Null Broadening Beamforming for Passive Sonar Based on Weighted Similarity Vector
Abstract
:1. Introduction
2. Signal Model
3. Proposed Algorithm
3.1. Similar Vector Estimation
3.2. Null Broadening
3.3. Establishment and Solution of Objective Function
Algorithm 1: Proposed Algorithm Steps | |
step1: | Calculate the similarity vector using Formulas (12) and (14); |
step2: | Reconstruction of interference-plus-noise covariance matrix according to Formulas (17) and (19); |
step3: | Introduce a new variable to transform problem (21) into problem (22); |
step4: | Construct semidefinite matrix to transform problem (22) into standard SDP problem; |
step5: | Judge the rank of , If , calculate according to ; Otherwise, skip to step 6; |
step6: | Calculate using Formula (25); |
step7: | Calculate . |
4. Simulation Analysis
4.1. Performance Comparison between the Proposed Algorithm and Other Algorithms
4.1.1. Beampattern Effect in Ideal State
4.1.2. Output SINR Performance in Ideal State
4.1.3. Output SINR Performance under Amplitude and Phase Disturbance Errors
4.1.4. Output SINR Performance with Array Element Position Error
4.2. Effect of Different Parameters on the Performance of the Proposed Algorithm
4.2.1. Effect of Parameter ε on Beamformer Performance
4.2.2. Effect of Nulling Width on Beamformer Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.; Yu, D.; Cheng, L. Iterative robust Capon beamforming. Signal Process. 2016, 118, 211–220. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, A.; Yang, Q. Robust adaptive beamforming based on conjugate gradient algorithms. IEEE Trans. Signal Process. 2016, 64, 6046–6057. [Google Scholar] [CrossRef]
- Tian, Z.; Bell, K.L.; Van Trees, H.L. A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Trans. Signal Process. 2001, 49, 1138–1145. [Google Scholar] [CrossRef]
- Huang, J.; Su, H.; Yang, Y. Robust adaptive beamforming for MIMO radar in the presence of covariance matrix estimation error and desired signal steering vector mismatch. IET Radar Sonar Navig. 2020, 14, 118–126. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, C.; Zhu, J.; Huang, X. Robust beamforming for wideband array based on spectrum subspaces. IET Radar Sonar Navig. 2020, 14, 1319–1327. [Google Scholar] [CrossRef]
- Liu, J.; Xie, W.; Gui, G.; Zhang, Q.; Zou, Y.; Wan, Q. Adaptive beamforming algorithms with robustness against steering vector mismatch of signals. IET Radar Sonar Navig. 2017, 11, 1831–1838. [Google Scholar] [CrossRef]
- Zatman, M.; Guerci, J.R. Comments on “Theory and application of covariance matrix tapers for robust adaptive beamforming” [with reply]. IEEE Trans. Signal Process. 2000, 48, 1796–1800. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, D.; Wang, W.; Wang, L.; Wu, R. A high-dynamic null-widen GPS anti-jamming algorithm based on statistical model of the changing interference DOA. In Proceedings of the China Satellite Navigation Conference (CSNC) 2014, Nanjing, China, 21–23 May 2014; Springer: Berlin/Heidelberg, Germany, 2014; Volume I. [Google Scholar]
- Qian, J.; He, Z.; Xie, J.; Zhang, Y. Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint. EURASIP J. Adv. Signal Process. 2017, 1, 1. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Long, T.; Sarkar, T.K. Adaptive null broadening method in wideband beamforming for rapidly moving interference suppression. Electron. Lett. 2018, 54, 1003–1005. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Ye, Q.; Yang, B. Adaptive antenna null broadening beamforming against array calibration error based on adaptive variable diagonal loading. Int. J. Antennas Propag. 2017, 2017, 3265236. [Google Scholar] [CrossRef]
- Liu, F.; Wu, Y.; Duan, H.; Du, R. SVR-CMT algorithm for null broadening and sidelobe control. Prog. Electromagn. Res. 2018, 163, 39–50. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Kukrer, O. Robust adaptive beamforming for fast moving interference based on the covariance matrix reconstruction. IET Signal Process. 2019, 13, 486–493. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, S.; Zhang, G.; Jiao, B. Robust adaptive beamforming for sidelobe canceller with null widening. IEEE Sens. J. 2019, 19, 11213–11220. [Google Scholar] [CrossRef]
- Amar, A.; Doron, M.A. A linearly constrained minimum variance beamformer with a pre-specified suppression level over a pre-defined broad null sector. Signal Process. 2015, 109, 165–171. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, S.; Zhang, G. Flexible robust adaptive beamforming method with multiple separately widened nulls. Electron. Lett. 2020, 56, 957–959. [Google Scholar] [CrossRef]
- Yang, J.; Lu, J.; Liu, X.; Liao, G. Robust null broadening beamforming based on covariance matrix reconstruction via virtual interference sources. Sensors 2020, 20, 1865. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, W.; Du, Y.; Ba, B.; Quan, M. Null Broadening Robust Adaptive Beamforming Algorithm Based on Power Estimation. Sensors 2022, 22, 6984. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Y. Data-based model for wide nulling problem in adaptive digital beamforming antenna array. IEEE Antennas Wirel. Propag. 2019, 18, 2249–2253. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Sun, Y.; Long, T.; Sarkar, T.K. Robust wideband adaptive beamforming with null broadening and constant beamwidth. IEEE Trans Antennas Propag. 2019, 67, 5380–5389. [Google Scholar] [CrossRef]
- Yang, B.; Li, W.; Li, Y.; Zhang, Q. Robust adaptive null broadening beamforming based on subspace projection. Int. J. Electron. 2023, 110, 184–198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Z. Null Broadening Beamforming for Passive Sonar Based on Weighted Similarity Vector. J. Mar. Sci. Eng. 2023, 11, 1858. https://doi.org/10.3390/jmse11101858
Wang Y, Zhang Z. Null Broadening Beamforming for Passive Sonar Based on Weighted Similarity Vector. Journal of Marine Science and Engineering. 2023; 11(10):1858. https://doi.org/10.3390/jmse11101858
Chicago/Turabian StyleWang, Yuhao, and Zhenkai Zhang. 2023. "Null Broadening Beamforming for Passive Sonar Based on Weighted Similarity Vector" Journal of Marine Science and Engineering 11, no. 10: 1858. https://doi.org/10.3390/jmse11101858
APA StyleWang, Y., & Zhang, Z. (2023). Null Broadening Beamforming for Passive Sonar Based on Weighted Similarity Vector. Journal of Marine Science and Engineering, 11(10), 1858. https://doi.org/10.3390/jmse11101858