can be described in the following
mathematical form:

min y = F(x) = ( f1(x), f2(x), · · · , fm(x)) (17)

subject to : gi(x) ≤ 0, i = 1, 2, · · · , px ∈ D (18)

where x ∈ D ⊂ Rn is the n-dimensional decision variable, x = (x1, x2, . . ., xi), xi denotes the
ith decision variable, D denotes the solution range, fi(x) is the i-th objective component of
the objective function F(x), gi(x)≤ 0 (i = 1, 2, . . ., p), and p denotes the number of constraints.

3.2.2. Design of Experiment

Appropriate experimental design methods can ensure the good spatial accuracy of the
test sample and obtain the highest possible test precision. Commonly used methods include
orthogonal arrays, the full factorial design (FFD), the central composite design (CCD), the
Latin hypercube design (LHD), and the optimal Latin hypercube design (OptLHD). Among
these methods, the optimal Latin hypercube method has the lowest number of sample
points and effective space-filling capability and also shows good balance, which is suitable
for experimental designs with many impact factors. In this study, the OptLHD was used to
reduce the size of the experiment.
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In order to simplify the complexity of the system as well as to speed up the optimiza-
tion, the lengths of the forebody and afterbody are set as constants, and the middle body is
arranged symmetrically along the central axis (i.e., α1 = β1 and α2 = β2). The main parame-
ters affecting the shape of the navigating body include n and θ, the angle (α1) between the
tangent line and the transverse axis at the starting point in the front view, the chord center
coordinates (Lx, Bx), the angle (α2) between the tangent line and the transverse axis at the
starting point in the top view, the chord center coordinates (L’x, B’x), and the maximum
diameters d1 and d2. Subject to the constraints, the feasible domains for each parameter are
summarized in Table 4.

Table 4. Ranges of optimization variables.

Parameter Type Range

v (m/s) Constant 3.0867
LA (mm) Constant 1600
LC (mm) Constant 1600
d1 (mm) Variable (200, 500)
d2 (mm) Variable (500, 650)

n Variable (0.6, 3.0)
θ Variable (0.6, 3.0)

Lx (mm) Variable (1990, 2010)
Bx (mm) Variable (690, 710)

α1 (◦) Variable (150, 170)
L’x (mm) Variable (1990, 2500)
B’x (mm) Variable (300, 350)

α2 (◦) Variable (150, 170)

The number of samples for the experimental design should be appropriately chosen
based on the size and complexity of the problem factors. According to Schmit et al. [27],
the recommended number of experiments required to construct an experimental matrix
using experimental design methods is ((x + 1)(x + 2)/2 + 2x), where x represents the
number of factors. To improve the accuracy of the surrogate model, a total of 100 sample
points were selected in this study. Table 5 displays the first ten sample point sets based
on the Latin hypercube design. Based on the sample point set, a three-dimensional model
with 10 parameter variables was generated and subsequently used for CFD resistance
calculations to establish an approximation model.

Table 5. Latin hypercube design samples.

Sample d1 d2 n θ LX BX α1 L’x B’x α2

1 225.3 532.7 0.6 1 1990.0 697.2 155.6 1996.7 692.6 143.1
2 261.6 502.4 0.624 1 2006.4 708.5 168.5 1999.2 698.7 152.8
3 390.7 624.2 0.648 1 2006.9 692.1 154.1 2005.4 694.1 143.6
4 358.9 582.3 0.672 1.5 1996.2 705.4 159.2 2006.9 703.3 157.4
5 257.2 547.9 0.696 1.5 2008.0 692.6 167.4 1995.1 695.6 148.7
6 285.3 578.5 0.72 1.5 1994.6 706.4 158.7 1998.2 705.4 144.1
7 322.2 621.2 0.744 2 2002.3 703.3 152.6 2003.3 690.0 153.9
8 306.1 599.4 0.768 2 1992.6 693.6 166.4 1991.5 701.8 150.3
9 439.4 521.4 0.792 2 2009.5 707.4 161.3 2001.3 700.3 140.0

10 435.4 622.7 0.816 1 1993.6 697.7 163.3 2008.0 707.4 155.4

3.2.3. Surrogate Model

The choice of an accurate and reasonable agent model directly affects the efficiency
and computational cost of optimization. Commonly used are the response surface model
(RSM), Kriging, orthogonal polynomial, radial basis function (RBF), and random forest
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model. In this study, the RBF model is used for an unknown function, f (x), which can be
expressed as Equation (19).

f (x) =
m

∑
k=1

λi ϕ(‖x− xk‖) (19)

where x is the input variable; λi is the coefficient to be determined for the basis function;
||x − xk|| is the Euclidean norm; and ϕ is the radial basis function. It can be expressed as

ϕ(‖x− xk‖) = e−d2‖x−xk‖2
(20)

By using the RBF (radial basis function) model, it is possible to effectively replace
multidimensional complex problems with one-dimensional problems, which have excellent
approximation performance for higher-order non-linear functions (Wu [28]). If considered
as a sum of weighted functions, the RBF model has weights that depend only on the number
of samples and it is able to allow for the input of outliers, taking the drag (FD), volume V,
and energy consumption (Ne) as variables to establish the respective surrogate models. To
verify the accuracy of the proxy model, the error accuracy was judged using a determinable
coefficient of error R2 (21). The coefficient of determination of FD, V, and Ne are 0.982, 0.976,
and 0.973, respectively.

R2 = 1−

N
∑

i=1
(yi − ỹi)

2

N
∑

i=1
(yi − yi)

2
(21)

4. Shape Optimization of Underwater Vehicles Based on the Intelligent Optimization
Algorithm
4.1. Isight Multi-Objective Optimization Platform

Isight is a powerful computer-aided optimization (CAO) platform that provides a
wide range of algorithms for design optimization. It can automatically run batch files
to drive the simulation process and analyze the simulation values. The user can build a
complete simulation and optimization platform using Isight. In the program, modeling
is complete in UG, automatic meshing is carried out by ICEM, and the mesh file is then
imported into Fluent for numerical simulation. The results of the numerical simulation are
passed to the optimization component which then proceeds to the next simulation process
until the optimization has been completed.

The genetic algorithm (GA) is a versatile global optimization algorithm that is inspired
by the mechanism of genetic reproduction in biological evolution. In this study, the
multi-island genetic algorithm (MIGA), a modification of the GA, which has better global
optimization capabilities and computational efficiency, is applied. In the design of an AUV’s
exterior, the goal is to optimize the shape in order to achieve two objectives: increasing
the payload capacity and minimizing resistance as much as possible. Considering the
resistance, the volume of the hull, as well as the energy consumption, the objective function
to be established is as follows:

Resistance:
minmize : {FD} (22)

Displacement volume:
maxmize : {V} (23)

where FD represents the direct resistance of the hull; V represents the displacement volume
of the hull, which can be obtained directly during the modeling process.

Referring to the mathematical description of the maximum range problem by Song
et al. [29], the energy consumption can be represented as:
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Energy consumption:
Minmize : {Ne} (24)

S.t : 200 mm ≤ d1 ≤ 500 mm 500 mm ≤ d2 ≤ 650 mm 0.5 ≤ n ≤ 3.0 0.5 ≤ θ ≤ 3.0

1990 mm ≤ LX ≤ 2500 mm 500 mm ≤ BX ≤ 550 mm 1990 mm ≤ L′X ≤ 2500 mm

300 mm ≤ B′X ≤ 350 mm 150 ≤ α1 ≤ 170 150 ≤ α2 ≤ 170

which can be expressed as:

Ne =
ρCd ATv3

2ηp
(25)

where Cd is the hull resistance coefficient; AT is the wetted surface area of the hull; and ηp
is the propulsion efficiency and is set as a constant of 0.85.

Figure 11 is the schematic of the optimization platform and the optimization process.
The optimization process consists of four parts: the RSM module, the displacement vol-
ume calculation module, the energy consumption calculation module, and the intelligent
optimization module.
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4.2. Optimization Results

The grid partition strategy required for the CFD calculations is consistent with the
approach described in Section 2.2. It involves utilizing the same minimum size and
boundary layer settings to ensure that the non-dimensional distance near the wall is kept
below 5. Table 6 shows the geometric parameters and results for the initial and optimized
solutions for the AUV. At a speed of 3.0867 m/s, the resistance is reduced from 658 N to
598 N while the displacement volume is increased by 10.7% and the energy consumption is
reduced by 6.3%.

Table 6. Optimization results for the AUV.

Parameters d1
(mm)

d2
(mm) n θ

Lx
(mm)

Bx
(mm) α1

L’x
(mm)

B’x
(mm) α2

FD
(N)

V
(m3)

Ne
(N·m/s)

Initial
scheme 300 825 1.0 3.0 2000 500 150 2000 300 150 658 2.219 3562

Optimized
scheme 383 711 1.9 2.0 2405 524.5 165 2322 335.6 158 598 2.464 3237

Figure 12 shows the pressure distribution cloud maps at the head of the AUV for
different values of n. As the value of n increases, the high-pressure area at the inlet of the
AUV gradually expands. At n = 1.5, the pressure at the inlet section is at its maximum, while
at n = 2, the high-pressure area at the inlet section sharply decreases. This indicates that,
under this particular head shape (n = 2), the streamlining of seawater becomes smoother
after passing through the head.
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Figure 12. The pressure distribution at the forebody.

Figure 13 depicts the streamline distribution of the model’s mid-section, where the
color of the streamlines corresponds to the magnitude of the velocity. In Figure 13a, a
vortex is observed within the region enclosed by the red dashed line. In contrast, Figure 13b
shows that, after optimization, the streamline distribution in that region of the model
becomes more uniform, eliminating the phenomenon of velocity separation. Figure 14
shows the velocity distribution of the flow field in the original and optimized models.
In the original model, there is a clear separation of the velocity boundary layer on the
upper and lower surfaces of the model. Because of this, there is an increase in the pressure
difference between the upper and lower surfaces of the airframe, causing fluid disturbance
around the airframe.
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The energy loss in the flow field can be analyzed indirectly through the velocity
distribution in the flow field, but the exact value and location of the loss cannot be obtained
directly. To address this issue, Kock [30] linked the entropy production based on the second
law of thermodynamics with flow loss, analyzing entropy generation in an incompressible
pipe flow and proposing an equation for calculating the turbulent pulsation entropy
production. Through the entropy production calculation, the flow loss size and specific
location can be intuitively expressed. Under adiabatic conditions, entropy production is
composed of two parts: entropy production caused by time-averaged velocity and pulsation
velocity, and entropy production caused by friction between the fluid and the wall. In
flow fields solved by the Reynolds-averaged equations, the total entropy production is
expressed as Equation (26).

Spro = Spro,D + Spro,D′ + Spro,w (26)

where S
pro,

−
D

is caused by time-averaged velocity, Spro,D′ is caused by pulsation velocity,

and Spro,D′ is caused by wall effect. The calculation formulas are expressed as follows:

(1) Entropy production caused by time-averaged velocity:

Spro,D =
∫

V
S′′′

D
dV (27)

S′′′
D
=

µ

T

[(
∂u
∂y

+
∂v
∂x

)2
+

(
∂u
∂z

+
∂w
∂x

)2
+

(
∂v
∂z

+
∂w
∂y

)2
]

(28)

(2) Entropy production caused by pulsation velocity:

Spro,D′ =
∫

V
S′′′D′dV (29)

S′′′D′ = α
ρωk

T
(30)

(3) Entropy production caused by the wall effect:

Spro,W =
∫

S

τwvp

T
dS (31)
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where τw is the wall shear stress; vp denotes the velocity vector at the center height of the
first layer of the grid; α is 0.09; ω is the specific dissipation rate; and k is the turbulent
kinetic energy.

Figure 15 shows the entropy production distribution of the AUV, which is consistent
with the analysis of the velocity distribution, i.e., due to the boundary layer separation
phenomenon, entropy production exists on the surface of the body, the back of the fin
plate, and the exit of the flow channel in both models. The difference is that the entropy
production of the original model is mainly concentrated at the inlet of the flow channel
and the front of the bottom plate of the middle body. Significantly reduced energy losses
are shown in the bottom plate of the middle body, while a small energy loss occurs at the
flow channel inlet. In the original model, the sum of the total entropy production Spro was
321 W/K. However, after optimization, the total entropy production decreased to 204 W/K,
further confirming the effectiveness of the optimization.
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5. Conclusions

In this paper, a bionic shark sailing body with an internal flow channel is proposed. The
optimal design was carried out with the research objective of designing for low resistance,
high discharge capacity, and low energy consumption. The analysis is concluded as follows:

(1) The hydrodynamic numerical simulation method was determined with the process
of computational domain generation, meshing, and CFD numerical simulation. The
DARPA SUBOFF model was also validated.

(2) The parametric modeling of an underwater vehicle inspired by the shape of a shark
was achieved. Then, the design of the shape combination scheme was carried out by
means of the optimal Latin hypercube method.

(3) Surrogate models for the resistance, displacement volume, and energy consumption
were constructed based on test samples. Then, the automatic optimization platform
was built by Isight and the CFD simulation was replaced by the surrogate model. A
multi-objective genetic algorithm was then used to solve the resistance, displacement
volume, and energy consumption objective functions.

(4) The model’s streamlines, velocity distribution, and entropy production rate were
analyzed, and it was observed that the separation of the boundary layer on the lower
surface of the optimized model improved.

In this study, only variations in the AUV’s shape were considered, without taking into
account the effects of changes in the internal flow channels on resistance. Additionally,
the influence of the accelerating flow from the propulsor on resistance was not considered.
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In future work, variations in the flow channels and the impact of the propulsor will be
taken into account, and the optimized model will be experimentally tested. In addition,
the analysis of maneuverability and seakeeping will be added to the CFD to establish a
mathematical model for a comprehensive hydrodynamic performance evaluation system.
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