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Abstract: The continuous advancement within the offshore wind energy industry is propelled by the
imperatives of renewable energy generation, climate change policies, and the zero-emission targets
established by governments and communities. Increasing the dimensions of offshore wind turbines
to augment energy production, enhancing the power generation efficiency of existing systems,
mitigating the environmental impacts of these installations, venturing into deeper waters for turbine
deployment in regions with optimal wind conditions, and the drive to develop floating offshore
turbines stand out as significant challenges in the domains of development, installation, operation,
and maintenance of these systems. This work specifically centers on providing a comprehensive
review of the research undertaken to tackle several of these challenges using machine learning and
artificial intelligence. These machine learning-based techniques have been effectively applied to
structural health monitoring and maintenance, facilitating the more accurate identification of potential
failures and enabling the implementation of precision maintenance strategies. Furthermore, machine
learning has played a pivotal role in optimizing wind farm layouts, improving power production
forecasting, and mitigating wake effects, thereby leading to heightened energy generation efficiency.
Additionally, the integration of machine learning-driven control systems has showcased considerable
potential for enhancing the operational strategies of offshore wind farms, thereby augmenting their
overall performance and energy output. Climatic data prediction and environmental studies have
also benefited from the predictive capabilities of machine learning, resulting in the optimization of
power generation and the comprehensive assessment of environmental impacts. The scope of this
review primarily includes published articles spanning from 2005 to March 2023.

Keywords: offshore wind; offshore energy; wind farm; wind turbine

1. Introduction

The progression of machine learning (ML) techniques and artificial intelligence has
left an impact on various fields of science and engineering. It has influenced everything
from the initial stages of discovery and ideation to the implementation of previously
established methods and the presentation of results. The field of offshore renewable
energy stands as no exception to these advancements. As governments and communities
around the world drive for an increase in renewable energy generation, the challenges
related to augmenting the capacity of current systems and constructing more efficient and
environmentally friendly infrastructures have become more urgent. This “race” to achieve
these objectives has elevated the significance of ML in this field. Particularly, ML techniques
function as a set of tools that can render the processes of design, optimization, development,
implementation, and maintenance more cost-effective and expedited.

This work is centered around delivering a comprehensive review of the diverse
ML methods employed in the offshore wind energy industry, along with the specific
applications that have been targeted for these implementations. The objective is not
merely to offer succinct descriptions of each study, but also to provide insights into the
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methodologies employed and the outcomes of these works. This will enable researchers to
gauge the impact and utility of each application discussed.

The literature is categorized into three main sections. The initial category encompasses
the literature that concentrates on the implementation of ML tools for predicting ocean data
characteristics, as well as studies that delve into the potential environmental ramifications of
offshore wind farms. Additionally, publications aimed at utilizing ML to identify potential
locations for offshore wind farms are also included within this category.

The second category encompasses all studies that employed ML tools to model the per-
formance and optimize the operations of wind farms. This category also includes research
focusing on control systems utilizing ML tools, primarily aimed at performance modeling
and enhancement. The third category within this literature pertains to investigations that
specifically delve into structural health monitoring, damage identification and localization,
as well as operation and maintenance procedures.

It is worth noting that certain studies could fit into either the first or second category.
The classification of these studies was determined by their specific application of ML. If
the method was employed to forecast environmental data like waves or wind, the study
was categorized under the first category. If not, it was placed in the second category. It
is also worth noting that the works have been reviewed chronologically for each topic.
Furthermore, there is a “Prospective” section included to delve into the overarching views
and perspectives of ML implementations, as well as explore potential future directions.

2. Methods

The research for this study employed both manual and systematic search approaches.
For the systematic exploration of relevant existing literature, the USGS BiblioSearch was uti-
lized [1]. This versatile cross-platform search tool is implemented in Python and leverages
several APIs to query diverse databases, including Clarivate Web of Science and Elsevier
Scopus. Additionally, the abstracts of the papers were obtained using pybliometrics [2],
another Python library designed for querying data from the Scopus database.

The initial associated keywords in the query used for data collection were in the follow-
ing format: “(‘machine learning’ OR ‘neural network’ OR ‘multilayer perceptron’ OR ‘deep
learning’ OR ‘reinforcement learning’ OR ‘extreme learning machine’ OR ‘decision tree’ OR
‘random forest’ OR ‘nearest neighbour‘ OR ‘nearest neighbor’ OR ‘support vector machine’
OR ‘artificial neural network’ OR ‘data driven modeling’ OR ‘data driven modelling’) AND
(‘offshore energy’ OR ‘offshore wind energy’ OR ‘offshore wind’ OR ‘offshore renewable
energy’ OR ‘offshore wind farm’ OR ‘floating wind’ OR ‘wind-wave farm’ OR ‘wave-wind
farm’ OR ‘wind wave farm’ OR ‘wave wind farm’)”. Here, ‘AND’ and ‘OR’ are logical
operators. The results were then filtered and analyzed to separate the relevant literature.
Further, some of the reviewed works here were added to the list of publications through
manual searches.

3. Climatic Data Prediction and Environmental Effects

In the context of climatic data prediction for offshore wind applications, ML enables
accurate and robust forecasts of wind speed, direction, and wave patterns, crucial for
optimizing power generation and ensuring efficient turbine operation. These techniques
empower decision-makers with real-time, data-driven insights that enhance energy yield
and economic viability. Moreover, the investigation of environmental effects necessitates a
comprehensive understanding of intricate ecosystems surrounding offshore wind farms.
ML facilitates the analysis of species distribution, habitat mapping, and collision risk
assessment, aiding in the development of sustainable offshore installations that minimize
ecological impact.

Beyond these applications, ML can also open avenues for innovation, such as au-
tonomous navigation through wind farm areas, noise reduction in remote sensing data,
and the creation of comprehensive datasets for infrastructure identification. In essence,
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the integration of ML techniques empowers the offshore wind industry to navigate the
complexities of climate prediction, environmental sustainability, and operational efficiency.

Through multilayer pereceptrons (MLPs) clustering, deep learning, wave analysis, spa-
tial modeling, and some other novel applications, researchers have addressed a spectrum of
challenges, from predicting wind speed and ocean wave characteristics to modeling species
distribution and analyzing habitats. This collective effort demonstrates ML’s potential to
reshape our comprehension of marine environments and to optimize the utilization of
offshore wind energy systems.

The MLP neural network was used by Flores et al. to predict wind speed values in
one-hour intervals [3]. They used the sigmoid activation function and trained the models
using two sets of data: one-hour measurements of wind speed at a wind turbine located
in Navarre (with one sample per minute), and another set collected over four months in
a real wind farm located in a less windy area (Zizurkil) in the north of Spain, from June
to September 2002. The model was used for two purposes: (1) optimization of power
generation through the maximization of active power generation so that all the produced
energy could be sold; and (2) to provide a constant reference point agreed upon by the
buyer, one hour beforehand. In another study, Dankert and Horstmann investigated the
possibility of using radar–image sequences of the ocean surface to provide reliable ocean
wind vector measurements [4]. They trained an MLP to retrieve wind speed and wind
direction from a series of radar–image sequences. The results were compared to the in situ
wind speed measured at a platform with 30 m height. They concluded that the minimum
wind speed that could be retrieved with the trained network is 0.5 m/s.

In a separate study, researchers developed algorithms to forecast wave elevation and
exciting force, aiming to apply them in optimal control for load reduction [5]. The study
involved two forecast algorithms: the approximate Prony method (a technique based on
singular value decomposition) and support vector regression (SVR) method. To validate
these algorithms, real-time measurements were employed. The data used in the study
were collected during wave tank testing, encompassing two sets of records. The first set
represented a sea state with a significant wave height of 1.7 m and a typical wave period
of 8.7 s, whereas the second set represented a sea state with a significant wave height of
4.5 m and a wave period of 11.8 s. The measured wave records spanned 2.5 h. As the
forecast horizon increased, the authors observed a notable decline in the performance of
the forecasting models. Nevertheless, they determined that the forecast accuracy of wave
elevations up to a 5-s horizon remained adequate for the purpose of controller design.

Kulkarni and Ghosh proposed a special framework to assess the impact of climate
change on offshore wind potentials [6]. This framework involves selecting the most ap-
propriate General Circulation Model based on reliability and uncertainty, analyzing wind
simulation with two downscaling techniques over past and future periods, evaluating
potential changes with various downscaling techniques and Representative Concentration
Pathways combinations, comparing with regression-based past trends, and estimating
future extractable wind power and seasonal changes. The study focused on three selected
locations in India, finding a substantial increase in annual average wind potential over
the next 27 years compared to the past 27 years, indicating potential benefits to the Indian
offshore industry.

Niemi and Tanttu proposed an ML-based bird identification system specifically de-
signed for offshore wind turbines [7,8]. The system operates by utilizing a series of images
featuring a single target, effectively representing a sequence of temporally consecutive
frames of the same bird. These images are then fed into a convolutional neural network
(CNN) to extract relevant features. To achieve the best results, a two-step learning method
is applied. Initially, the CNN was trained using the first N-1 layers, treating them as feature
maps. Subsequently, these feature maps were used to train a support vector machine
(SVM) classifier, enhancing the system’s ability to recognize and classify different bird
species accurately. To cope with limited data, the researchers integrated an image aug-
mentation step into the process. This augmentation step helped to enhance the model’s
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performance and accuracy even when working with a smaller dataset. Finally, to ensure
effective classification, they defined eight distinct types of birds for the classifier to identify.

Yan et al. introduced an MLP-based model that accurately predicts the power of a
wind farm based on wind speed and direction [9]. The model was trained on a vast dataset
from the Lillgrund Wind Farm, spanning approximately 16 months (November 2006 to
February 2008) and containing about 700,000 raw data samples collected at a frequency of
1 min or higher. To improve the model’s performance, the authors replaced wind direction
with two simple geometric properties calculated using a geometric model. The approach
was validated on an onshore wind farm, Nørrekær in Denmark, collected between August
2009 and May 2016 at a frequency of 10 min. Results showed that the model achieved high
accuracy, with a bias of approximately −0.7% and an absolute error of around 6%. The
model also demonstrated promising transfer-learning ability, allowing predictions for any
wind farm with the same turbine model faster and with similar or greater accuracy than
existing wake loss models, including those in commercial software packages .

Keivanpour et al. presented a geo-clustering approach for assessing offshore wind
energy potential worldwide [10]. By applying a neural network-based clustering approach,
the study identifies five hotspots around the globe based on factors such as geographic
location, wind capacity in shallow, transitional, and deep waters, coastline length, demand,
investment leverage, and risk. The proposed segmentation approach offers strategic
insights into the global deployment of offshore wind energy, encompassing technical,
market, and spatial dimensions. The research aimed to develop an interactive decision-
making tool to analyze the challenges associated with offshore wind energy deployment.

Zha et al. introduced a reinforcement learning-based path-planning algorithm de-
signed to enable the safe and efficient navigation of ships in wind farm areas [11]. Through
a series of simulations, they demonstrated the effectiveness of the proposed hybrid path-
planning method, which combines A* and reinforcement learning. This approach success-
fully generated a feasible path-planning scheme for navigating through wind farm waters,
even in the presence of obstacles. In a research study conducted by Lin et al., an unsuper-
vised learning model was developed to discern various sound sources underwater [12].
This model was applied to analyze long-term underwater recordings collected near Phase
I of the Formosa I wind farm, situated off the coast of Taiwan. The researchers aimed
to assess the temporal, spatial, and spectral variabilities present in these recordings. To
achieve this, the authors employed the periodicity-coded non-negative matrix factorization
method, an unsupervised learning technique used for decomposing high-dimensional
data into non-negative components. Figure 1 illustrates the general procedure adopted for
their proposed approach. The significance of this research lies in its potential to evaluate
the impact of noise-generating activities on soniferous marine animals and their acoustic
behavior before, during, and after the construction of offshore wind farms. Additionally,
the study provides an efficient tool for building an annotated database, facilitating further
investigations in this domain.

In another study, researchers focused on constructing species distribution models for
fish and macroinvertebrate taxa in the Northeast U.S. Continental Shelf marine ecosys-
tem, using data from NOAA’s long-term bottom trawl survey and ecosystem monitoring
programs [13]. These models were used to assess the impact of lease areas designated for
renewable wind energy installations in the Middle Atlantic Bight. The authors employed
random forest to create models depicting the occurrence and biomass of 93 species, provid-
ing seasonal representations of their habitat distributions. A scoring index was developed
to characterize each species’ habitat use within the lease areas, leading to the identification
of groups of species with varying levels of reliance on these habitats. The potential for
impact was assessed based on the number of species dependent on the lease area habitats,
which varied across continuous gradients. Habitats supporting high biomass were found
more to the northeast, whereas high occupancy habitats were located further from the
coast. The size of the lease area did not seem to significantly influence the importance of
associated habitats.
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Figure 1. The approach proposed by [12] to visualize and retrieve information from soundscape of
an offshore wind farm.

Stelzenmüller et al. utilized a random forest regression applied to vessel monitoring
system data to identify and understand the drivers of passive gear fisheries, including the
experimental brown crab pot fishery conducted near the offshore wind farm located near
the island of Helgoland [14]. The authors examined cumulative spill-over potentials from
all offshore wind farms and assessed their impact on fishing activities. The analysis results
indicated that local spill-over mechanisms occurred at distances of 300 to 500 m from the
nearest turbines, attracting pot fishing activities to specific wind farms. This suggests a
growing attraction of fishing efforts towards offshore wind farms due to both an increasing
international demand for brown crab and stable resource populations at suitable habitats.
Additionally, Reijden et al. conducted a study presenting a new method for generating high-
resolution habitat maps for diverse marine faunal groups [15]. They utilized hierarchical
clustering to identify distinct biological assemblages for demersal fish, epifauna, and
endobenthos in the offshore Central and Southern North Sea. By employing random forest
models with abiotic predictors, they mapped these assemblages to high-resolution grids.
The research revealed clear associations between demersal fishing, offshore wind farms,
and specific habitats, leading to unequal anthropogenic pressure across different areas.
The authors emphasized the significance of including habitat maps based on biological
datasets in marine spatial planning, complementing traditional abiotic-based physiotope
maps. This integrated approach facilitates identifying areas of conflicting interests and
encourages balanced discussions between economic and ecological values.
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Tapoglou et al. introduced a model that combines an MLP network and satellite
remote monitoring to predict significant wave height and sea state in an operational wind
farm [16]. They utilized synthetic aperture radar images from European Space Agency
Sentinel-1 satellites and wave-buoy data from the UK. The model achieved an RMSE of
0.23 m for significant wave height below 3 m, making it suitable for offshore wind energy
applications. The model’s performance was comparable to physical modeling hindcasts
and aligned with existing sea-state models in the North Sea and the Irish Sea. Furthermore,
Masoumi used K-means clustering to group U.S. coastal regions based on wave height,
wave period, and wind speed data from the National Data Buoy Center [17]. Three models
were created using data from different time periods (2019, 2015–2019, and 2010–2019).
Similar regions with consistent wave and wind patterns were identified in each model,
providing a tool for identifying suitable areas for wave–wind hybrid energy platforms.

Hoeser et al. introduced the DeepOWT dataset (Deep-learning-derived Offshore Wind
Turbines), which encompasses 9941 global offshore wind energy infrastructure locations,
along with their corresponding deployment stages [18]. DeepOWT harnesses publicly
accessible Earth observation data derived from the Sentinel-1 radar mission. The identi-
fication of offshore wind infrastructure locations was accomplished through a two-step
process that employed deep learning-based object detection. Figure 2 shows the gen-
eral procedure used for developing the dataset. The authors highlighted that with the
availability of this free and accessible data, it becomes more likely that all stakeholders
operating within marine and coastal environments will participate in the expansion of
offshore wind farms. In another study, Hoeser et al. proposed “SyntEO”, an approach
to facilitate the automated creation of substantial deep learning-compatible datasets for
Earth observation research [19]. The SyntEO methodology’s application was exemplified
in the context of identifying offshore wind farms within Sentinel-1 satellite images. The
operational implementation involved the construction of an expansive dataset, encompass-
ing approximately 90,000 training instances. A rudimentary CNN, exclusively trained on
synthetic data, exhibits the capability to adeptly discern offshore wind farm installations
within the images.

Figure 2. The procedural process employed to create the DeepOWT dataset using the Sentinel-1
archive by [18].
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Nguyen et al. developed data-driven proxy models to capture the relationship between
free-flow wind conditions and aggregated wind farm power [20]. For each wind farm, a
database was created using computational fluid dynamics (CFD) simulations, then used
to train ML models predicting offshore wind farm power based on free-flow wind data
(speed and direction). The non-linear relationship between wind power and raw wind data
was modeled using decision tree, random forest, gradient-boosting regression tree, and
MLP. The study underscored the significant impact of enhanced wind energy modeling on
reliability indices. Compared to traditional power curve methods, the proposed approach
unveiled underestimations in Loss of Load Expectation [h/year] and Loss of Energy
Expectation [MWh/year] values.

In addressing bird collisions with offshore wind turbines, Mikami et al. created a
detailed collision risk map [21]. They employed a fine-scale spatial model, using data
from bird flights over the sea, including 117 black-tailed gulls from three colonies and
21 slaty-backed gulls from four colonies in northern Hokkaido, Japan. Their model, uti-
lizing a random forest algorithm, predicted flight patterns within the altitude range of
20–140 m. Geographic variables and species characteristics were used, showing a cor-
relation coefficient of 0.57–0.94, despite variations among species, years, colonies, and
areas. The study highlighted key factors in collision risk, emphasizing the significance of
proximity to breeding colonies and harbors. Within 15 km of colonies and 5 km of harbors,
collision risk increased by 6–7 times.

Xu and colleagues proposed an effective technique to diminish noise and interference
caused by ocean waves in synthetic aperture radar images [22]. This involves the creation
of a singular global random forest model within the Google Earth Engine platform. Addi-
tionally, the study introduced a mathematical morphology-based approach for analyzing
time series spatial data, enabling the monitoring of changes in offshore wind turbine envi-
ronments. The method’s validation demonstrated exceptional accuracy metrics: an overall
accuracy of 99.99%, a producer accuracy of 100%, and a user accuracy of 94.12%. Compari-
son with ground truth data substantiated the method’s efficacy, yielding a precision rate of
93.67% for the dynamic surveillance of offshore wind turbines spanning the Yellow Sea of
China and the North Sea of Europe from 2015 to 2021. Furthermore, Roy and colleagues
conducted a study in northern France to detect sea breeze and nocturnal low-level jet
meteorological events [23]. The researchers developed four distinct algorithms for identify-
ing these events: the Sign Change of Sea-Breeze Component, a recurrent neural network
tailored for sea breeze, the Haar wavelet threshold technique for nocturnal low-level jet,
and the Symlets wavelet slope technique. The recurrent neural network algorithm proved
effective in identifying sea breeze occurrences, exhibiting a 98% sensitivity, 91% specificity,
and 95% classification accuracy. The results of their analysis showed that the peak power
production during the highest hourly average could surge by up to fivefold compared to
the baseline day. This surge was attributed to elevated wind speeds experienced during
nocturnal low-level jet events. Additionally, during sea breeze events, the hourly average
peak power production could experience an increase of up to 2.5 times.

Marin et al. presented an innovative wind speed prediction approach employing the
MLP network [24]. This method utilized GPS coordinates of the target zone along with wind
speed averages spanning from 1990 to 2050 across diverse Black Sea locations, facilitating
offshore wind location determination. The outcomes derived from this approach were
leveraged to optimize the siting of wind energy conversion systems, yielding enhancements
in operational efficiency. Utilizing Bayesian neural networks, which treat the weights,
biases, and outputs of the MLP as distributions rather than fixed values, Clare and Piggott
aimed to tackle the challenge of predicting offshore wind resources for renewable energy
applications [25]. They highlighted that their approach for determining these network
parameters facilitated the potential for accurately calibrated uncertainty predictions for
both wind speed and power. Their findings indicated that the accuracy and uncertainty
of wind speed and direction predictions remained consistent despite the presence of the
nearby Alpha Ventus wind farm.
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Yu and colleagues have introduced a model to enhance the prediction accuracy of ultra-
short-term offshore wind power by leveraging an SVM optimized through the dragonfly
algorithm [26]. This algorithm emulates dragonfly group behaviors, encompassing global
and local searches, navigation, predation, and evasion of adversaries. To validate their
approach, they conducted simulations utilizing power data from a 115 MW offshore
wind farm and numerical weather forecasts from 2018 and 2019. The training dataset
employed 2018 data, whereas the test dataset utilized 2019 data. The results demonstrated
the superiority of the proposed method in power prediction compared to SVM models
combined with particle swarm optimization or firefly optimization algorithms.

Table 1 provides a summary of each work reviewed in this section, including a brief
description of the research conducted and the machine learning techniques employed.

Table 1. Summary of the work reviewed in this section, focused on Climatic Data Prediction and
Environmental Effects.

Auth. and Cit. ML Technique Summary

Flores et al. [3] MLP Neural networks used to predict wind speed values in one-
hour intervals.

Dankert and Horstmann [4] MLP Models were used to retrieve wind speed and wind direction from
radar–image sequences.

Ma et al. [5] Prony and SVR Algorithms developed to forecast wave elevation and excit-
ing force.

Niemi and Tanttu [7,8] CNN, SVM Bird identification system designed for offshore wind turbines.

Kulkarni and Ghosh [6] MLP-based Framework Special framework proposed to assess the impact of climate
change on offshore wind potentials.

Yan et al. [9] MLP Windfarm power prediction using wind speed and direction.

Keivanpour et al. [10] K-means Clustering K-means clustering used to assess offshore wind energy poten-
tial worldwide.

Zha et al. [11] Reinforcement Learning Hybrid path-planning method combining A* and reinforcement
learning for ship navigation in wind farm areas.

Lin et al. [12] Unsupervised Learning Unsupervised learning model used to discern various sound
sources underwater.

Friedland et al. [13] Random Forest Random forest models employed to construct species distribution
models for marine species.

Stelzenmüller et al. [14] Random Forest Random forest regression used to identify drivers of passive gear
fisheries near offshore wind farms.

Van der Reijden [15] Hierarchical Clustering
Utilized hierarchical clustering to identify distinct biological as-
semblages for demersal fish, epifauna, and endobenthos in the
offshore Central and Southern North Sea.

Tapoglou et al. [16] MLP Used satellite images and the data from buoys to predict signifi-
cant wave height and sea state in a wind farm.

Masoumi [17] K-means Clustering K-means clustering applied to group coastal regions based on
wave height, wave period, and wind speed.

Hoeser et al. [18] CNN Deep learning-based object detection used to identify offshore
wind energy infrastructure locations.

Hoeser et al. [19] CNN
SyntEO methodology used to create deep learning-compatible
datasets for Earth observation research, exemplified in the context
of identifying offshore wind farms.

Nguyen et al. [20]
Decision Tree, Random For-
est, Gradient-Boosting Re-
gression Tree, and MLP

Models used to capture the complex relationship between
wind conditions and wind farm power.
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Table 1. Cont.

Auth. and Cit. ML Technique Summary

Mikami et al. [21] Random Forest Fine-scale spatial model using random forest to create a collision
risk map for bird collisions with offshore wind turbines.

Xu et al. [22] Global Random Forest Global random forest model used to diminish noise and interfer-
ence caused by ocean waves in synthetic aperture radar images.

Roy et al. [23] Recurrent Neural Network Four algorithms developed for identifying sea breeze and noctur-
nal low-level jet meteorological events.

Marin et al. [24] MLP MLP network used for wind speed prediction to optimize the
siting of wind energy conversion systems.

Clare and Piggott [25] Bayesian NN Bayesian neural networks employed for predicting offshore wind
resources with calibrated uncertainty predictions.

Yu et al. [26] SVM SVM optimized through the dragonfly algorithm used to enhance
ultra-short-term offshore wind power prediction.

A potential research gap that emerges from the literature is the limited mention of
the integration of various machine learning techniques and data sources for a holistic
environmental impact assessment. There is a need for research that integrates multiple
machine learning techniques, such as wind speed prediction, bird and marine species
monitoring, wave forecasting, and habitat analysis, into a cohesive framework for a holistic
environmental impact assessment of offshore wind farms. This could involve the devel-
opment of an integrated model that considers the combined effects of these factors on the
marine ecosystem and the optimization of wind energy systems while minimizing their
environmental footprint. Such research could provide valuable insights for sustainable
offshore wind farm development and management.

4. Performance Modeling and Optimization

The significance of optimization in wind energy generation from wind farms is un-
derscored by a multitude of research papers that have implemented neural networks as
integral components within optimization processes, performance modeling, and controller
design. A key observation is the precariousness of wind power output, posing substantial
challenges to the stability of power grids. This has spurred the need for accurate ultra-short-
term wind power prediction, a critical factor in ensuring the steadfastness of power system
operations. Further challenges include layout optimization, maximal power generation,
fatigue load mitigation, and power reference tracking. An exhaustive review that traverses
the landscape of prevailing control methodologies applied across diverse objectives can be
found in [27].

Shifting the focus to floating offshore wind turbines, an intriguing economic prospect
emerges. These turbines are poised to offer more cost-effective solutions compared to fixed
offshore wind turbines, especially in deep water depths. However, this innovative solution
is not devoid of operational challenges. The complex interplay of wind and waves subjects
these systems to six-degree-of-freedom (DOF) movements, imparting substantial effects
on their performance dynamics. This intricate interaction leads to periodic oscillations
in output power, mechanical loading, and the operational orientation of wind turbines,
highlighting the challenging landscape these turbines navigate.

As an attempt to develop a bathymetric chart, Lee et al. developed an optimization
algorithm that incorporated an MLP neural network to create a wind and bathymetric
map [28]. The objective of this algorithm was to identify the optimal location for an
offshore wind farm near Jeju Island in South Korea. The procedure utilized a genetic
algorithm for the optimization process and could identify the most suitable location for
the wind farm based on the criteria of maximum depth and distance from the coastline
while maximizing energy density. In a separate study, Pappala et al. developed a neural
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network to forecast wind characteristics as part of their optimization model for wind farm
predictive control [29]. The simulated wind farm in this study consisted of 80 turbines,
each with a rating of 50 MW. However, to simplify calculations, they assumed a single
equivalent turbine. The model utilized wind power generation data from past steps to
predict the next three steps. The data used to develop the model consisted of a time series
of wind power generation averages for five-minute intervals at 8000 time steps and the
optimization algorithm employed for the model was the particle swarm optimization. The
proposed model could reduce transformer tap changes, thus improving performance.

Japar et al. utilized data from Horns Rev offshore wind farm in Denmark to develop
machine learning techniques for estimating power losses caused by wake effects in a
wind farm [30]. The wake phenomenon in a wind farm can lead to energy losses of up
to 20% annually [31]. Therefore, it is crucial to consider this effect when optimizing the
farm’s layout. The authors employed various ML models, including linear regression,
linear regression with feature engineering, nonlinear regression, MLP, and SVR. Both
SVR and MLP proved to be effective in accurately estimating power deficits. The study’s
results demonstrated that ML methods can play a valuable role in estimating power losses
attributed to wake effects in large wind farms.

Antoniadou et al. utilized data from the Lillgrund Wind Farm and employed neural
network Gaussian processes to construct reference power curves (wind speed versus power
produced) for each of the 48 turbines in the farm [32]. These reference models were then
used to predict power output for the remaining turbines, resulting in a confusion matrix
of regression model errors for all combinations. The reference power curve used to build
the models represented a healthy power curve, based exclusively on data from instances
with a status code of ‘0’ (indicating ‘no error’ in the turbines). The results demonstrated
the robustness of the models, with consistently low MSE errors (see Figure 3). The study
utilized one full year of operational data, collected in the form of SCADA extracts with
10 min averages. The data included maximum, mean, minimum, and standard deviation
values for each 10 min interval.

Figure 3. Confusion matrix depicting MSE errors on the testing set [left] and average MSE errors
illustrating the predictive performance of each turbine (power produced) [right] [32].

Rodrigues et al. demonstrated the practicality of employing reinforcement learning
techniques for the online control of a multi-terminal DC network, specifically for integrating
offshore wind farms [33]. The developed procedure can be summarized as follows. The
power production of offshore wind farms is measured and transmitted to the Distributed
Voltage Control (DVC) located at the Transmission System Operator Center. Equipped
with knowledge of the Multi-Terminal DC network topology, the DVC performs real-time
optimization using Continuous Action Reinforcement Learning Automata (CARLA). In
each control cycle, CARLA iteratively samples direct voltage values, evaluates them, and
stores those with improved reward values in an archive. At the end of each cycle, the
archived direct voltage references are sent to onshore stations, and the process is repeated.
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The simulation involved a network with six nodes, interconnecting three offshore wind
farms with the onshore AC networks of the UK, Germany, and Denmark.

Ou et al. proposed a novel approach for integrating an offshore wind farm and a
seashore wave power farm through a high-voltage, alternating current electric power trans-
mission line [34]. The hybrid multi-system consists of a battery energy storage system and
a micro-turbine generation. The proposed approach, called intelligent damping controller,
comprises a designed proportional-integral-derivative linear controller, an adaptive critic
network, and a functional link-based novel recurrent fuzzy neural network. Test results
demonstrated that the proposed controller achieves better damping characteristics and
effectively stabilizes the network during unstable conditions. The approach mitigates
oscillations and resolves power stability issues.

Furthermore, Fischetti and Fraccaro explored the potential implementation of linear
regression and MLP for predicting the optimal production of offshore wind farms based on
various factors, including the characteristics of the offshore wind site, turbine specifications,
and wind measurements at that location [35]. The model they developed took into account
proximity constraints, minimum and maximum turbine limits, and the wake effect. See
Figure 4 for the simulation results of the wake effect of the wind farm. The central question
they sought to address was, “Given a set of optimized wind farm layouts, can a machine
predict the production value of the optimized solution for a new site?” To answer this
question, they utilized a dataset comprising six different wind turbines with varying rotor
diameters, along with characteristics from six existing wind parks. The study’s key finding
was that neural network models, trained on a large number of optimized solutions, could
demonstrate an ability to accurately predict the optimal power output for new instances
of wind farms. This suggested that their approach could be valuable for optimizing
production in offshore wind farm development. In a follow-up investigation, Fischetti and
Fraccaro provided another study looking further into whether a machine, trained on a
vast number of optimized solutions, can accurately estimate optimized solutions for new
instances in the context of offshore wind farm layout optimization [36]. The focus was on
site-selection applications where a company aims to construct a specific number of turbines
in an offshore area, taking into account factors such as production increase due to wake
effect and infrastructure costs. Different rectangular instances with various wind scenarios
and turbine types were considered in the study. Over 3000 instances were defined and
optimized using a mathematical optimization tool powered by heuristic solutions obtained
through machine learning. The machine learning model utilized several features related
to turbine characteristics and site properties. The training set consisted of 2268 instances
from real-world wind farm areas, and the remaining 1134 instances were used as a test set.
The results showed that the machine learning estimate significantly outperforms human
estimates in this optimization problem.

Lu et al. presented a novel hybrid technique involving the integration of recurrent
Fuzzy neural network (FLRFNN) and genetic algorithm hybrid time-varying particle
swarm optimization (GAHTVPSO) methods to design a damping controller for a Static
Synchronous Compensator in an offshore wind farm [37]. In their simulations, the wind
farm was connected to a power grid via a 50 km high voltage direct current transmission
line. The proposed system included an adaptive critic network, FLRFNN, and the genetic
algorithm hybrid time-varying particle swarm optimization. The simulation results demon-
strated the effectiveness of this approach in mitigating oscillations and addressing power
stability concerns in the offshore wind farm setup. In another study, Noppe et al. proposed
a technique to reconstruct the thrust load history of a wind turbine using high-frequency
SCADA data [38]. They utilized strain measurements for training a neural network and
validated the method on two datasets: simulated data and real-world offshore wind turbine
measurements. The technique showed promising results, with a relative error below 15%,
and slightly better accuracy with simulated data compared to real-world measurements.
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Figure 4. Visualizing the wave effect for the landscape of a wind farm. The nodes represent turbines,
whereas the backdrop hues illustrate the degree of interference as per Jensen’s model [36].

In a separate report, Lu et al. conducted a study investigating the utilization of a recur-
rent wavelet-based Elman neural network controller to integrate offshore wind and wave
energy conversion systems, which were powered by a doubly fed induction generator [39].
The results were then compared to those obtained from classical proportional–integral
and recurrent fuzzy neural network controllers. The proposed technique demonstrated
higher effectiveness and robustness, outperforming other controllers in terms of the wind
and wave energy conversion systems’ performance. Further, Häfele et al. proposed a
cost-effective framework for optimizing offshore wind turbine jacket substructures. They
used an ML approach, specifically Gaussian process regression, to reduce numerical ex-
penses and consider more design load cases [40]. The method was applied to the National
Renewable Energy Laboratory (NREL) 5 MW turbine under FINO3 conditions, with 20 pa-
rameters (10 topology, 7 tube dimensions, and 3 material properties). The authors found
that surrogate modeling is a promising solution for efficiently tackling the computationally
expensive jacket optimization problem.

Yin and Zhao used ML with five algorithms, including general regression neural
network, random forest, SVM, gradient-boosting regression, and recurrent neural network,
to create predictive models for offshore wind farms [41]. The models aimed to support more
cost-effective facilities by predicting wind farm power output and turbine thrust. They
employed various predictor variables, including wind velocity, direction, torque, yaw offset,
blade pitch, tilt angles, and turbine characteristic parameters. Data from the wind farm
simulation platform FLORIS, developed by NREL and Delft University of Technology [42],
was used for training and testing. The test results achieved approximately 99% accuracy or
higher, making the methods suitable for practical applications. Moreover, recurrent neural
network and SVM showed the highest accuracy, with recurrent neural network excelling
in thrust predictions, whereas general regression neural network demonstrated higher
computational efficiency.

Using a random forest-based surrogate model coupled with a genetic algorithm,
Pillai et al. developed a multi-objective optimization for mooring systems of floating
offshore wind turbines [43]. The optimization was to minimize cumulative lifetime fatigue
damage and material costs. Variables like mooring line anchor position, length, material
composition, and diameter were considered. Furthermore, random forest was used for
both classification (constraint satisfaction) and regression (predicting fatigue damage and
material costs), ensuring valid solutions through anomaly detection. Figure 5 shows the
general procedure followed for the proposed optimization method. Data used for the study
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were from simulations of a semi-submersible designed for offshore wind turbines at the
UK’s Wave Hub test site; although the multi-objective approach did not pinpoint a single
optimum, it could provide valuable trade-off information for decision-making along the
proposed Pareto front to be assessed by decision-makers.

Figure 5. The optimization process, from [43], employing a random forest surrogate model. The steps
associated with the surrogate model are denoted by a diamond in the top left corner, whereas the
core steps of the genetic algorithm are represented by filled shapes.

Li et al. introduced an MLP-based sliding mode control for the blade pitch of offshore
wind turbines [44]. The modeling was performed by coupling the aerodynamic model,
hydrodynamic model, and mooring system model for the NREL 5 MW wind turbine and
OC3-Hywind foundation [45]. A comparison between a proportional–integral controller
and the proposed system revealed that the standard deviation of output power fluctuation
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was reduced by 25% when using the novel sliding mode control. In a different front, Penner
et al. conducted measurements on a suction bucket jacket prototype at ‘Borkum Riffgrund
1’ in the North Sea [46]. Comprehensive data with strain, acceleration, inclination, and
water pressure sensors were recorded every 10 min and correlations between vertical soil
stiffness and bucket stiffness were observed. For modeling the system’s behavior, the
Frequency Domain Decomposition was utilized for identification and monitoring in the
frequency range of the first and second eigenfrequency (0.2 Hz < f < 5 Hz), where the
system behaved linearly. However, in the lower frequency band (0.05 Hz < f < 0.2 Hz),
experiencing higher forces and displacements, an MLP was chosen to model the non-linear
relationships between the measurements. This approach could enhance the understanding
and prediction of system behavior in these critical frequency bands.

NREL researchers developed an advanced unsteady aerodynamics and dynamic stall
model using an LSTM surrogate model for wind turbine load analysis codes, such as
OpenFAST [47,48]. The model was trained on oscillating airfoil experimental data from
Ohio State University wind tunnel tests and successfully validated against additional
experimental data. Comparisons with existing aerodynamic models in OpenFAST revealed
that the ML model results align well with diverse scenarios involving various airfoils,
Reynolds numbers, and reduced frequencies. An added advantage of this ML approach is
its automated model tuning, which could seamlessly integrate into the design workflow. To
address the issue of uncertainty in ML models, Pandit and Kolios proposed two methods,
pointwise confidence intervals (CIs) and simultaneous CIs, based on the work by [49], to
quantify the uncertainty of an SVM-based power curve model using a radial basis function
as the kernel [50]. The effectiveness of these techniques was verified with SCADA data from
pitch-controlled wind turbines. Pointwise CIs were found to be more accurate, generating
smaller CIs, making them a better choice for constructing fault detection algorithms based
on SVM power curves. The reason for this is that pointwise CIs exhibit a relatively narrow
width throughout the wind speed range, enabling them to detect anomalies at an early
stage more effectively.

Yu et al. proposed a data integration method utilizing graph neural networks [51] to
connect wind turbines within a certain range of wind farms based on their geographical
locations and related information [52]. The authors employed a superposition graph neural
network for feature extraction, maximizing the utilization of spatial and temporal features
for prediction. In their experiments, they used data from four offshore wind farms (collected
from the NREL open wind power dataset from 2010 to 2011, with a sampling interval of
10 min, and wind turbine output power ranging from 0 to 16 MW). Compared to common
methods, the proposed approach resulted in a reduction in the mean square error by 9.80%
to 22.53%, demonstrating significant improvement in prediction accuracy and stability.

Dong et al. developed a deep reinforcement learning-based wind farm control scheme
to optimize power generation in wind farms [53]. They designed a reward regularization
module to estimate wind turbines’ normalized power outputs under various yaw settings
and uncertain wind conditions, enhancing the control scheme’s robustness and adaptability.
The reward regularization module was integrated with the deep deterministic policy
gradient algorithm to identify the optimal yaw settings for all wind turbines in the farm.
Figure 6 shows the general framework for the proposed approach. The model was trained
and validated using high-fidelity simulations with SOWFA [54] (a simulator for offshore
wind farm applications) and Tensorflow [55]. They collected 90 sets of 1000 s large-eddy
simulations with SOWFA to generate offline training data for their reinforcement learning.
The proposed method significantly improved the wind farm’s total power production by
an average of 15% compared to the benchmark.
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Figure 6. Illustration of the primary framework and data flow for the wind farm control system
based on deep reinforcement learning proposed by [53].

Lian et al. developed an MLP-based regression model to relate loading conditions to
the long-term performance of a wide-shallow bucket foundation model for offshore wind
turbines in saturated sand [56]. They collected data through laboratory tests on a system
with a bucket foundation model, soil box, and signal acquisition systems. Sensitivity anal-
ysis showed that loading frequency had the most significant impact on the foundation’s
long-term performance, followed by loading magnitude and cycle number. In a different
study, Chen et al. proposed using the simulation annealing diagnosis algorithm to optimize
the dynamic response prediction of floating offshore wind turbines [57]. They applied
a reinforcement learning method to adjust key parameters based on six DOF motions’
feedback.The proposed method was verified with 12 experimental cases. However, chal-
lenges remain, including agent dependence and hyperparameter tuning of the deep neural
network. Further exploration and experience are needed to address these issues. Further,
Miao et al. devised an approach for evaluating the reliability of offshore wind farms,
incorporating various climatic factors such as wind speed and ocean wave characteristics
along with failure rate and the allocation of maintenance resources [58]. To investigate the
power generation capacity of these offshore wind farms, the study utilized both an MLP
network and multiple linear regression techniques, effectively analyzing the influence of
uncertain factors on the reliability of power generation.

Mattsson et al. used ML to generate synthetic hourly electricity demand series for large-
scale energy system models worldwide [59]. They incorporated ECMWF ERA5 [60] global
reanalysis data and other geospatial datasets to produce detailed supply curves and hourly
capacity factors for various renewable energy sources like solar photovoltaic, concentrated
solar power, onshore and offshore wind, as well as existing and future hydropower. The
gradient-boosting regression model was the primary tool for generating synthetic data
based on temperature and GDP input data. By considering ten independent variables,
including annual per-capita electricity demand, purchase-power adjusted GDP, average



J. Mar. Sci. Eng. 2023, 11, 1855 16 of 40

hourly temperature profiles in densely populated areas, and other temperature-related
metrics, the model could create hourly electricity demand for any region in the world.

Returning to the topic of ML-based control system design, Kheirabadi and Nagamune
utilized Distributed Economic Model Predictive Control (DEMPC) [61] to optimize power
generation in floating offshore wind farms [62]. As part of their approach, they incorporated
MLP networks to estimate the dynamic behavior of the floating platforms during the
optimization process. These networks consist of six input neurons, corresponding to
the four turbine states (platform positions and velocities in downwind and crosswind
directions) and two turbine inputs (axial induction factor and yaw misalignment relative
to the dominant free stream wind direction). The network’s output provided predictions
for the turbine’s states at the subsequent sampling time. In the case of a floating wind
farm comprising three 5 MW turbines, aligned with the free stream wind, the use of
DEMPC led to a 20.2% increase in energy production compared to conventional greedy
operation. Furthermore, Yin and Zhao proposed a hybrid CNN-LSTM model, underpinned
by a deep learning architecture, to forecast the outputs of offshore wind farms [63]. This
innovative approach employs high-fidelity large eddy simulation data as its foundation.
Through the established CNN-LSTM models, they devised distributed and decentralized
model predictive control techniques, strategically geared towards optimizing the wind
farm’s power generation. To validate their methodology, they subjected it to computational
simulations involving two distinct wind farm scenarios: a two-turbine wind farm and
a more complex nine-turbine wind farm. The outcomes revealed a remarkable level of
prediction accuracy, approximately 97%, attained by the trained CNN-LSTM models.
Furthermore, the findings demonstrated the considerable potential of the distributed model
predictive control approach, capable of yielding a notable increase of up to 38% in power
generation within the wind farm context.

Anagnostopoulos and Piggott developed a wind farm flow field modeling framework
using an MLP architecture [64]. Their model was trained on approximated turbine wake
fields from FLORIS [65] wind farm software (v2.1.1). With a minimum of two hidden
layers, each comprising 100 neurons, the MLP generated an m by n grid depicting the
downstream velocity domain of the wake. Figure 7 shows a general overview of the model.
This approach rapidly simulated a 5 MW wind turbine with yaw variations and diverse
inlet hub speeds and turbulence intensities. The simulation outpaced analytical wake-based
solutions by an order of magnitude while maintaining just a 1.5% mean absolute error.
The model’s yaw optimization feature exhibited remarkable efficiency as well. The MLP-
derived optimal yaw settings produced power outputs comparable to FLORIS’ optimization
module, achieving this at a speed ten times faster.

Figure 7. MLP-based model for simulating offshore wind farm flow field, proposed by [64].
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Jothinathan et al. introduced an MLP-based controller for managing the nonlinear
dynamics of offshore wind turbine jacket structures [66]. This controller’s training leverages
displacement time histories of the structure to predict the voltage needed for Magnetorhe-
ological (MR) dampers. They applied this approach to a fixed offshore wind turbine
positioned in a water depth of 64.5 m. Both MLP-based and backstepping controllers
were employed to manage the system. The neural network controller was specifically
trained for tip displacement of the jacket structure, and its effectiveness was assessed
across various load cases. Notably, the MR demonstrated efficient displacement control,
achieving a rate of 61% at the tower top under the turbine’s rated speed. For acceleration
control, the MR damper achieved 31% at the tower top and 46% at the tip of the jacket
structure. Furthermore, the MLP-based controller’s performance closely resembled that
of the passive-on approach, displaying nearly identical results for both displacement and
acceleration control scenarios.

Keighobadi et al. designed an adaptive controller for a floating offshore wind turbine’s
key angles and torque [67]. They used a radial-based functional MLP controller to counter
uncertainty effects, comparing it to a linear quadratic regulator. The model centered on a
turbine with triangular floating cylinders and a central control tower. Forces like buoyancy,
drag, and air thrust were analytically computed for modeling. The authors found their
approach superior due to uncertainty compensation through radial basis approximation,
but noted the need for more test data for optimal neural network tuning. In another
investigation, a neural network-driven model predictive control was presented to enhance
the operational effectiveness of the wind turbine control system in furnishing ancillary
frequency control services to the grid [68]. Within this study, a closed-loop Hammerstein
architecture was employed to approximate the behavior of a 5 MW floating offshore wind
turbine equipped with a Permanent Magnet Synchronous Generator. The MLP network was
deployed to gauge the aerodynamic characteristics of the nonlinear steady-state component,
whereas the linear autoregression with exogenous input model was utilized to discern
the linear time-invariant dynamic component. The authors performed a comparative
evaluation of the performance of the proposed controller against the baseline controller.
The suggested controller showed the ability to provide a stable response to fluctuations in
frequency and could enhance the reference tracking.

Zhang and colleagues presented a structural control methodology for floating wind
turbines, employing an active tuned mass damper implemented through a reinforcement
learning-based strategy [69]. The proposed approach utilizes an adaptive dynamic pro-
gramming algorithm to formulate the optimal control strategy, leveraging the nonlinear
dynamics inherent in the structure. The architecture of the proposed system encompasses
three fully connected MLPs: a plant network, a critic network, and an action network.
The modeling was performed on the NREL 5 MW floating wind turbine model using
FAST code, as shown in Figure 8. The simulation outcomes of the proposed technique
showcased its commendable performance across both regular operational conditions and
challenging scenarios. Notably, the standard deviation of the platform pitch displacement
witnessed a reduction of approximately 40%. Moreover, the algorithm exhibited a balanced
consideration between control effectiveness and power consumption trade-offs.

Dehghan Manshadi et al. assessed the feasibility of a hybrid energy system with
vortex bladeless wind turbines and Searaser wave energy converters along the coast [70].
The study aimed to predict net power generation based on environmental conditions. The
optimized setup included ten turbines and converters, with equations formulated for net
force and wind turbine power. Using numerical simulation and experimental data [71], ML
techniques like recurrent neural networks, LSTM, random forest, and SVM were applied
to predict parameters. The algorithms were compared for prediction accuracy, and the
individual and combined power output of the hybrid system was analyzed. The study
proposed an optimal hybrid configuration and demonstrated the potential for integrating
these technologies for coastal energy production. In a different study, Velino and their team
introduced a ML-based control approach that employs a genetic program to iteratively
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evolve effective control strategies [72]. These strategies are developed using sensor data
from simulated floating offshore wind turbines, simulated within the OpenFAST simula-
tion environment. The method’s viability was showcased by achieving a 41% reduction
in fatigue and ultimate loading. This reduction was demonstrated under the conditions
stipulated by the Aerodynamic Turbines with Load Attenuation Systems (ATLAS) com-
petition, hosted by the Advanced Research Projects Agency–Energy (ARPA-E). Unlike
approaches reliant on opaque models like some ML techniques, the proposed method
generates interpretable outcomes. As a result, it aids in identifying crucial design aspects
to inform future controller development.

Figure 8. Diagrammatic representation of the floating wind turbine model incorporated into FAST,
interconnected with the damping system formulated by [69].

In their work, Yonggao and Yi presented a novel neural network-based approach for
generating an auxiliary decision-making toolbox to optimize reactive power compensation
in offshore wind farms [73]. They applied this approach to two 300 MW capacity projects:
one with DFIG wind turbines connected by two submarine cables and another with PMSG
wind turbines and a single submarine cable. By considering factors like turbine type, cable
properties, voltage levels, and high-voltage shunt reactor location, their MLP network
could predict capacities for onshore and offshore systems. The proposed compensation
schemes were validated through assessments of reactive power balance, power frequency
overvoltage, and voltage fluctuation, affirming the efficacy of the model.

Moreover, Meng et al. introduced an ML model that implements attention mechanism,
CNN fusion, and bidirectional gated recurrent unit [74]. This model operates at an ultra-
short-term horizon and focuses on predicting the output of individual wind turbines. By
integrating real-time meteorological data within the wind farm, historical power data from
turbines, and current operational data, the model undergoes parallel training. The proposed
structure extracts salient features from the input data, enabling bidirectional modeling
using CNN-derived dynamic feature variations. The model’s efficacy was validated using
actual observational data from wind farms with a rated power of 200 MW in Northwest
China. The resultant predictions from individual turbines are used to compute the wind
farm’s overall power output. Comparative experimentation against advanced mainstream
models could underscore the proposed model’s better performance.

Furthermore, Zhang et al. introduced a multi-objective predictive control strategy for
floating offshore wind turbines [75]. Their approach, based on a gated recurrent neural
network, incorporated multi-objective optimization to enhance pitch angle control while
adhering to constraints. Extensive FAST simulations covered diverse wind conditions.
The study established a comprehensive coupled block diagram, showcasing the dynamic
simulation environment and control scheme, as seen in Figure 9. The proposed approach
used blade element momentum theory and the Morrison equation to estimate aerodynamic
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and hydrodynamic loads whereas the mooring system was modeled by MoorDyn [76].
Compared to collective pitch control and gain scheduling proportional–integral individual
pitch control, the proposed method achieved power output closer to the rated level.

(a)

(b)
Figure 9. (a) The schematic of the modeling procedure for the floating offshore wind turbine and
(b) the block diagram of the proposed control system by [75]. Here, DEA stands for distribution
estimation algorithm and GRNN represents a gated recurrent neural network.

In response to the obstacles posed by offshore wind farms situated at a considerable
distance from the primary grid and the necessity for precise power flow examination within
the primary grid, Pham and Li devised an MLP model [77]. This model aimed to forecast
power flow outcomes by leveraging historical power system data. An assessment of perfor-
mance was carried out, comparing the newly suggested neural network-based power flow
model with the conventional DC power flow model. The proposed model demonstrated a
better capability to more precisely discover solutions in comparison to the DC power flow
model. In another study, Chen and Hu introduced an AI-based approach to predict the
dynamics of floating offshore wind turbines [78]. The work investigates key disciplinary
parameters (KDPs) within the proposed approach, categorizing them into environmental,
disciplinary, and specific groups. The study uses reinforcement learning to optimize the
quantity and boundaries of KDPs, using experimental data. Results demonstrated that
a well-chosen set of KDPs leads to more accurate predictions, with defined boundaries
aiding algorithm convergence.

Unlike the construction of new offshore wind farms, the goal of the renovation is to
incorporate new wind turbines while maintaining the existing configuration. This presents
an optimization challenge constrained by the presence of initial wind turbines. Yang and
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Deng introduced a wind farm layout optimization framework that employs an ML wake
model to enhance power production while retaining the original wind turbines [79]. The
approach optimized the arrangement of newly incorporated wind turbines within the
constraints of the existing ones. Unlike conventional wind farm expansions, no additional
land is necessary. Moreover, the integration of new turbines minimally affects the perfor-
mance of the original ones, allowing for flexible application during the entire operational
phase of offshore wind farms. The accuracy of their ML wake model was validated to
be comparable to CFD simulations. Notably, their unconstrained optimization displayed
similar performance to renovation plans, with an error margin under 0.3%. Increasing
the number of wind turbines from 80 to 120 led to a slight decrease in normalized annual
energy production, dropping from 96.6% to 93.4%, equating to a 3% to 4% rise in power
loss. Simultaneously, capacity density surged by a significant 50%, all within the same area.

Ahmad et al. explored the application of an MLP network to model a hybrid floating
wave energy–wind turbine platform and subsequently introduced a fuzzy logic control
system to implement a structural controller aimed at mitigating undesirable vibrations
within the platform [80,81]. The team employed OpenFAST and WAMIT for hydrodynamic
modeling and the results showed that the MLP-based model could promise a simpler yet
effective alternative to more complex nonlinear dynamical models for NREL 5 MW floating
offshore wind turbines. Additionally, their control approach led to improved dynamic
behavior of the platform, enhancing its stability across a wide range of wind and wave
conditions.

All the works discussed in this section have been listed in Table 2, accompanied by
concise research summaries and the corresponding ML techniques employed in each study.

Table 2. Summary of the work reviewed in this section, focused on Performance Modeling and Opti-
mization.

Auth. and Cit. ML Technique Summary

Lee et al. [28] MLP Development of optimization algorithms using neural networks
for wind and bathymetric maps.

Pappala et al. [29] MLP Forecast wind characteristics as part of their optimization model
for wind farm predictive control.

Japar et al. [30] Linear Regression, Nonlinear
Regression, MLP, SVR

Employed machine learning models to predict power output and
estimate losses due to wake effects in large wind farms.

Antoniadou et al. [32] MLP with Gaussian process Used neural network Gaussian processes to construct reference
power curves for wind turbines and predicting power output.

Rodrigues et al. [33] Reinforcement Learning Utilized reinforcement learning for online control of multi-
terminal DC networks connecting offshore wind farms.

Ou et al. [34] Recurrent Fuzzy Neural Net-
work

Proposed an intelligent damping controller for offshore wind and
wave power integration.

Fischetti and Fraccaro [35] Linear Regression, MLP Predicted the optimal production of offshore wind farms based
on various factors.

Fischetti and Fraccaro [36] Mixed Integer Linear Pro-
gramming

Used machine learning to optimize wind farm layouts, including
considering factors like wake effects.

Lu et al. [37,39]
Recurrent Fuzzy Neural
Network, Recurrent Wavelet-
basedElman Neural Network

Design of a damping controller for a Static Synchronous Com-
pensator in an offshore wind farm as well as integration of wind
and wave energy conversion systems using machine learning
controllers for improved performance.

Noppe et al. [38] MLP Used a technique to reconstruct the thrust load history of a wind
turbine using high-frequency SCADA data.

Häfele et al. [40] MLP with Gaussian Process Implemented Gaussian process regression for cost-effective opti-
mization of offshore wind turbine jacket substructures.
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Table 2. Cont.

Auth. and Cit. ML Technique Summary

Yin and Zhao [41]

General Regression Neural
Network, Random Forest,
SVM, Gradient-Boosting Re-
gression, and Recurrent Neu-
ral Network

Created predictive models for offshore wind farms using various
machine learning algorithms.

Pillai et al. [43] Random Forest Developed a multi-objective optimization for mooring systems of
floating offshore wind turbines.

Li et al. [44] MLP Developed models for optimization of wind turbine systems, in-
cluding mooring and blade pitch control.

Penner et al. [46] MLP Utilized models, including MLP and Frequency Domain Decom-
position, for modeling and monitoring offshore structures.

Jonkman and Vijayakumar
[47,48] LSTM

Developed an advanced unsteady aerodynamics and dynamic
stall model using an LSTM surrogate model for wind turbine load
analysis codes.

Pandit and Kolios [50] SVM
Proposed methods to quantify the uncertainty of an SVM-based
power curve model using radial basis functions and confidence in-
tervals.

Yu et al. [52] Graph Neural Network
Utilized graph neural networks to connect wind turbines within a
wind farm based on geographical locations, improving prediction
accuracy.

Dong et al. [53] Reinforcement Learning
Developed a deep reinforcement learning-based wind farm con-
trol scheme to optimize power generation under various wind
conditions.

Lian et al. [56] MLP
Developed an MLP-based regression model to relate loading con-
ditions to the long-term performance of a foundation model for
offshore wind turbines.

Chen et al. [57] Reinforcement Learning
Proposed a simulation annealing diagnosis algorithm to optimize
dynamic response prediction of floating offshore wind turbines
using reinforcement learning.

Miao et al. [58] MLP, Multiple Linear Regres-
sion

Used MLP network and multiple linear regression to evaluate the
reliability of offshore wind farms considering climatic factors.

Mattsson et al. [59] Gradient-Boosting Regression
Model

Used gradient-boosting regression to generate synthetic hourly
electricity demand series for large-scale energy system mod-
els worldwide.

Kheirabadi and Nagamune
[61,62] MLP

Used MLP networks in Distributed Economic Model Predic-
tive Control to optimize power generation in floating offshore
wind farms.

Yin and Zhao [63] CNN-LSTM Proposed a hybrid CNN-LSTM model for forecasting the outputs
of offshore wind farms, achieving high prediction accuracy.

Anagnostopoulos and Pig-
gott [64] MLP Developed an MLP-based model for wind farm flow field model-

ing using FLORIS wake fields.

Jothinathan et al. [66] MLP Used MLP-based controllers to handle the nonlinear dynamics of
offshore wind turbine jacket structures.

Keighobadi et al. [67] MLP with Radial Basis Func-
tions

Designed an adaptive controller for floating offshore wind tur-
bines using a radial basis functional MLP controller.

Kayedpour et al. [68] MLP Used MLP networks in Model Predictive Control to enhance the
operational effectiveness of wind turbine control systems.
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Table 2. Cont.

Auth. and Cit. ML Technique Summary

Zhang et al. [69] Reinforcement Learning Developed a reinforcement learning-based strategy for structural
control of floating wind turbines.

Dehghan Manshadi et al. [70] Recurrent Neural Network,
LSTM, Random Forest, SVM

Developed models to predict power generation in a hybrid en-
ergy system combining vortex bladeless wind turbines and wave
energy converters.

Velino et al. [72] Machine Learning Control Introduced a machine learning-based control approach using ge-
netic programming for floating offshore wind turbines.

Yonggao and Yi [73] MLP Used MLP networks to predict capacities for onshore and offshore
systems for reactive power compensation.

Meng et al. [74] CNN, Bidirectional Gated Re-
current Unit

Developed models for ultra-short-term wind farm power predic-
tion using real-time meteorological data.

Zhang et al. [75] Gated Recurrent Neural Net-
work

Proposed a multi-objective predictive control strategy for floating
offshore wind turbines using gated recurrent neural networks.

Pham and Li [77] MLP Developed an MLP model for power flow predictions in offshore
wind farms.

Chen and Hu [78] Reinforcement Learning Used reinforcement learning to predict the dynamics of floating
offshore wind turbines and optimize key parameters.

Yang and Deng [79] MLP Employed an ML wake model to optimize wind farm layout while
retaining existing turbines.

Ahmad et al. [80,81] MLP
Developed an MLP-based model for a hybrid floating wave
energy-wind turbine platform and introduced a fuzzy logic con-
trol system.

A potential research gap that can be identified from the literature is the limited mention
of the integration of real-time data and dynamic modeling for adaptive optimization.
Although the literature discusses various machine learning methods for optimizing wind
farm layouts, estimating power losses due to wake effects, and improving control strategies,
there is less emphasis on the incorporation of real-time data and dynamic modeling into
these optimization processes. Real-time data, such as weather conditions, power demand,
and turbine health, can significantly impact the performance of wind farms. Research that
focuses on developing adaptive optimization strategies that continuously adjust based on
real-time data could lead to more efficient and reliable wind farm operations. Additionally,
dynamic modeling techniques that account for changing environmental conditions and
equipment degradation over time could further enhance the accuracy of performance
predictions and optimization efforts.

5. Health Monitoring and Maintenance

The impending shift from onshore to offshore wind farms is inevitable, accompanied
by a myriad of challenges. Foremost among these challenges is the conundrum of con-
ducting offshore maintenance operations amidst unfavorable environmental conditions,
leading to increased downtime. To address this, the concept of condition-based main-
tenance emerges, leveraging system condition information to facilitate decision-making
while balancing financial constraints and energy productivity objectives.

The integration of upper and lower floating offshore wind turbine platforms neces-
sitates the use of multiple tendons to ensure stability, safety, and reliability. To mitigate
operation and maintenance costs associated with these intricate systems, effective damage
diagnosis and prognostic management methods are indispensable. An intelligent fault
diagnosis system can be developed for offshore floating wind turbine generators to enhance
efficiency, accuracy, and reduced maintenance expenses [82].
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A comprehensive review of ML-based offshore wind farm condition monitoring
techniques can be found in [83]. Exploring the landscape of corrosion fatigue assessment in
horizontal-axis offshore wind turbines, Okenyia et al. advocated the potential of digital
twins, amalgamating finite element analysis, material modeling, artificial neural networks,
data analytics, and Internet of Things (IoT) with sensor technologies to address challenges in
shallow and deep water installations [84]. Additionally, Pezeshki and colleagues conducted
an extensive literature review on structural health monitoring for offshore and marine
structures, considering the prospect of ML implementations [85].

The criticality of power transmission systems in offshore wind farms cannot be over-
stated. Operating across demanding environmental conditions, subsea cables connect deep
offshore installations to the mainland, enabling seamless integration with the power grid.
The susceptibility of these cables to failure presents significant economic implications, with
over 80% of insurance claims within the offshore wind energy sector attributed to subsea
cable failures.

Researchers have been harnessing the power of ML to provide efficiency and reliability
for wind farms. From predicting failures and maintenance requirements to making these
systems more reliable in the harsh environment of the ocean, the ML techniques have been
implemented in various capacities and forms.

Combining a self-organizing map (SOM) and an MLP neural network, Hameed et al.
developed a model to predict the power output of turbines in the Lillgrund Wind Farm,
which is situated approximately 10 km off the coast of southern Sweden [86]. SOM is
an unsupervised machine learning technique that is often utilized for clustering and
visualizing high-dimensional data by mapping them onto a low-dimensional grid. In
this study, the SOM network was employed to cluster the turbines based on their power
output data. Subsequently, an MLP neural network was utilized to predict power output
in advance to efficiently plan and execute maintenance and repair tasks. The final model
was able to predict the power output with an accuracy of 95%.

In order to develop an effective non-parametric model to detect gearbox failures in
wind turbines, Wang and Infield utilized historical data obtained from a commercial wind
farm [87]. The model took the form of a non-linear state estimation technique and was
designed to perform anomaly detection. The data used for the study consisted of 10 min
intervals of SCADA data. To construct the model, a total of ten turbines were employed,
with seven turbines contributing to the training dataset, and an additional turbine being
used for validation purposes. Further, they selected two turbines that had previously expe-
rienced gearbox failures, employing them in a series of case studies. The input parameters
for the model were rotor (or generator) speed, power output, nacelle temperature, and
generator cooling air temperature. They concluded that a model developed based on the
operational conditions of one specific turbine could be successfully applied to other similar
turbines situated in various locations within the same wind farm.

Focused on Lillgrund Wind Farm (see Figure 10), Dervilis et al. implemented an
MLP network to predict the blade-loading response of wind turbines using power output
data [88]. They proposed utilizing the regression model error as an indicator of anomalies
in the structural response. The model was developed based on the results of numerical
simulations of this wind farm previously presented by Creech et al. [89]. One potential
application of these techniques was to examine the cascading effects of single turbine failure
and optimize the layout of wind turbine arrays for reliability investigations.
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Figure 10. The layout of Lillgrund Wind Farm used for numerical simulations of the farm discussed
in [88]. This information was obtained from the Lillgrund Wind Farm, owned and operated by
Vattenfall [90].

Pattison et al. introduced an innovative maintenance architecture for offshore wind
farms [91]. Their approach involved fault detection in a wind farm with over 100 turbines, up-
dating survivability models, establishing a maintenance hierarchy, and optimizing schedules
for maximum turbine availability and revenue. The solution included three main modules:
Intelligent Condition Monitoring (ICM) analyzed SCADA and sensor data for mechanical
features; the reliability and maintenance modeling (RMM) module modeled component
survival using statistical analysis and ICM input; and the maintenance scheduling module
created a context-enhanced maintenance schedule using RMM estimations. Twelve months
of historical data and the random forest algorithm were used for model development. The
overall goal was cost and downtime reduction through predictive maintenance.

In their study, Helsen et al. introduced a big-data approach aimed at gaining insights
to predict component failure [92]. To achieve this, they required an integrated clean dataset
encompassing all turbines in the fleet over an extended period. The researchers explored a
multi-level monitoring approach that combined ML with advanced physics-based signal-
processing techniques. To demonstrate the potential use of their approach, they conducted
a multi-month measurement using accelerometers mounted on a wind turbine gearbox.
However, it is important to note that although they showcased the potential of the proposed
approach, they did not integrate actual ML techniques with the big data approach in their
study. In a separate research, Li and Choung proposed using MLP networks to predict
fatigue damages in the mooring lines of a floating offshore wind turbine platform [93].
To achieve this, they conducted dynamic analyses of the mooring lines using ANSYS in
the time domain, considering various load cases involving a combination of the 5 MW
baseline wind turbine [94] and a semi-submersible floating platform [95]. Tension histories
were collected for all these load cases and subsequently transformed into tension range
distributions. These outcomes served as the training data for the MLP. The network’s input
consisted of four variables: significant wave heights, zero-crossing periods, wave and wind
directions, and current speeds. The researchers employed both time domain simulations
and the MLP model to predict fatigue damage in the mooring lines for new load cases.
Notably, the model demonstrated a strong capability in predicting fatigue damage in the
mooring lines.

Kandukuri et al. conducted a study in which they extracted a total of 19 features
based on the physics of failure, time, and frequency domain statistical parameters from the
motor current Park’s Vector components [96]. These features were then used as inputs for
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an SVM-based classifier. The primary aim of this research was to diagnose bearing faults
in three-phase induction motors, specifically those suitable for applications in offshore
wind farms. To verify the effectiveness of their proposed approach, the authors performed
experiments using 600 test cases measured in a laboratory environment. Approximately
50% of the data was utilized for training the classifier, whereas the remaining data were used
for validation purposes. The proposed SVM classifier achieved a classification accuracy of
about 96% across all test cases.

In their study, Muller et al. utilized data collected from simulations of a hybrid
offshore wind turbine model, which combined the DTU 10 MW reference turbine [97] with
the SWE TripleSpar [98]. They employed the FAST software (v6.0) developed by NREL
to implement an MLP for fatigue analysis of floating offshore wind turbines [99]. The
model was trained using four environmental conditions, namely wind speed, turbulence
intensity, wave height, and wave period, with a specific focus on the fatigue loads that
occurred during power production. For training and validation purposes, 70% of the
available data was utilized, whereas the remaining 30% was used for validation and testing.
The study’s findings indicated that a fully stochastic approach for fatigue assessment is
feasible, highlighting the potential for reducing fatigue load estimates. Furthermore, Li et
al. proposed an approach based on MLP to establish a mapping between the environmental
conditions of catenary mooring lines of offshore wind turbines and fatigue damages [100].
For the case study, they utilized ANSYS AQWA to generate time domain hydrodynamic
results for an 8 MW floating offshore wind turbine. To conduct their research, the authors
collected oceanic data from the Jeju area offshore South Korea, which served as the input
both for the ANSYS simulations and the MLP model training. The model’s primary output
was the tension distributions in each mooring line. To validate the effectiveness of their
approach, the authors compared the fatigue damage predictions from the MLP models
with those obtained through time-domain fatigue analyses. The results demonstrated
that their MLP-based approach consistently predicted wide-banded fatigue damages with
high accuracy.

In their study, Lu et al. conducted a comprehensive comparative analysis encom-
passing failure rates, maintenance costs, and repair times using data from 350 offshore
wind farms aged between 3 and 10 years. The dataset included information from 5 to
10 wind farms located in Europe [101]. The statistics derived from this data are depicted in
Figure 11. Next, the authors proposed the implementation of an MLP network to predict
the life percentage of wind turbines by utilizing condition monitoring information. This
involved leveraging a conditional failure probability value derived from the predicted
failure-time distribution of the components. They sourced failure information and mainte-
nance cost data for wind turbines from the relevant literature. The ultimate objective of
their proposed technique was to optimize the maintenance cost for offshore wind turbines.
Through a comparative study, the authors demonstrated the effectiveness of their method.
Additionally, they performed an expense comparison between onshore and offshore wind
turbines to emphasize the importance of adopting a condition-based maintenance strategy
for offshore wind turbines.

Papatzimos et al. conducted a study at Teesside offshore wind farm, comprising
27 2.3 MW turbines, over a period of up to 2.5 years before a gearbox exchange [102,
103]. They proposed a decision support framework integrating various supervised and
unsupervised learning algorithms. Using SCADA and condition monitoring systems data
from the faulty turbine, they employed statistical methods and ML techniques such as
SVM, k-nearest neighbors (KNN), decision tree, logistic regression, and bagging ensemble
to predict future failures. The results emphasized the significance of different data sources
in gearbox failure diagnosis and early detection for Teesside offshore wind farm and similar
turbines, with temperature readings serving as valuable early warning indicators for the
gearbox’s components. However, the analysis did not consider environmental temperature,
which might have had a limited impact on the findings.
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(c)
Figure 11. Statistics related to the maintenance of offshore wind turbine components: (a) failure rate,
(b) repair time, and (c) maintenance cost [101].

A study published by Ziegler et al. presents a novel load monitoring concept for off-
shore wind turbines, requiring only strain gauges at one level of the support structure [104].
The method calculates damage equivalent loads from strain measurements and extrapolates
them along a monopile using a regression algorithm. The authors verified the algorithm’s
performance using two consecutive months of measurement data from an offshore wind
park, separately for two turbines with strain gauges installed at distances of approximately
15 m and 25 m. Both linear regression and nonlinear KNN approaches yielded similar
results for total fatigue damage, but discrepancies were observed in individual 10 min
damage equivalent loads, favoring the more robust KNN algorithm, especially for small
loads. Unexpectedly, extrapolation results were better for the turbine with a larger distance
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between strain gauges, potentially indicating higher sensitivity to measurement noise than
the distance between the gauges.

Cavazzini et al. introduced a modular wind turbine annual energy production loss
prediction system, which addressed the lack of a reliable and rapid system for assessing
energy losses and load variations in wind turbines due to blade surface damage [105]. The
system combines data, CFD, and physics-informed models to predict the power curve of a
turbine with damaged blade surfaces. It maps damaged blade geometries onto a database
of airfoil geometries using a model developed with an MLP. The study demonstrated the
system’s capabilities on a damaged NREL 5 MW turbine, revealing an approximate 8%
reduction in turbine annual energy production for the considered damage, consistent with
other estimates in the literature.

Qiu et al. developed an improved neural network damage prediction method based
on step-by-step identification for offshore wind turbine tower structures [106]. To map the
relationship between modal parameters and damage degree of wind turbine towers, they
utilized MLP with a genetic algorithm for global stochastic searching. They conducted
experimental tests on simplified wind turbine models with steel cylinders with varying
damage locations and degrees to verify the finite element models. The data, generated
using the verified model in ABAQUS, were used to train and validate the proposed method.
Results demonstrated that the step-by-step prediction method effectively reduced network
complexity, improved prediction accuracy, and saved training time.

Langenkamper et al. introduced a visualization method called the “virtual twin” [107].
They employed three distinct image data collection techniques: first, a trained inspec-
tor/climber captured photos of specific parts using a hand-held digital camera; second,
a remote-controlled UAV took images or videos of the wind turbine in a regular pattern,
covering as much of the visually accessible surfaces as possible; and third, images were
taken by a person from three or four different viewpoints around the wind turbine. For
developing the ML model, they utilized Mask R-CNN object detection and instance seg-
mentation [108]. The results demonstrated the model’s efficacy in detecting and classifying
patterns of interest, such as rust or coating damage. The authors concluded that by com-
bining various imaging methods, deep learning computer vision algorithms, and visual
data exploration by experienced users, the method holds the potential to overcome the
bottleneck in data analysis, interpretation, and decision-making during future inspections
of offshore wind platforms. In a different study, Wang et al. proposed a real-time hybrid
method using wavelet noise reduction combined with decision tree algorithm for fault
detection in deep-sea transmission lines of offshore wind farms [109]. The method was
robust and immune to fault resistance, starting angle, and location, as shown in simulations
with over 1600 fault data.

Hoxha et al. introduced a novel ML-based vibration-response-only strategy for real-
time monitoring of the jacket-type foundation of an offshore wind turbine during its
service [110]. To validate their approach, they conducted a series of laboratory tests on a
down-scaled jacket wind turbine foundation, which measured 2.7 m in height (as depicted
in Figure 12). These tests involved inducing different types of damage, encompassing
four distinct structural states. The structure’s vibration was measured using eight triaxial
accelerometers, and a total of 100 experimental tests were performed at various turbine
speed regions. For damage classification, they employed diverse classifiers, including
KNN and SVM with different kernels. Figure 12 illustrates the overall data acquisition,
processing, and damage classification procedure used in their study. The proposed model
surpassed a 97% threshold for average accuracy.

Li and Zhang introduced a novel probabilistic long-term fatigue damage assessment
approach, employing a copula model and surrogate model, for a spar-type floating wind
turbine [111]. The study focused on the NREL 5 MW reference wind turbine installed
on the OC3-Hywind spar-type floating platform, operating under realistic environmental
conditions. To obtain the structural responses under different environmental conditions,
coupled dynamic analyses were performed using the multiphysics code FAST. Six wind-
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and wave-related environmental parameters were utilized to accurately describe the on-
site environmental conditions. An MLP network was established to predict the fatigue
response for different combinations of these parameters. The proposed model exhibited
great prediction accuracy for short-term fatigue damages in three structural components of
the floating wind turbine; namely, the mooring lines, the tower base, and the tower top.

(a) (b)
Figure 12. (a) The laboratory test rig used by [110] showing also the location of the damaged bar by
red circle, and (b) the flowchart summarizing the damage diagnose strategy proposed by [110].

Schröder et al. proposed a methodology to correlate loads with turbine reliability in
wind farms by combining physical modeling and an MLP network [112]. The approach was
demonstrated on an offshore wind farm, comparing performance, loads, and lifetime esti-
mations against recorded main bearing failures from maintenance reports. Validating the
estimated power against 10 min supervisory control and data acquisition power signals, the
surrogate model showed an average error of 1.5% in predicting annual energy production.
Unsurprisingly, turbines positioned at the wind farm’s border, with higher expected annual
energy production, were estimated to experience earlier main bearing failures. However,
no definitive connection between load estimations and failure observations was established
in this study. On the other hand, a work by Baboli et al. presents a model for optimal
condition monitoring and anomaly detection in wind turbine key components [113]. The
approach uses continuous temperature monitoring and a tailored MLP network to estimate
normal conditions. By comparing real-time data, it detects abnormalities and predicts
potential failures before they occur. The model’s effectiveness was proven using real data
from a German offshore wind farm.

Cho et al. presented a fault diagnosis approach centered around an MLP network
structure, specifically designed to detect and diagnose predetermined faults in the hydraulic
blade pitch system of a spar-type floating wind turbine [114]. The method employed a
hybrid framework, combining the Kalman filter for fault detection and an artificial neural
network for fault diagnosis. To assess its effectiveness, the proposed scheme underwent
rigorous testing using case studies on the NREL 5 MW wind turbine model supported
by a spar buoy floater (OC3-Hywind). In the experimental phase, researchers considered
six specific types of faults, including biases and fixed outputs in pitch sensors, as well as
excessive friction, slit-lock, wrong voltage, and circuit shortage in actuators. The results of
the experiments demonstrated an overall accuracy rate of 97.5% for each type of fault.

Furthermore, Pandit et al. proposed a data-based Gaussian process for fault detection,
which used additional operational parameters (rotor speed and blade pitch angle) to
improve accuracy [115]. The model was validated against existing methods for early failure
detection with a low false positive rate. Moreover, the proposed model was trained and
validated using historical SCADA 10 min data of an operational variable pitch-regulated
turbine manufactured by Siemens and rated at 2.5 MW. Comparative analysis showed
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that incorporating rotor speed into the fault detection algorithm significantly enhanced
early fault detection capability. The new approach detected the first sign of yaw error in
just 40 min, whereas the previous method without rotor speed took 1.5 h for the same
detection. Additionally, Trizoglou et al. proposed a data-driven approach using the existing
SCADA system and ML techniques to design a normal behavior model for fault detection
in a 7 MW offshore wind turbine [116]. They compared an XGBoost ensemble model
with an LSTM deep learning neural network, with the XGBoost model outperforming
the LSTM in accuracy and training time. The model could detect faults and failures in
generator subsystems.

Feijóo et al. introduced an innovative autoencoder neural network model in their
study [117]. Their methodology encompassed the following steps: simulating wind ex-
citation with Gaussian white noise, collecting wind turbine data using accelerometers,
preprocessing raw data (including cleaning, normalization, feature engineering, and ad-
dressing imbalanced data), and employing an autoencoder neural network for damage
classification. To validate their approach, experimental laboratory tests were conducted
using a scaled model similar to a prior study [110]. Figure 13 visually outlines their proce-
dure. Applying this methodology, they evaluated 5 mm crack damage across various jacket
wind turbine structure bars and wind excitation levels. The model achieved an accuracy of
99.8%, a precision of 99.7%, and a recall of 100% in the controlled laboratory conditions.

Figure 13. The health monitoring procedure proposed by Feijóo et al. [117].
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Roelofs et al. introduced ARCANA, an innovative autoencoder-based method for pin-
pointing root causes behind anomalies detected by autoencoders [118]. The intention was
to enhance the interpretability of ML model outputs, making them more human-friendly.
The method employs an optimization algorithm to isolate input features responsible for
triggering anomalies in the autoencoder model. The study employed the Open Wind
Farm dataset from EDP [119], encompassing SCADA data and a failure logbook for five
2 MW wind turbines. These data involve 55 measurements, such as wind speed, gener-
ator temperatures, wind direction, and pitch angles, recorded as 10 min averages. The
authors concluded that ARCANA simplifies anomaly cause identification by highlighting
feature contributions. However, interpreting results and deducing underlying failures or
environmental changes still requires domain knowledge.

Tang et al. introduced a feature extraction technique founded on mathematical mor-
phology for categorizing internal transient overvoltages in offshore wind farms [120,121].
This approach involves a multi-scale mathematical morphology to discern the high-/low-
frequency aspects of transient overvoltages. Subsequently, a high-frequency feature and
a high-/low-frequency energy ratio feature are developed as identifying traits. The
feature-rich framework is harnessed alongside an SVM to differentiate between diverse
internal transient overvoltage types. The efficacy of the proposed feature extraction
was validated using simulations and empirical results. Outcomes demonstrated that
the proposed approach effectively distinguishes and classifies various internal transient
overvoltage categories.

Yeter and colleagues introduced a nonlinear corrosion model to tackle offshore wind
turbine life assessment [122]. The proposed model accounts for changing environmental
and operational factors, as well as the impact of fractures on corrosion; although the study
initially focused on a single offshore wind asset, its findings were extended to encompass
various offshore wind farms. The researchers also conducted an economic analysis, combin-
ing revenue projections, operating costs, and factors like lifespan extension and discount
rate. The life-extension evaluation’s outcomes were graphed in a risk–return diagram,
and an unsupervised ML k-means clustering algorithm was employed to categorize the
life-extension projects. From the clustering results, the authors suggested leveraging opera-
tional intensity and hedging options to manage projects across different clusters based on
risk preferences and time during the life-extension phase.

Furthermore, a study conducted by Santos et al. focused on determining the minimal
instrumentation required for accurate assessment of fatigue damage in offshore wind
turbines [123]. The SCADA data were transformed into 10 min interval features, resulting
in 430 potential features. The authors compared feature selection algorithms to choose the
most cost-effective sensor setup. The selected features were used as input for a second MLP
that predicts tower fore-aft bending moment damage equivalent loads, a fatigue-related
metric. The best-performing setups yielded accurate damage-equivalent load predictions
with around 1% mean absolute error.The study concluded by applying the MLP-based
method to a farm-wide scenario and investigated outlier behavior causes.

Xu et al. developed a multi-scale deep convolutional neural network model coupled
with an attention mechanism to identify and quantify damages in complex tendons of
multibody floating wind turbines [124]. This approach was evaluated using the TELWIND
FOWT numerical framework, integrating FAST and ANSYS AQWA (F2A) for comprehen-
sive aerohydro-servo-elastic analysis. The results showed an accuracy of 80%. The authors
then further enhanced the approach by incorporating the Majority Weighted Voting rule,
borrowed from the particle swarm optimization concept, to minimize false alarms and
optimize collaborative diagnostics. Figure 14 illustrates the procedural workflow with the
Majority Weighted Voting rule. This integration boosted diagnostic precision, with the F1
index improving from 90% for single-sensor analysis and 84% for multi-sensor results to
a 94%.
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Figure 14. The health monitoring procedure proposed by Xu et al. [124]. Here, MWV stands for the
Majority Weighted Voting and MS-ACNN-MWV represents the procedure introduced by the authors
in their work.

Eze et al. introduced an ML-based methodology for the detection and prediction of
faults in deep offshore subsea cables [125]. Their approach employed a combination of algo-
rithms including extreme gradient-boosting ensemble, Gaussian naive Bayes, and decision
tree models. The research data were obtained from Intelligent Electronic Devices installed
at both ends of a power transmission system connecting a wind farm to an onshore station.
The outcomes demonstrated that both XGBoost and decision tree algorithms exhibited
optimal performance, achieving average accuracy, AUROC (a graphical representation
commonly used for classification model assessment [126]), and MCC (a binary classification
performance metric [127]) values of 99%, 98%, and 100%, respectively. In another study,
Encalada-Davila et al. proposed a comprehensive approach involving a semi-supervised
model based on a gated recurrent neural network for early detection of main bearing faults
in faulty wind turbines [128]. They employed an exponentially weighted moving average
technique to improve accuracy and reduce false alarms. The dataset used in the research
covered 18 wind turbines with specific parameters such as the mean main bearing tem-
perature, mean generator bearing temperature, mean gearbox oil temperature, and mean
primary wind speed, gathered from 2015 to 2018. The model demonstrated robustness,
accurately predicting faults two months in advance without generating false alarms.

Attallah and colleagues proposed an ML method to detect interturn short-circuit
faults in induction rotating machines [129]. The dataset included thermographic images
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used in prior studies for fault diagnosis [130,131]. The procedure adjusts image sizes,
augments them, constructs eight pre-trained CNNs for feature extraction, fuses features,
selects impactful ones, and classifies faults for health, type, location, and severity. For
the classification analysis, the authors used linear discriminate analysis, SVM, KNN, ran-
dom forest, naive Bayes, and decision tree, where the first three could deliver the most
accurate results. In another study, Saleh et al. combined advanced Petri net modeling
with reinforcement learning, resulting in a versatile methodology applicable to optimizing
various Petri net models [132]. The method, called intelligent Petri net, fuses reinforce-
ment learning techniques with Petri net principles. The effectiveness of this approach
was demonstrated through a practical case study focused on wind turbine operation and
maintenance, leveraging real-world operation and degradation data. The method could
achieve optimal condition-based maintenance with an availability rate of 99.4% while
simultaneously minimizing operational costs.

Sun et al. tackled the fatigue issues in floating offshore wind turbine moorings due
to prolonged exposure to wind, waves, and currents [133]. They introduced a CNN-
t-distribution Stochastic Neighbor Embedding model to automatically detect damage
severity in these systems. This involved analyzing platform bow rocking dynamics through
deep learning and chaos theory, focusing on creep occurrence and its location within the
mooring. Their study centered around a 5 MW floating wind turbine on the ITI Energy
Barge platform developed by NREL. Specifically, the CNN structure shown in Figure 15
was used to assess mooring dynamics. The authors found that during mooring creep, the
platform’s response experienced minimal changes, but the response increased significantly
after mooring failure. They concluded that the bow rocking response was highly sensitive,
particularly observing that the yaw response showed the most sensitivity to structural
damage.

Figure 15. The architecture of the CNN used by [133] as part of their framework for damage detection
in floating offshore wind turbine mooring systems.

Table 3 provides a list of the literature covered in this section, along with the corre-
sponding ML techniques employed and concise summaries of the research conducted.

First and foremost, there is a pressing need for research that seamlessly integrates data
from diverse sources, going beyond the confines of SCADA data to encompass environ-
mental factors, sensor readings, and remote monitoring systems. Such integration must be
complemented by the development of advanced data fusion techniques that can unravel
complex interdependencies within the data.

Moreover, the industry stands to benefit significantly from models that can generalize
their findings across various wind farms and turbine models, enhancing their adaptability
to different offshore environments. The advent of Explainable AI is also paramount, partic-
ularly in providing transparent and interpretable insights to guide maintenance decision-
making. Real-time monitoring and predictive maintenance systems should be explored
further to enable continuous assessment of turbine health and on-the-fly maintenance
scheduling. Environmental factors and load analysis require more in-depth investigation
to comprehend their impact on turbine reliability. Additionally, ensuring data quality and
noise reduction, conducting comprehensive cost-benefit analyses, addressing cybersecurity
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concerns, and developing adaptive models that learn and adapt over time are all critical
aspects of future research in this field.

Table 3. Summary of the work reviewed in this section, focused on Health Monitoring and Maintenance.

Auth. and Cit. ML Technique Summary

Hameed et al. [86] Self-Organizing Maps, MLP Used self-organizing maps and MLP networks to efficiently plan
and execute maintenance and repair tasks.

Wang and Infield [87] Nonlinear State Estimation,
MLP

The models used for gearbox failure detection in wind turbines
using historical data.

Dervilis et al. [88] MLP Prediction of blade-loading response based on power output data.

Pattison et al. [91] Random Forest Modular maintenance architecture for offshore wind farms.

Helsen et al. [92] - Component failure prediction in wind turbines using a big-data
approach. Did not integrate actual ML techniques.

Li and Choung [93] MLP Fatigue damage prediction in mooring lines of floating offshore
wind turbines.

Kandukuri et al. [96] SVM Bearing fault diagnosis in three-phase induction motors for off-
shore wind farms using SVM.

Muller et al. [99] MLP Fatigue analysis of floating wind turbines using MLP networks.

Li et al. [100] MLP
Established a mapping between the environmental conditions of
catenary mooring lines of offshore wind turbines and fatigue dam-
ages.

Lu et al. [101] MLP Prediction of wind turbine life percentage using condition moni-
toring information.

Papatzimos et al. [102,103]
SVM, Decision Tree, KNN,
Logistic Regression, Bagging
Ensemble

Integration of supervised and unsupervised learning for gearbox
failure prediction.

Ziegler et al. [104] Linear Regression, Nonlinear
KNN

Load monitoring concept for wind turbines using strain gauges
and regression algorithms.

Cavazzini et al. [105] MLP Prediction of power curve of turbines with damaged blade sur-
faces using MLP and CFD models.

Qiu et al. [106] MLP Prediction of damage in wind turbine towers using MLP with
genetic algorithm.

Langenkamper et al. [107] Mask R-CNN Visual inspection of wind turbines using deep learning computer
vision algorithms.

Wang et al. [109] Decision Tree Detection of faults in deep-sea transmission lines of offshore wind
farms using wavelet noise reduction and decision trees.

Hoxha et al. [110] KNN, SVM Vibration-based monitoring for offshore wind turbine foundation
damage detection.

Li and Zhang [111] MLP Probabilistic fatigue damage assessment in floating wind turbines
using MLP-based approach.

Schröder et al. [112] MLP Correlation of loads with turbine reliability using physical model-
ing and MLP network.

Baboli et al. [113] MLP Condition monitoring and anomaly detection in wind turbine
components using temperature sensors and MLP network.

Cho et al. [114] MLP
Fault detection and diagnosis in hydraulic blade pitch system
using a hybrid framework with Kalman filter and artificial neu-
ral network.

Pandit et al. [115] MLP with Gaussian Process Improved fault detection in wind turbines incorporating rotor
speed and blade pitch angle.
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Table 3. Cont.

Auth. and Cit. ML Technique Summary

Trizoglou et al. [116] XGBoost Ensemble, LSTM Fault detection in wind turbine generator subsystems using
SCADA data and ML models.

Feijóo et al. [117] Autoencoders Damage classification in wind turbine structures using autoen-
coders.

Roelofs et al. [118] Autoencoders Interpretable method for anomaly detection using autoencoders.

Tang et al. [120,121] SVM Classification of internal transient overvoltages using mathemati-
cal morphology features and SVM.

Yeter et al. [122] K-means Clustering Life assessment and risk management for wind turbines.

Santos et al. [123] MLP Cost-effective sensor setups selection for accurate fatigue damage
prediction.

Xu et al. [124] CNN, Majority Weighted Vot-
ing

Diagnosing complex tendon damages in multibody floating wind
turbines using deep CNNs and Majority Weighted Voting.

Eze et al. [125]
Extreme Gradient-Boosting
Ensemble, Gaussian Naive
Bayes, Decision Tree

Fault detection in subsea cables with ensemble learning.

Encalada-Davila et al. [128] Gated Recurrent Unit Detection of main bearing faults in wind turbines using a semi-
supervised model.

Attallah et al. [129]

CNN, Linear Discriminate
Analysis, SVM, KNN, Ran-
dom Forest, Naïve Bayes, De-
cision Tree

Detection of interturn short-circuit faults in rotating machines.

Saleh et al. [132] Reinforcement Learning Combining Petri net modeling with reinforcement learning for
wind turbine operation and maintenance optimization.

Sun et al. [133] CNN Detection of creep and mooring damage in floating wind turbines
using CNNs.

6. Prospective

The application of ML techniques in the implementation of offshore wind turbines has
opened up a new era of possibilities. Researchers have made significant efforts in harness-
ing the power of ML to enhance various aspects of offshore wind energy systems. Structural
health monitoring and maintenance have been greatly improved through the predictive
capabilities of ML, allowing for accurate identification of potential failures and enabling
precision maintenance strategies. Moreover, ML has played a pivotal role in optimizing
wind farm layouts, power production forecasting, and wake effects mitigation, leading to
increased energy generation efficiency. The integration of ML-driven control systems has
shown a great potential for improving the operational strategies of offshore wind farms,
further enhancing their overall performance and energy output. Finally, climatic data pre-
diction and environmental studies have benefited from ML’s predictive capabilities, aiding
in the optimization of power generation and the assessment of environmental impacts.

As we look ahead, several promising research directions emerge in the domain of
implementing ML techniques for offshore wind turbines:

• Advanced Predictive Maintenance: Further advancements can be made in the realm
of predictive maintenance by integrating real-time data from various sensors and
sources. Research could focus on developing comprehensive models that not only
predict failures but also recommend optimal maintenance schedules and strategies.

• Intelligent Control Systems: ML’s potential in control strategies is vast. Future research
might delve into developing more intricate control algorithms that optimize the entire
wind farm’s operation, considering multiple variables such as weather conditions,
power demand, and energy storage.
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• Multi-Physics and Hybrid ML Modeling: Integrating ML with multi-physics modeling
could enhance the accuracy of predictions related to structural behavior, fatigue, and
performance. Combining ML’s data-driven insights with physics-based models can
provide a more holistic understanding of turbine dynamics. Further, combining the
strengths of ML with physics-based models can lead to hybrid models that capture
both empirical data and underlying physical principles. This can lead to more accurate
and adaptable models that evolve with changing operational conditions.

• Enhanced Environmental Impact Assessment: ML can contribute significantly to envi-
ronmental impact assessments, not just for marine ecosystems but also for interactions
with other industries such as fishing. Future research might focus on developing more
precise models that predict and mitigate the ecological consequences of offshore wind
farms.

• Fusion of Data Types: The fusion of various data types, such as satellite imagery,
weather forecasts, and oceanographic data, can lead to more accurate predictions. Fu-
ture research could explore innovative techniques for combining these data sources ef-
fectively.

• Uncertainty Quantification: Addressing uncertainties in ML models, especially in
power curve modeling and wake effects prediction, is crucial. Future studies could
focus on developing methods to quantify and manage uncertainties, leading to more
robust and reliable predictions.

• Explainability and Interpretability: As ML models become more complex, ensuring
their interpretability and explainability becomes essential. Research could be directed
towards developing techniques that provide insights into how these models arrive at
their predictions, enhancing trust and adoption.

• Real-Time Decision Support: ML can play a pivotal role in providing real-time decision
support for offshore operations. Future research might focus on developing systems
that analyze vast amounts of data in real time and provide actionable insights for
operators to optimize performance.

• Socio-Economic Impact Analysis: The expansion of offshore wind energy systems im-
pacts not only the environment but also local economies and societies. Future research
could delve into comprehensive socio-economic impact assessments, considering job
creation, community development, and energy affordability. ML-based models can
be implemented for the analysis and prediction of these potential impacts, especially
resulting in the provision of insights for taking mitigating steps in the case of negative
effects.

7. Conclusions

The integration of machine learning techniques in offshore wind turbine implementa-
tion has the potential to bring transformative changes to the field. The ongoing research
in predictive maintenance, control strategies, multi-physics modeling, environmental im-
pact assessment, and other areas holds immense potential to further optimize offshore
wind energy systems. As we navigate these exciting developments, the collaboration
between experts from various disciplines will be essential in shaping the future of offshore
renewable energy.
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