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Abstract: Positioning errors introduced by low-precision navigation devices can affect the overall
accuracy of a positioning system. To address this issue, this paper proposes a master-slave multi-AUV
collaborative navigation method based on hierarchical reinforcement learning. First, a collaborative
navigation system is modeled as a discrete semi-Markov process with defined state and action sets
and reward functions. Second, trajectory planning is performed using a hierarchical reinforcement
learning-based approach combined with the polar Kalman filter to reduce the positioning error
of slave AUVs, realizing collaborative navigation in multi-slave AUV scenarios. The proposed
collaborative navigation method is analyzed and validated by simulation experiments in terms
of the relative distance between the master and slave AUVs and the positioning error of a slave
AUV. The research results show that the proposed method can not only successfully reduce the
observation and positioning errors of slave AUVs in the collaborative navigation process but can also
effectively maintain the relative measurement distance between the master and slave AUVs within
an appropriate range.

Keywords: SMDP; AUV; cooperative navigation; hierarchical reinforcement learning; abstract action;
Q-learning

1. Introduction

Automatic underwater vehicles (AUVs) have been widely used in marine science
research and marine engineering and have become an essential tool for marine exploration
and resource development [1,2]. As a collaborative-working tool, multi-AUV systems are
efficient and flexible and can meet the requirements of complex tasks. In a multi-AUV co-
operative navigation system, ensuring the accurate positioning of a slave AUV is crucial for
the entire positioning system’s performance. Currently, multi-AUV cooperative navigation
systems can be roughly classified into parallel and master-slave systems [3–5]. In parallel
systems, all AUVs are equipped with navigation tools with the same precision. Therefore, it
is typically required to invest in expensive high-precision navigation equipment to enhance
the positioning accuracy of the entire formation. In contrast, in the master-slave systems,
AUVs are classified into master and slave AUVs based on the accuracy of their navigation
equipment. This approach ensures the high positioning accuracy of the system while
effectively controlling costs, which makes it the mainstream research direction.

The underwater navigation environment is complex, and navigation sensors are
prone to anomalies. Therefore, enhancing the adaptability of cooperative navigation
algorithms to outliers has become a research hotspot in recent years [6–10]. For instance,
Bai [11] modeled the non-Gaussian noise introduced by sensor outliers as two advanced
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types of mixed distributions. By introducing two Bernoulli random variables, these two
mixed distributions are represented in a hierarchical Gaussian form, designing a robust
Kalman filter based on the mixed distribution. Li et al. [12] proposed a robust multi-AUV
cooperative navigation algorithm based on the student’s extended Kalman filter, which
can dynamically adapt to outliers in process noise and measurement noise. Xu et al. [13]
developed an adaptive noise estimation algorithm based on a covariance matching method,
which can adaptively estimate Gaussian and non-Gaussian measurement and processing
noises. Considering the heavy-tailed measurement noise (heavy-tailed measurement noises)
caused by non-Gaussian measurements in a cooperative positioning system, Sun et al. [14]
designed an innovative maximum entropy variational difference filter based on the divided
difference filter (DDF), which combines the advantages of DDF and the maximum entropy
criterion, which enhances the robustness of the filter; the proposed filter was verified by
lake experiments. Zhang et al. [15] introduced an AUV cluster network navigation accuracy
analysis method based on the Fisher information matrix and demonstrated that using the
information on the entire formation when estimating the position of the following AUV
could improve the positioning accuracy of the following AUV. Chiarella D. [16] designed a
multi-AUV framework, defining a hierarchical work order of AUVs to efficiently complete
cooperative tasks, and proposed a gesture-based UHRI framework to optimize coordination
and communication between AUVs while supporting the other communication methods.

This paper proposes a multi-AUV cooperative navigation method based on a hierar-
chical reinforcement learning-based algorithm for master-slave multi-AUV cooperative
navigation systems. The proposed method divides the entire cooperative navigation task
into two phases, the trajectory planning phase and the navigation processing phase. In the
trajectory planning phase, a master-slave AUV cooperative navigation model is designed,
and the concept of abstract actions is introduced, establishing the semi-Markov decision
process (SMDP) model. Furthermore, a master AUV trajectory planning method based on
the hierarchical model, which can reduce the observation and positioning errors of a slave
AUV, is developed. In the navigation processing phase, the trajectory planning results are
integrated with the Unscented Kalman Filter (UKF), an advanced extension of the Kalman
filtering technique designed for state estimation in nonlinear systems. The UKF operates
by selecting a representative set of sample points, termed sigma points, to approximate
the mean and covariance of nonlinear functions, thereby circumventing the necessity for
linearization. This combination realizes a comprehensive cooperative navigation method
process. Subsequently, navigation simulation experiments are performed in two coopera-
tive navigation scenarios with two slave AUV linear paths and three slave AUV serpentine
search line paths to verify the effectiveness of the proposed method. By introducing a hier-
archical structure and abstract actions, this study decomposes and hierarchically manages
tasks in the main trajectory planning of multiple slave AUVs. This hierarchical structure
can decrease the state space size and reduce the problem complexity, thus improving the
efficiency and speed of problem-solving. Compared with traditional overall planning
methods, the proposed hierarchical method can better handle the complexity of multiple
AUV cooperative navigation tasks.

The rest of this paper is organized as follows. Section 2 analyzes the multi-AUV
cooperative navigation models, including the kinematic model and cooperative navigation
error model, and discusses the observability of a cooperative navigation system. Section 3
presents a multi-AUV cooperative navigation method based on hierarchical reinforcement
learning, explaining related theories of Q-learning and hierarchical reinforcement learning,
and introduces a trajectory planning method based on the hierarchical model. Section 4
simulates and verifies the proposed method, analyzes the simulation results, and explains
the advantages of the proposed method compared to the existing methods. Finally, Section 5
summarizes the paper.
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2. Multi-AUV Cooperative Navigation Model

Based on the number of master AUVs, multi-AUV cooperative navigation systems
can be roughly divided into single- and multi-master multi-slave AUV cooperative navi-
gation systems [17–20]. The former systems are more focused on due to the requirement
for fewer high-precision navigation devices, making them more cost-effective than the
latter systems. Therefore, this study adopts a single-master multi-slave AUV cooperative
navigation method.

2.1. Cooperative Navigation Model

The multi-AUV system’s cooperative navigation processing is illustrated in Figure 1.
As shown in Figure 1, in the multi-AUV cooperative navigation system, AUVs exchange in-
formation through mutual communication for cooperative navigation, which improves the
underwater navigation accuracy of AUVs. Typically, the master AUVs are often equipped
with the integration of real-time data processing units for high precision positioning, while
the slave AUVs are equipped with low-precision, low-cost navigation devices. Master and
slave AUVs communicate and exchange information with each other through various com-
munication devices, such as underwater modems [21]. For instance, in the single-master
AUV and single-slave AUV scenarios, the AUVs communicate at a fixed interval. First, they
measure the relative distance and relative azimuth angle between the AUVs using devices
such as an Ultra-Short Base Line (USBL), which is an underwater acoustical positioning
system employed to ascertain the position of subaqueous objects, such as submarines, au-
tonomous underwater vehicles, or sensors [22]. Then, the master AUV sends information
on its position to the slave AUV through the underwater modem. The slave AUV uses the
received position information and the measured data on the distance and azimuth between
the master and slave AUVs to estimate its current position, correcting the cumulative error
introduced by dead reckoning (DR).
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Before establishing the cooperative navigation model of AUVs, the first step involves
defining the coordinate system. In this study, the North East Down (NED) coordinate sys-
tem, which is a geocentric fixed coordinate system that has been widely used in geographic
information systems and aerospace fields, is used. This system is selected because its defi-
nition is well-suited to address the problem studied in this work. In the NED coordinate
system, the directions of the three axes are defined as directions pointing to the north of the
Earth (N-axis), the east of the Earth (E-axis), and the center of the Earth (D-axis).

After defining the coordinate system, the motion model of a single AUV is established.
Since the sailing depth of an AUV can be accurately measured by depth sensors, and the
roll angle φ and pitch angle θ of the AUV slightly change during stable navigation, this
study selects the eastward position x, northward position y, and heading angle ψ of an
AUV to construct the system’s state vector xk, which is expressed as xk = [xk yk Ψk]

T .
An AUV’s motion model is established in a two-dimensional plane [23,24]. In addition,
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for simplicity of analysis, disturbances such as ocean currents are ignored. Based on the
kinematic characteristics of a vessel, the following kinematic equations are established:

xk+1 = xk + TVk cos ψk
yk+1 = yk + TVk sin ψk
ψk+1 = ψk + Tωk

(1)

where xk+1 and yk+1 are the longitudinal and lateral coordinates of an AUV in the naviga-
tion coordinate system at a time (k + 1); ψk+1 is the yaw angle of the AUV at a time (k + 1);
Vk is the traveling speed of the AUV at a time k; ωk is the yaw rate of the AUV at a time k;
T is the sampling period of the AUV.

In this model, the input measured by a sensor uk is expressed as follows:

uk =

[
Vk
ωk

]
=

[
Vk,m + σV,k
ωk,m + σψ,k

]
= uk,m + wkσψ,k, (2)

where Vk is the velocity of an AUV at a time k; Vk,m is the traveling speed of the AUV
measured by the DVL at a time k; ωk is the angular velocity of the AUV at a time k; ωk,m is
the yaw rate of the AUV measured by a gyroscope at a time k; σV,k is the AUV’s velocity
measurement equipment error at a time k; σψ,k is the AUV’s yaw angle rate measurement
equipment error at a time k.

Combining Equations (1) and (2), the kinematic model of an AUV can be described by:

Xk+1 = f (Xk, uk) = f (Xk, uk,m, wk) = Xk + Ψk(uk,m + wk), (3)

where Ψk =

T cos(ψk) 0
T sin(ψk) 0

0 T

 represents the nonlinear terms in the model.

Next, assume that Q is the system noise covariance matrix; then, it holds that:

Qk = E
{

wkwT
k

}
=

[
σ2

V,k 0
0 σ2

ψ,k

]
. (4)

For a simplified two-dimensional single-master AUV cooperative navigation system,
the measured quantity is the distance between AUVs, which is calculated by:

dk+1 =
√
(xs

k+1 − xm
k+1)

2 + (ys
k+1 − ym

k+1)
2 + σd,k+1, (5)

where xs
k+1 and ys

k+1 represent the position coordinates of a slave AUV at a time (k + 1);
xm

k+1 and ym
k+1 represent the position coordinates of a master AUV at a time (k + 1); σd,k+1

represents the distance measurement error of an acoustic measurement device at a time
(k + 1).

After converting Equation (5) into the matrix form, the measurement equation is
expressed by:

Zk+1 = h(Xk+1) + vk+1, (6)

where vk+1 represents the measurement noise matrix.
Furthermore, assume that R is the covariance matrix of the system’s measurement

noise; then, it holds that:

Rk+1 = E
{

vk+1vT
k+1

}
=
[
σ2

d,k+1

]
. (7)

Through the above-presented analysis, a mathematical model for multi-AUV coop-
erative navigation has been established, providing a theoretical basis for the subsequent
analysis.
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2.2. Observability and Observation Error

To achieve multi-AUV cooperative navigation, the system should be observable,
so it is necessary to analyze the system’s observability. Furthermore, the analysis of
the system’s observability represents the theoretical basis for the cooperative navigation
method proposed in this study. Therefore, this study analyzes the observability of a single-
master AUV cooperative navigation system, conducts the observation error analysis, and
derives the error propagation equation for a multi-AUV cooperative navigation system.
Based on the proof given in [25], the observability of a multi-AUV cooperative navigation
system can be proven. A multi-AUV cooperative navigation system is observable, and the
relationship between the system’s observability and the absolute difference in the azimuth
angle of adjacent distance observations can be demonstrated.

The ultimate goal of cooperative navigation is to reduce cooperative positioning errors.
In view of that, this study analyzes the observation error characteristics of a cooperative
navigation system, providing theoretical guidance for the design of subsequent algorithms.

After an underwater acoustic measurement is performed by an AUV, the positioning
error of the AUV in the direction of the underwater acoustic measurement is ε, and the
positioning error in the direction of the underwater acoustic measurement is ε; then, the
positioning error of the AUV can be expressed as an ellipse error, that is, ε = σ, which is
determined by the measurement accuracy of underwater acoustic measurement equipment
(e.g., USBL). Assume εk and εk are the errors of a slave AUV at a time k; by taking the AUV
position as the origin, the polar equation of the error ellipse can be defined as follows:

r2 =
ε2

kε2
k

ε2
k sin2 β + ε2

k cos2 β
, (8)

where |r| is the modulus length of the error vector from the origin to any point on the
error ellipse, and β is the angle between this error vector and the horizontal axis of the
error ellipse.

After an interval ∆t, at moment k + 1, a slave AUV conducts another acoustic mea-
surement. Since the observation data are one-dimensional distance data, the error can only
be reduced on the vertical axis of the observation direction. As shown in Figure 2, based on
the polar coordinate Equation (8) of the error ellipse, the error propagation equation for
multi-AUV cooperative navigation is given by: ε2

k+1 =
ε2

k ε2
k

ε2
k sin2 γk+1+ε2

k cos2 γk+1
+ ξ · ∆t

ε2
k+1 = ε2

0

(9)

where ξ is the error propagation growth factor, and it is related to the speed measurement
accuracy of a slave AUV’s speed measurement equipment (e.g., DVL); γk+1 =|θk − θk+1| is
the absolute difference in the azimuth angle between two adjacent acoustic measurements;
ε0 is related to the distance measurement accuracy of acoustic measurement equipment.

According to Equation (9), since the observation data only include one-dimensional
distance observation data, the error in the vertical direction of the acoustic measurement
continuously accumulates, so εk > εk. To analyze the error propagation characteristics of
the multi-AUV cooperative navigation further, this study uses different εk and εk to analyze
the relationship between εk+1 and γk+1, as shown in Figure 3.
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In Figure 3, it can be seen that when γk+1 is 90 degrees or 270 degrees, the positioning
error is minimized. The error analysis results are consistent with the aforementioned
observability analysis.

3. Proposed Method
3.1. Cooperative Navigation Method under the Markov Decision Framework

The problems solved by reinforcement learning methods are all modeled based on the
Markov decision process (MDP) [26]. The MDP represents an optimal decision-making
process for dynamic stochastic systems modeled based on the Markov decision theory. The
MDP is expressed as M = (S, A, Pa

ss′ , Ra
s ), whereS represents the state space, A represents

the action space, Pa
ss′ is the state transition matrix, and Ra

s is the reward function. The state
set, action set, and reward function for this research problem considered in this work are
defined as follows:

(1) State Set

The state set should be selected so that it fully describes the system state and is as
concise as possible. A redundant state set can result in both a large number of states to be
learned, consuming a significant number of computational resources, and cause the training
process to not converge. As can be inferred from Equation (9), in a multi-AUV cooperative
navigation system, an AUV’s positioning error is mainly influenced by changes in the
relative distance measurement angle. Therefore, the state set can be defined as follows:
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S =
{

θ̂i
k, d̂i

k

}
, (10)

where θ̂i
k is the relative bearing angle value between the master and slave AUVs, and d̂i

k is
the relative distance measurement value between the master and slave AUVs.

Moreover, to address the problem of a limited dimension, the state values in the state
set need to be discretized;

(2) Action Set

For a multi-AUV cooperative navigation system, the action set can be defined as a
subset of the set obtained after discretizing the heading angle velocity ωm

k of a master AUV,
which can be expressed by:

A ∈ {ωmin, . . . , ωmax}, (11)

where ωmin and ωmax are the minimum and maximum heading angle velocity values the
AUV can achieve, respectively;

(3) Reward Function

The main purpose of introducing a cooperative navigation reward function is to reduce
the positioning error of a slave AUV. Therefore, the theoretical positioning error of the ith
slave AUV at a time k, computed by Equation (9), is considered as a cost Ci

k for an action a
taken by a master AUV:

Ci
k = (εi

k)
2
+ (εi

k)
2
. (12)

However, it is necessary to ensure an appropriate distance between the master and
slave AUVs. This distance should be neither too close, falling below the minimum safety
distance between the two AUVs, nor too far, exceeding the maximum operational range of
underwater communication equipment. Since the trajectory of a slave AUV is pre-planned,
there is no need to consider the distance between slave AUVs. To ensure that a master AUV
always maintains an appropriate distance from a slave AUV during navigation, when the
distance between them is too close or far, a penalty Pi

k is imposed on the master AUV:

Pi
k =


e(c(dmin−di

k)−1), di
k ≤ dmin

0, dmin ≤ di
k ≤ dmax

e(c(d
i
k−dmax)−1), di

k ≥ dmax

, (13)

where c is the penalty coefficient, which is used to control penalty severity.
Combining Equations (12) and (13), the reward for an action a executed by a master

AUV at a time k is obtained by:

Rk = −∑
i
(Ci

k + Pi
k), i = 1, 2, . . . . (14)

3.2. Hierarchical Reinforcement Learning-Based Approach

When analyzing the collaborative navigation in a single-master single-slave AUV
scenario, the master AUV trajectory planning can be undertaken based on the above-
mentioned model. To reduce costs and fully leverage collaborative navigation, this study
adopts a single-master multi-slave configuration. This study extends the trajectory planning
method to multi-slave AUVs and incorporates the concept of hierarchical reinforcement
learning, developing a trajectory planning method based on the hierarchical model and
overcoming the problem of dimensionality in traditional reinforcement learning-based
multi-agent decision-making.
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3.2.1. Q-Learning

The reinforcement learning type used in this study is Q-learning, and the proposed
algorithm represents an offline control method of temporal differences. The topology of the
proposed algorithm is shown in Figure 4.
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The Q-learning algorithm considers a state S′ and uses the greedy method to directly
select A′; namely, the maximum action a is selected to update the value function Q(S′, a),
which is expressed by:

Q(S, A)← Q(S, A) + α[R + γmax
a

Q(S′, a)−Q(S, A)]. (15)

Upon completing training, the action-value function for a slave AUV, denoted by
Q∗, is acquired. When a master AUV’s state is initialized, optimal actions are continually
selected and executed according to Equation (8) until the navigation process ends, resulting
in the planned trajectory of the master AUV.

a∗ = argmax
a′∈A(s)

Q∗(s, a′), s ∈ S (16)

3.2.2. Abstract Actions

In traditional reinforcement learning, actions are perceived as instantaneous, only
spanning a single timestep, and these actions are labeled as primitive actions. However, in
a hierarchical model, actions can span multiple timesteps, and such macro-level actions are
called abstract actions. Abstract actions denote policies that combine sequences of low-level
actions into a singular, high-level action. The aim is to simplify the decision-making process
for agents, reduce the number of actions they must consider, and enable policy optimization
at a more abstract level.

3.2.3. Semi-Markov Decision Process

Introducing abstract actions leads to the formation of a model known as SMDP. The
difference between the MDP and the SMDP is illustrated in Figure 5, where the top curve
shows the state transitions in the MDP, where each state is separated by a uniform timestep,
and the bottom curve represents the SMDP state transition, where there are abstract actions
spanned by multiple timesteps.
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Figure 5. Illustration of the MDP and SMDP.

The SMDP can be defined by a tuple {S, A, P, R}. The primary difference between
the SMDP and the MDP is that in the SMDP, actions within a set A have a duration τ.
The transition probability matrix elements in P are defined by the conditional probability
as follows:

p(s′, r
∣∣s, o, τ) = Pr

{
St = s′

∣∣St−1 = s, At−1 = o
}

. (17)

The reward for an abstract action a is defined as an accumulated reward obtained over
its duration. Typically, a discount factor γ is also incorporated as follows:

r(s, o, s′, τ) = E[
τ−1

∑
i=0

γiRt+i+1|St+i = s, At+i = o]. (18)

3.3. Trajectory Planning Method Based on the Hierarchical Model

Following the aforementioned hierarchical reinforcement learning theories, the trajec-
tory planning task of a master AUV in a multi-slave AUV scenario is stratified. The specific
task hierarchy is presented in Figure 6.
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Above, abstract actions are symbolized by o, ranging from one to n and representing
the number of slave AUVs. Each abstract action’s duration is set to τ, which is equivalent
to the total task time. The overarching objective of a master AUV’s trajectory planning
is to minimize the cumulative localization errors of slave AUVs. Therefore, each slave
AUV’s positioning error becomes a state of the present system. Based on Equation (10), the
system’s state set is defined by:

S =
{

θ̂i
k, d̂i

k, εi
k

}
, k = 0, τ, 2τ, 3τ, . . . , (19)

where k is an integer multiple of τ; θ̂i
k represents the relative azimuth measurement value

of the ith slave AUV to the master AUV at a time k; d̂i
k represents the relative distance

measurement value of the ith slave AUV to the master AUV at a time k; εi
k is the theoretical

localization error of the ith slave AUV at a time k, and it is defined by Equation (9).
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During the first-tier training, a unique optimal abstract action is designed for each slave
AUV within the collaborative navigation system. This action minimizes the localization
error of the particular slave AUV, and its duration is fixed at τ. After incorporating abstract
actions, the action set becomes:

A ∈ {o, ωmin, . . . , ωmax}, (20)

where o ∈ {1, 2, . . . , n} is a set of abstract actions, whose values correspond to the slave
AUV numbers.

Each abstract action is accomplished through a sequence of primitive actions, specif-
ically altering the master AUV’s course angle velocity or navigation speed. A detailed
analysis has revealed that each abstract action’s duration represents a standard MDP, and
its state space Si is a subset of S, which is defined by:

Si =
{

θ̂i
k, d̂i

k

}
. (21)

The reward for an abstract action represents a cumulative reward of its internal
primitive actions. Thus, the reward generated by the change in the relative measurement
angle of the ith slave AUV when the master AUV executes an abstract action o for a duration
τ at a time k is calculated by:

Ri
k+τ = −

τ−1

∑
t=0

(Ci
k+t + Pi

k+t), k = 0, τ, 2τ, 3τ, . . . . (22)

The total reward is obtained by:

Rk+τ =
n

∑
i=1

Ri
k+τ =

n

∑
i=1

{
−

τ−1

∑
t=0

(Ci
k+t + Pi

k+t)

}
, k = 0, τ, 2τ, 3τ, . . . . (23)

In the hierarchical model, each tier requires a decision-making strategy for the hierar-
chy to make appropriate choices. Since every abstract action represents a standard MDP,
the decision-making policy inside an abstract action can be attained through Q-learning
training. During the learning process, the master AUV conducts individual training for
each slave AUV’s trajectory, resulting in the corresponding action-value functions. The cor-
responding basic actions can be inferred from the action-value functions until the abstract
action concludes, resembling the single slave AUV process, which can be expressed by:

a∗ = argmax
a′∈A

Q∗,i(s, a′), s ∈ S. (24)

The overarching task’s decision-making strategy determines which of n obtained
abstract actions should be performed. Given a limited number of slave AUVs in a single-
master collaborative navigation system (typically 2–4), the general decision-making strategy
is directly established using human logic and intuition. At every decision point, the master
AUV should prioritize navigation for the slave AUV with the largest theoretical localization
error. Accordingly, the selected abstract action should correspond to the AUV with the
smallest reward as the initial condition for subsequent training:

ok = argmin
i

Ri
k. (25)

The specific steps of the proposed collaborative navigation method for a single-master
multi-slave scenario are as follows:

(a) Designate the trajectories and relevant parameters for slave AUVs;
(b) For each slave AUV, use Equation (10) to determine the discretized system state set

and Equation (11) to obtain the discretized action set Ai;



J. Mar. Sci. Eng. 2023, 11, 1863 11 of 21

(c) Use the Q-learning algorithm to train the master AUV for each slave AUV; compute
the instantaneous reward of the master AUV’s actions using Equation (14), and
eventually, obtain optimal action-value functions;

(d) Initialize the state of the master AUV, partition the sub-navigation processes, and
randomly select one slave AUV along with its corresponding optimal action-value
function Qi;

(e) Use Equation (16) to select and execute an optimal action. For each slave AUV,
compute the action’s cost value C and calculate the total cost;

(f) Repeat Step (e) until the sub-navigation process concludes, obtaining the total cost
value for each slave AUV. Thereafter, select the AUV with the highest cumulative cost
value for the next sub-navigation process;

(g) Upon the completion of the final sub-navigation process, obtain the planned trajectory
for the master AUV;

(h) The master AUV and multiple slave AUVs navigate according to their designated
trajectories. Periodically, the master and slave AUVs acoustically communicate and
measure distances between each other. The slave AUVs correct cumulative errors re-
sulting from their navigation system outputs and perform the UKF filtering algorithm
on the master AUV’s position data, relative distance measurement information, and
their own navigation data.

The trajectory planning method based on the hierarchical model establishes a layered
model by decomposing the state space. This method eliminates non-critical states, transi-
tioning the state space’s growth from exponential to approximately linear, thus avoiding
the problem of dimensionality and accelerating the solution process.

In a multi-AUV collaborative navigation system, continuous motion trajectories are
segmented into fixed-interval waypoints after temporal discretization. These waypoints
denote nodes where the master and slave AUVs acoustically communicate. At a time t1, the
master AUV acoustically communicates with two slave AUVs and measures their relative
distances and azimuth angles. Based on these measurement data, the current system state is
ascertained as shown in Figure 7. Then, the master AUV selects an optimal action a∗ based
on the learned optimal action-value function, transitioning the system state to S′. This
process is reiterated at each subsequent acoustic communication node, finally determining
the master AUV’s best trajectory.
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4. Simulation Experiments
4.1. Algorithm Simulation Analysis

The simulation experiment was conducted using a cooperative navigation scenario
with a single master AUV and two slave AUVs. The efficiency of the proposed trajectory
planning method was analyzed for multiple slave AUVs using the changes in relative
distance and the theoretical error calculated by Equation (9) as metrics. Initially, two slave
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AUVs’ trajectories with a uniform linear motion were defined. Slave AUV1 started from
the origin (0, 0) and moved northward at a speed of 1.5 m/s, whereas slave AUV2 began
from the point (150, 0) and proceeded northward at the same speed of 1.5 m/s. The master
AUV embarked from the starting point (50, 50) following the trajectory planned by the
proposed method at a speed of 2 m/s. The navigation duration was set to 4000 s, and
acoustic measurements between the master and slave AUVs were performed every 10 s.
Each abstract action lasted for 200 s, and the maximum number of training iterations was
set to 1000.

In the training of the two slave AUVs with respect to the master AUV, the variations
in the cost introduced by changes in the observation angle are illustrated in Figure 8.
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Figure 8. The changes in the cost value induced by the observation angle variations during the
training process.

As shown in Figure 8, after approximately 500 training iterations, the cost value
attributed to the observation angles gradually stabilized and eventually converged to its
minimum value. After training, the state value function for each slave AUV was obtained.
Subsequently, the action selection was performed using the decision-making approach
based on hierarchical reinforcement learning. The resulting trajectory of the master AUV is
depicted in Figure 9.
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In Figure 9, the red curve represents the trajectory of the master AUV, and the blue
and yellow curves correspond to the trajectories of slave AUV1 and AUV2, respectively.
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During the navigation period, the master AUV continuously maneuvered to minimize the
localization errors of the two slave AUVs. The changes in the relative distance between the
master AUV and the two slave AUVs during the entire travel are shown in Figure 10.
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As shown in Table 1, the master AUV maintained an appropriate distance from both
slave AUVs during the navigation period. The changes in the theoretical localization error
of the slave AUVs, calculated by Equation (9), are shown in Figure 11.

Table 1. Relative distance statistics between the master and slave AUVs.

Slave AUV Maximum Distance
(m)

Minimum Distance
(m)

Average Distance
(m)

AUV1 410.096 15.387 223.938
AUV2 315.016 86.083 192.137
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Statistical data on the theoretical localization errors of the slave AUVs are presented in
Table 2.
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Table 2. Theoretical localization error statistics of the two slave AUVs.

Slave AUV Maximum Distance
(m)

Minimum Distance
(m)

Average Distance
(m)

AUV1 5.950 1.737 4.271
AUV2 5.174 2.497 3.836

Based on the data presented in Table 2, the theoretical localization errors of the two
slave AUVs were very close during the entire navigation period. This indicated that
the trajectory of the master AUV could effectively consider both slave AUVs, efficiently
reducing their localization errors. In this experiment, the state set size generated by each
slave AUV was 180, which resulted in a total of 360 states of the two slave AUVs. Therefore,
directly solving this problem using the Q-learning-based method could result in a state set
size of 32,400. However, using the trajectory planning method based on the hierarchical
model could reduce the state set size by 90 times, thus reducing the time and storage
space consumption.

In uniform trajectory planning, the selection of the master AUV’s speed is crucial for
error control. Namely, using an inappropriate speed might cause the training process to
diverge. Therefore, a flexible method is needed to adjust the speed of the master AUV in
real-time. A variable-speed trajectory planning method allows a master AUV to change
its navigation speed within a certain range in real-time. This not only allows better error
control but also avoids training process divergence due to inappropriate speed selection.

The two subsets of the action set were defined as follows:{
A1 ∈ {ωmin, . . . , ωmax}
A2 ∈ {vmin, . . . , vmax}

(26)

where A1 is the action set after discretizing the yaw angle speed; A2 is the action set after
discretizing the navigation speed; ωmin and ωmax denote the minimum and maximum
yaw angle speeds of the master AUV, respectively; vmin and vmax are the minimum and
maximum navigation speeds of the master AUV, respectively.

The final action set was obtained as a Cartesian product of the two action sets
as follows:

A = A1 ×A2. (27)

4.2. Simulation Parameter Settings

Based on the previous analysis results, the navigation equipment parameters of the
master and slave AUVs were set, as shown in Table 3:

Table 3. Parameters of the master and slave AUVs.

Parameter Master AUV Slave AUV

Speed measurement noise (m/s) 0.5 1.5
Angle speed measurement noise (rad/s) 0.1 0.5

Acoustic measurement noise (m) 8 8
Acoustic measurement period (s) 10 10

Based on the parameters’ values presented in Table 3, the navigation equipment mea-
surement accuracy of the slave AUV was relatively poor. This was because the slave AUVs
had equipment with a lower accuracy to achieve cost reduction. Then, the cooperative
navigation algorithms were used to reduce their localization errors.

To use the Q-learning algorithm for trajectory planning for the master AUV, the
relevant state quantities were discretized to obtain discrete state and action sets. The action
quantity was obtained by Equation (10), and the state quantity discretization parameters
are given in Table 4.
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Table 4. The state quantity discretization parameters.

Action and State Discrete Quantity Number

Distance measurement azimuth angle (◦) [0, 10), [10, 20), . . ., [350, 359) 36

Relative distance (m) [0, 100), [100, 300), [300, 600)
[600, 900), [900, ∞) 5

As shown in Table 4, the relative distance measurement azimuth angle between the
master and slave AUVs was discretized into thirty-six intervals of 10◦, each of which
considered one state. The minimum distance between the master and slave AUVs was set
to 100 m, and their maximum distance, which was obtained based on the effective range of
the acoustic measurement equipment, was 900 m, and there were a total of five states.

The action of the master AUV was the yaw rate. Considering that the actual AUV’s
maximum yaw rate was 0.08 rad/s and the maximum speed was 2.5 m/s, the yaw rate
action set A1 was selected as follows:

A1= [−0.08,−0.05,−0.03, 0.00,−0.03,−0.05, 0.08]. (28)

Similarly, the speed action set A2 was defined as:

A2= [1, 1 .5, 2, 2 .5]. (29)

The reward function during the Q-learning algorithm training process was given by
Equation (14), and its parameters are given in Table 5.

Table 5. The reward function parameters.

Parameter Symbol Value

Error propagation factor ξ 0.1
Acoustic measurement accuracy ε0 1

Punish coefficient c 0.06

By using the parameters in Table 5, the Q-learning algorithm-related parameters were
determined. These parameters mainly included the learning step size, decay factor, and
exploration rate, and their values are presented in Table 6.

Table 6. The Q-learning algorithm parameters.

Parameter Symbol Value

Study step α 0.015
Decay factor γ 0.9

Exploration rate ε 0.1

Next, the UKF filter parameters were set, as shown in Table 7.

Table 7. The navigation simulation experimental parameters.

Speed Measurement
Noise (m/s)

Angle Speed
Measurement Noise

(Rad/s)

Acoustic
Measurement Noise

(m)

Master AUV N(0, 0.52) N(0, 0.12)
N(0, 82)Slave AUV N(0, 1.52) N(0, 0.52)

As shown in Table 7, the selected master AUV-related measurement noise was small;
namely, based on the actual situation of a cooperative navigation system, the master AUV
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was equipped with high-precision, high-cost navigation equipment. In contrast, the slave
AUVs had low-precision, low-cost navigation equipment, so their measurement noise was
large. Finally, the master and slave AUVs used the same acoustic measurement equipment,
so their acoustic measurement noises were the same. All of the above-presented noises
were zero-mean Gaussian white noise.

4.3. Trajectory Planning Analysis

After setting the simulation parameters, a simulation experiment was performed in
the cooperative navigation scenario with one master AUV and three slave AUVs. The
trajectories of the three slave AUVs were all serpentine search curves. Based on the experi-
mental results, the performance of the proposed method for the cooperative navigation
system with multiple slave AUVs was analyzed using the curve routes.

First, the trajectory planning process was conducted. The three slave AUVs started
from the points (−250, 0), (0, 0), and (250, 0) and performed a uniform linear motion with a
navigation speed of 1.5 m/s. The simulation time was 4000 s. The master AUV used the
hierarchical reinforcement learning trajectory planning method with a navigation speed of
2.5 m/s, and the maximum number of training epochs was set to 1000.

After 1000 training epochs, the cost changes caused by the observation angle changes
were calculated, as shown in Figure 12.
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As shown in Figure 12, after about 30 training epochs, the cost caused by the obser-
vation angle changes gradually converged to the minimum value. During the training
process, the master AUV continuously explored new decisions, so the cost value fluctuated.
After the training was completed, the action-value function table was obtained, and then
the master AUV trajectory was planned, as shown in Figure 13.

For the trajectories presented in Figure 13, the relative distance changes between the
master and slave AUVs are shown in Figure 14.

As displayed in Figure 14, the maximum distance between the master AUV and slave
AUV1 was 406.35 m, with an average value of 191.33 m; the maximum distance between
the master AUV and slave AUV2 was 625.29 m, with an average value of 305.31 m; and
the maximum distance between the master AUV and slave AUV3 was 596.52 m, with an
average value of 297.65 m. During travel, the distance between the master and slave AUVs
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always remained within the maximum operational distance of the acoustic communication
equipment of 900 m.
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The theoretical localization error changes of the slave AUVs during travel are shown
in Figure 15.
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As displayed in Figure 15, the minimum theoretical error of the three slave AUVs
at the start of the navigation process was 2.84 m. As the navigation process progressed,
the theoretical localization errors of the three slave AUVs continuously increased, finally
stabilizing at approximately 3.5 m. This indicated that the trajectory of the master AUV
could meet the observable conditions and keep the theoretical localization error of the slave
AUVs bounded.

4.4. UKF Filtering Analysis

The trajectories of the slave AUVs’ direct dead reckoning are presented in Figure 16.
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Figure 16. The three slave AUVs’ dead reckoning trajectories.

As illustrated in Figure 16, as the navigation process progressed, the dead reckoning
trajectories of the slave AUVs gradually deviated from their actual curves. Among the three
slave AUVs, the trajectory deviation of slave AUV1 was the most significant. Furthermore,
the dead reckoning errors of the three slave AUVs mainly manifested in the Y-axis direction.
To analyze the proposed method further, this study conducted 100 navigation simulation
experiments, and the positioning error statistical data are shown in Table 8.

Table 8. The DR navigation test error statistical results.

Slave AUV

Average RMS Error
Average Relative Error

(m)X-Axis Distance
(m)

Y-Axis Distance
(m)

AUV1 22.20 184.46 322.04
AUV2 21.47 183.44 315.18
AUV3 22.27 179.80 314.63

Based on the results in Table 8, the positioning error mainly originated from the error
in the Y-axis direction. This was because the displacement of the slave AUVs in the Y-axis
direction was longer. However, after using the UKF filtering algorithm for cooperative
navigation, after one navigation calculation, the trajectories of the master and slave AUVs
were recalculated, as shown in Figure 17.

The positioning errors of the slave AUVs during the navigation period in the naviga-
tion test are shown in Figure 18.

As shown in Figure 18, in this navigation experiment, when only relying on dead
reckoning, the positioning errors of the slave AUVs continuously grew and diverged
after the start of navigation. At the end of the navigation process, the errors reached
their maximum values. The maximum positioning errors of the three slave AUVs were
1058.16 m, 1058.46 m, and 1076.43 m. After using the UKF algorithm in the navigation
calculation, the errors of the three slave AUVs could stabilize within a certain range. The
positioning errors showed a significant fluctuation at a time of approximately 2800 s during
navigation. During the navigation period, the maximum positioning errors of the three
slave AUVs were 361.92 m, 394.55 m, and 360.73 m, respectively, with average values of
252.42 m, 240.16 m, and 239.24 m, respectively.
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Next, statistical data were obtained after 100 navigation simulation experiments to
analyze the proposed method further, and the obtained results are shown in Table 9.

Based on the results in Table 9, the positioning errors of the three slave AUVs mainly
originated from the error in the Y-axis direction, this can be considered as the result of
the combination of the cumulative error and the aforementioned elliptic error. Compared
to the results obtained when solely relying on dead reckoning, after using the proposed
method, the positioning errors were reduced by approximately four times. This indicated
that applying the proposed method could significantly reduce the positioning error of the
slave AUVs, thereby enhancing the positioning performance of the multi-AUV cooperative
navigation system.



J. Mar. Sci. Eng. 2023, 11, 1863 20 of 21

Table 9. The UKF navigation error statistics.

Slave AUV

Average RMS Error
Average Relative Error

(m)X-Axis Distance
(m)

Y-Axis Distance
(m)

AUV1 15.75 46.35 80.37
AUV2 16.45 51.60 94.32
AUV3 14.59 48.64 80.51

5. Conclusions

Considering a master-slave multi-AUV cooperative navigation system, this paper
proposes a multi-AUV cooperative navigation method based on hierarchical reinforcement
learning. The proposed method adopts a single-master multi-slave structure. The trajec-
tories of the slave AUVs are pre-planned according to the navigation task requirements.
The algorithm then plans the trajectory for the master AUV, reducing the observation and
positioning errors of the slave AUVs. The proposed method divides the entire coopera-
tive navigation process into two parts, the trajectory planning process and the navigation
calculation process. In the trajectory planning process, the MDP model of the cooperative
navigation problem is constructed, and the abstract actions of the single-master multi-slave
AUV cooperative navigation system are defined. Based on the hierarchical reinforcement
learning-based algorithm, a trajectory planning method for the master AUV is designed. In
the navigation calculation process, the trajectory planning results are combined with the
UKF filtering method to realize a complete cooperative navigation method process. The
proposed method is verified by navigation simulation experiments using two different co-
operative navigation scenarios. By introducing a hierarchical structure and abstract actions,
the proposed method achieves task decomposition and hierarchical management during
the trajectory planning phase of multiple slave AUVs. Using the hierarchical structure
effectively reduces the planning complexity of the master AUV, and abstract actions de-
crease the size of the state space, making the cooperative navigation system more efficient
and flexible. The proposed hierarchical approach better addresses the complexity and
large-scale problem of multi-AUV cooperative navigation tasks, significantly improving the
performance and task completion quality of the multi-AUV cooperative navigation system,
which is proposed for the first time in related researches, and has excellent performance in
multi-AUV cooperative navigation problems. In addition, the proposed method also has a
certain degree of adaptability to outliers, making the multi-AUV cooperative navigation
system more robust and stable in complex underwater environments.
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