
Citation: La Ferlita, A.; Qi, Y.; Di

Nardo, E.; Moenster, K.; Schellin, T.E.;

EL Moctar, O.; Rasewsky, C.;

Ciaramella, A. Power Prediction of a

15,000 TEU Containership: Deep-

Learning Algorithm Compared to a

Physical Model. J. Mar. Sci. Eng. 2023,

11, 1854. https://doi.org/

10.3390/jmse11101854

Academic Editors: Panagiotis D.

Kaklis, Konstantinos Kostas and

Shahroz Khan

Received: 20 August 2023

Revised: 12 September 2023

Accepted: 19 September 2023

Published: 23 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Power Prediction of a 15,000 TEU Containership:
Deep-Learning Algorithm Compared to a Physical Model
Alessandro La Ferlita 1,* , Yan Qi 1, Emanuel Di Nardo 2 , Karoline Moenster 3, Thomas E. Schellin 1 ,
Ould EL Moctar 1 , Christoph Rasewsky 4 and Angelo Ciaramella 2

1 Institute of Ship Technology, Ocean Engineering and Transport Systems, Department of Mechanical and
Process Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany

2 Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy
3 Institute of Naval Architecture and Maritime Engineering, Kiel University of Applied Sciences,

24149 Kiel, Germany
4 Independent Researcher, 20095 Hamburg, Germany
* Correspondence: alessandro.laferlita@gmail.com or alessandro.laferlita@uni-due.de

Abstract: The authors proposed a direct comparison between white- and black-box models to predict
the engine brake power of a 15,000 TEU (twenty-foot equivalent unit) containership. A Simplified
Naval Architecture Method (SNAM), based on limited operational data, was highly enhanced by
including specific operational parameters. An OAT (one-at-a-time) sensitivity analysis was performed
to recognize the influences of the most relevant parameters in the white-box model. The black-box
method relied on a DNN (deep neural network) composed of two fully connected layers with 4092
and 8192 units. The network consisted of a feed-forward network, and it was fed by more than
12,000 samples of data, encompassing twenty-three input features. The test data were validated
against realistic operational data obtained during specific operational windows. Our results agreed
favorably with the results obtained for the DNN, which relied on sufficiently observed data for the
physical model.

Keywords: data-driven model; brake power prediction; DNN; resistance; containership

1. Introduction
1.1. The Importance of Power Determination

Reducing fuel consumption has gained in importance and has become a trendy re-
search direction in the shipping industry. Hence, precise power requirements in the design
process of newbuilds as well as in the operational analyses of existing ships is of practical
interest for all stakeholders, as ships are the largest contributor to fuel consumption in the
transportation industry [1]. Furthermore, the transported volume increases continuously,
with heavy diesel oil still being the preferred fuel. From 1990 to 2020, the transported cargo
by ships more than doubled [1]. According to estimates of the fourth Greenhouse Gas
(GHG) study, carried out by the International Maritime Organization (IMO) in 2020, the
shipping industry, with 1056 million tons of emitted CO2, was responsible for 2.89% of the
total global anthropogenic CO2 emissions in 2018. Moreover, this study reported that CO2
emissions increased 9.3% in 2018 compared to 2012 [2].

Within the MEPC 80, the IMO has updated its decarbonization goals to reduce total
emissions by at least 70%, striving for 80% until 2050, compared to 2008 [3].

To reach these goals, various measures have been taken. With the development of the
Ship Energy Efficiency Management Plan (SEEMP Part III), ships of 5000 gross tonnages
(GTs) and above will have to measure and document how they achieve their carbon intensity
indicator (CII) targets, coming into force in 2023 [4]. Global crises and the associated energy
shortages, as well as the rising operating costs of ships, need to be considered to reduce
fuel consumption. Consequently, increasing the energy efficiency of ships in operation as

J. Mar. Sci. Eng. 2023, 11, 1854. https://doi.org/10.3390/jmse11101854 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11101854
https://doi.org/10.3390/jmse11101854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0007-1680-1741
https://orcid.org/0000-0002-6589-9323
https://orcid.org/0000-0003-1472-9962
https://orcid.org/0000-0002-5096-4436
https://orcid.org/0000-0001-5592-7995
https://doi.org/10.3390/jmse11101854
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11101854?type=check_update&version=2

J. Mar. Sci. Eng. 2023, 11, 1854 2 of 14

well as during the design process is of interest. In this regard, it has become of paramount
importance to obtain reliable and accurate predictions of the fuel consumption to determine
a ship’s power requirements.

1.2. Methods to Determine a Ship’s Required Power

Various methods and techniques have evolved over the last 100 years to determine a
ship’s required power. Table 1 presents a brief overview of these methods.

Table 1. Overview of methods to determine a ship’s required power.

Method Advantages Disadvantages Literature

Admiralty coefficient Simple, first estimate during the
design process.

Rough method, no
(operational) parameters
included.

Gupta et al., 2021 [5]

Standard Series Data
Holtrop–Mennen
Guldhammer–Harvald
Taylor–Gertler, Series 60
Hollenbach

Power requirements for a given
hull form.

Background and scope of
application must be known.

Holtrop and Mennen,
1982 [6]
Guldhammer and Harvald,
1974 [7].
Hollenbach, 1998 [8]

Computational fluid
dynamics (CFD)
Reynolds-averaged
Navier–Stokes (RANS) solver

Accounts for viscous and
free-surface flows, predicts
calm-water resistance in a few
hours.

Time-consuming, advanced
method, requires experience
and knowledge.

Molland et al., 2017 [9]

Machine-learning methods
(e.g., artificial neural networks
(ANNs) and deep
feed-forward networks
(DFNs))

Effective method to predict data
patterns and solve complex
problems if sufficient training
data are available.
Learn and train collected fuel
consumption data repeatedly.
Simulate relationship between
fuel consumption and input
data [5].

Internal parameters affect
output data.
Difficult to identify
problematic areas [10].

Fan et al., 2022 [10]
Lee et al., 2021 [11]

Multiple studies have been conducted. Fan et al. [10], for instance, reviewed many
available analytical models to estimate a ship’s fuel consumption. The so-called white,
black, and grey boxes, which primarily depend on the nature of the algorithm employed
(i.e., artificial intelligence or physical model), were used to categorize the existing ship fuel
consumption models.

In general, it appears that traditional methods and data series are helpful for a rough
power determination during the design process, albeit only if datasets from similar ships are
available. Optimum predictions may be achieved by relying on a combination of different
methods. To respond to changes accurately, the method to predict a ship’s power and its
fuel consumption should be fast and flexible. Moreover, ship operators should be able to
adjust certain key parameters and to control their interaction during a voyage. Lee et al. [11]
state that deducing a ship’s power from resistance is not applicable to actual ships and,
therefore, data-driven models based on ocean environmental and ship operational data
should be established. With a DNN (deep neural network) approach, all these requirements
can be combined to precisely determine a ship’s required power.

Therefore, a definite trend in the field of naval architecture is noticeable, especially
due to the availability of sophisticated computer resources and their developments. For
instance, the IACS Rec. 173 [12] already allows the application of numerical methods to
determine the reference speed in the framework of the EEXI (Energy Efficiency eXisting
ship Index). Instead of model tests, these methods are increasingly preferred to determine
ship resistance. As introduced above, statistical methods, such as those of Holtrop and
Mennen [6] or Hollenbach [8], have been widely used in the last decades. Nevertheless,

J. Mar. Sci. Eng. 2023, 11, 1854 3 of 14

machine-learning models now represent a practical alternative that needs to be investigated
to understand all possible benefits when applied in the industry. For instance, Lang
et al. [13] compared several supervised machine-learning algorithms to model a ship’s
required power. Zhou at al. [14] demonstrated that their machine-learning approach, based
on nine feature inputs and incorporating a reasonable generalization effect, is a sufficiently
accurate tool to predict the required propulsive power. Lee et al. [11] proposed a deep
feed-forward neural network (DFN), which they applied to predict a ship’s power using
deep-learning methods because these networks are able to tackle complicated issues more
successfully than regression analyses if enough training data are available.

The scope of this paper was to further develop the SNAM (Simplified Naval Architec-
ture Method) of La Ferlita et al. [15] by including additional parameters. Therefore, our
present investigation considered a more accurate physical model. This model differed from
our previous model in that several parameters were either directly determined via specific
algorithms or were obtained from observed (measured) data, such as the ship’s draft,
the apparent wind speed, etc. Furthermore, we increased our understanding regarding
the performance and capability of the DNN approach by considering differing available
datasets with new features and by comparing the results with (measured) data from the
physical model.

2. Materials and Methods

Operational data and associated multiple parameters were collected and monitored
over a period of one operational year for a representative containership. A two-stroke
nine-cylinder diesel engine, model MAN 9G95, provided the ship’s main propulsive power.
Table 2 lists the ship principal particulars and engine characteristics.

Table 2. Principal particulars and engine characteristics of the subject containership.

Ship Particulars and Engine Characteristics Value

LOA (m) 367.0
LPP (m) 350.0

Breadth (m) 51.0
Depth (m) 30.4

Design draft (m) 14.5
Displacement at design draft (tons) 194,878

Scantling draft (m) 15.5
M/E cylinders 9
DMCR (kW) 46,900

Propeller diameter (m) 10.0
Propeller pitch (m) 9.3

The following twenty-three engine-related parameters were monitored to obtain
continued measurements at fifteen-minute intervals of the machinery-related conditions:

• Boiler consumed (MT);
• DG consumed (MT);
• ME consumed (MT);
• DG electric power (kW);
• Shaft power (kW);
• Shaft rpm (rpm);
• Draft foreword (m);
• Draft aft (m);
• Relative/apparent wind speed (m/s);
• Relative wind direction (deg);
• COG heading (deg);
• GPS speed (knots);
• Log speed (knots);

J. Mar. Sci. Eng. 2023, 11, 1854 4 of 14

• Shaft generator power (kW);
• Under-keel clearance (m);
• Shaft generator power (kW);
• DG1 power (kW);
• DG2 power (kW);
• DG3 power (kW);
• DG4 power (kW);
• Shaft torque (kNm);
• WHR—turbo-generated electric power (kW);
• ME power (KW).

2.1. The White-Box Model
2.1.1. Resistance in Calm Water and in Waves

Calm-water resistance was calculated according to the well-established method of
Holtrop and Mennen [6]. Through the regression analysis of a wide range of model tests
and trial data, the resistance is decomposed into several components, such as the following:

- Frictional resistance;
- Appendage resistance;
- Wave resistance;
- Resistance due to bulbous bow near the water surface;
- Pressure resistance due to immersed transom;
- Model–ship correlation resistance;
- Air resistance.

Typically, predictions with such a method are reliable, as demonstrated by Elkafas
et al. [16], who performed a computational fluid dynamics (CFD) simulation that compared
favorably to the results of the Holtrop method [16]. Deshpande et al. [17] demonstrated
that the results from the Holtrop–Mennen method agreed well with a CFD simulation,
especially at low ship speeds [17]. To determine the added resistance in waves, we already
embedded the STA-WAVE-1 formulation into our previous algorithm of La Ferlita et al. [15].
This approach is reliable under head-sea conditions, in which pitch and heave motions are
minimal. Therefore, this formulation should only be utilized under generally favorable
weather conditions.

However, other methods exist. Here, we considered the improved formulation of
Papanikolaou [18]. This method decomposes the total added wave resistance into two
components: the resistance (RAWR) in regular waves due to diffraction, defined as follows:

RAWR = 2.25·ρ·g·B·ζa
2·sin2E

(
1 + 5

√
Lpp

λ
Fn

)(
0.87
Cb

)1+4
√

Fn

(1)

and the added resistance (RAWM) in regular waves due to the ship’s motion, defined as
follows:

RAWM = 4·ρ·g·ζa
2· B2

Lpp
·ωb1·exp

[
b1

d1

(
1−ωd1

)]
a1a2 (2)

where

• B is the breadth of the ship;
• ρ is the water density;
• ζa is the wave amplitude;
• Lpp is the ship’s length between perpendiculars;
• Fn is the Froude number;
• λ is the wave length;
• Cb is the block coefficient;
• ω is the circular wave frequency;
• ω is the resonance frequency dependent on the Froude number;

J. Mar. Sci. Eng. 2023, 11, 1854 5 of 14

• b1 and d1 are the factors defined in [18];
• a1 is the peak-added-resistance factor;
• a2 is the forward-speed factor.

The formulation of Papanikolaou is advantageous, as it is a simplified engineering
formula suitable to satisfactorily estimate a ship’s added resistance in waves [18]. However,
implementing this formulation is not a straightforward task because the nonlinear effects
are not considered. However, CFD simulations that solve the Reynolds-averaged Navier–
Stokes (RANS) equations are able to consider nonlinear effects and, therefore, provide more
accurate overall predictions [19].

Wave scatter diagrams specify the ship’s operational sea areas. These diagrams present
the joint distribution of sea states characterized by their significant wave heights and zero-
uncrossing periods.

2.1.2. Added Resistance Due to Winds

It is well known that a ship encounters air and wind resistance while at sea, and this
may have negative impacts when maneuvering in harbors or restricted areas. However,
the greatest interest in terms of fuel usage is the resistance that the ship encounters when
underway. Compared to other kinds of ships, a containership’s windage area depends
strongly on its loading situation, due to the presence of deck containers and the ship’s
superstructure.

Studies to understand such effects were performed by Blenderman et al. [20]. He
systematically measured wind forces acting on scaled ship models placed in a wind tunnel.
Based on regression and correlation analyses, he established functional relationships of the
aerodynamic-load coefficients for ships with various superstructures at different incidence
wind angles. Andersen [21] tested a 9000 TEU containership model with several container
deck-load combinations at wind directions ranging between head and stern headings.

Although the air resistance component included in the Holtrop and Mennen method
was available, the wind resistance (Rwind) was estimated more accurately using the formu-
lation of Blendermann [22]:

Rwind =
ρair
2
·u2·AL·CDl

cosε

1− δ
2

(
1− CDl

CDt

)
sin22ε

(3)

where

• ρ is the air density;
• u is the apparent wind velocity;
• AL is the ship’s projected lateral area;
• δ is the cross-force parameter;
• CDl is the non-dimensional longitudinal drag coefficient;
• CDt is the non-dimensional transverse drag coefficient;
• ε is the apparent wind angle.

2.1.3. Efficiency Factors

Contrary to the assumptions applied above in the simplified method [15], here, the
efficiency factors were directly calculated. For the transmission-shaft efficiency, a factor of
0.98 was considered as the machinery was positioned aft [23]. The following formulations
were considered:

• The relative rotational efficiency (ηR) was determined according to the formulation of
Holtrop and Mennen for a single-screw ship:

ηR = 0.9922− 0.05908 · AE
AO

+ 0.07424 ·(Cp− 0.0225 · lCB) (4)

J. Mar. Sci. Eng. 2023, 11, 1854 6 of 14

where AE
AO

is the blade area ratio, Cp is the prismatic coefficient, and lCB is the longitudinal
position of the ship’s center of buoyancy;

• The open-water propeller efficiency (ηO) was calculated as follows:

ηO =
KT JA
KQ2π

(5)

where the advance ratio (JA), obtained via the advance speed (VA), the propeller diameter
(D), the thrust coefficient (KT), and the torque coefficient (KQ) were determined via the
following polynomial regression formulas:

JA =
VA
nD

(6)

KT = ∑
s,t,u, v

CT
s,t,u,v JS

(
P
D

)t(AE
AO

)u
zv (7)

KQ = ∑
s,t,u, v

CQ
s,t,u,v JS

(
P
D

)t(AE
AO

)u
zv (8)

where P
D is the pitch diameter ratio, z is the number of propeller blades, CT

s,t,u,v and CQ
s,t,u,v

are the coefficients obtained via the polynomial regression formulas, and s, t, u, and v are
the exponents given by Bernitsas et al. [24];

• The hull efficiency (ηH) was determined as follows:

ηH =
1− t
1− w

(9)

where t is the thrust deduction factor, and w is the wake fraction. Finally, the ship’s brake
power (PB) was obtained as follows:

PB =
Rtot·vs

ηtot
(10)

where vs is the ship speed, Rtot is the total resistance, and ηtot is the total efficiency factor.

2.2. The Black-Box-Model DNN

Deep neural networks (DNNs) are widely considered the most popular and powerful
machine-learning method. They have been successfully applied in a variety of fields,
such as computer vision, natural language processing, and speech recognition. DNNs are
artificial neural networks (ANNs) that have multiple hidden layers. In DNNs, the number
of hidden layers can reach 100 or more [25].

Often, the distribution and statistical properties of the input features are investigated
to perform a data transformation beforehand, as indicated by Jiao et al. [26] and Ji et al. [27].
However, the DNN approach is itself an optimization process. As the weight of single
features are independently updated until the algorithm finds the correct pattern and due to
the necessity of a relevant number of samples and features, we did not consider this to be
relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used. Google
Colab is a product from Google that allows the execution of an arbitrary Python code well
suited to machine learning. TensorFlow is a deep-learning computational tool kit. DNNs
employ input features, and they comprehend their initial and output values. These models
contain learning and training processes.

The associated output is then described by a linear combination of an adjustable input
and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of
4096 activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sigmoid-
weighted linear unit function, a continuous smooth function that permits a few negligible
weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further extension
of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural network,
such as weights and learning rates. Hence, for parameter updates (θt+1), the following
equations (which rely on the concepts of gradient and momentum) are used in the package
ADAM Algorithm [25]:

mt =

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

1mt−1 + (1−

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

1)gt (11)

vt =

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

2vt−1 + (1−

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

2)g2
t (12)

mˆ
t =

(
mt

1−

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

t
1

)
v̂t =

(
vt

1−

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

t
2

)
(13)

θt+1 = θt −
η√

v̂t + ε
mˆ

t (14)

where

•

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

1 and

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

2 are the exponential decay rates;
• mt is the exponential moving average of the gradient;
• vt is the exponential moving average of the squared gradient;
• θ is the network parameter to be updated;
• gt is the gradient;
• mˆ

t is the correction bias for mt;
• v̂t is the correction bias for vt;
• η is the learning rate;
• ε is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

1 and

J. Mar. Sci. Eng. 2023, 11, 1854 7 of 14

to the necessity of a relevant number of samples and features, we did not consider this to
be relevant and, therefore, neglected this statistical aspect in our analysis.

To develop the neural networks, Google Colab [28] and TensorFlow were used.
Google Colab is a product from Google that allows the execution of an arbitrary Python
code well suited to machine learning. TensorFlow is a deep-learning computational tool
kit. DNNs employ input features, and they comprehend their initial and output values.
These models contain learning and training processes.

The associated output is then described by a linear combination of an adjustable in-
put and a bias [29]. After the computation, it is activated by a nonlinear function [25]. The
DNN terminology represents the presence of multiple inner layers considered inside the
network. The modeling method for a DNN is based on the back-propagating learning
algorithm used in the backward step with two hidden layers [30]. In our proposed neural
network, one layer consisted of 8192 activation units and the other layer consisted of 4096
activation units. The network structure was similar to the one already proposed by La
Ferlita et al. [15], except for the input features. The same number of units for the first and
second layers was considered, as in our previous study [15], because the amount of data
available was similar and because the so-called curse of non-dimensionality [30] was taken
into account. A network with many layers and a limited amount of data is more likely to
deliver poor predictions.

The activation function was a swish nonlinear function [31], derived from the Sig-
moid-weighted linear unit function, a continuous smooth function that permits a few neg-
ligible weights to be propagated in the network.

The optimizer algorithm ADAM was embedded. This algorithm is a further exten-
sion of a stochastic gradient descent used to update network weights during training. An
optimizer represents a function or an algorithm that adjusts attributes of the neural net-
work, such as weights and learning rates. Hence, for parameter updates (𝜃௧ାଵ), the follow-
ing equations (which rely on the concepts of gradient and momentum) are used in the
package ADAM Algorithm [25]: 𝑚௧ = ßଵ𝑚௧ିଵ + (1 − ßଵ)𝑔௧ (11)𝑣௧ = ßଶ𝑣௧ିଵ + (1 − ßଶ)𝑔௧ଶ (12)𝑚௧̂ = ቀ ௠೟ଵିßభ೟ ቁ 𝑣௧̂ = ቀ ௩೟ଵିßమ೟ ቁ (13)

𝜃௧ାଵ = 𝜃௧ − ఎට௩೟̂ ାఢ 𝑚௧̂ (14)

where
• ßଵ and ßଶ are the exponential decay rates;
• 𝑚௧ is the exponential moving average of the gradient;
• 𝑣௧ is the exponential moving average of the squared gradient;
• 𝜃 is the network parameter to be updated;
• 𝑔௧ is the gradient;
• 𝑚௧̂ is the correction bias for 𝑚௧;
• 𝑣௧̂ is the correction bias for 𝑣௧;
• 𝜂 is the learning rate;
• 𝜖 is a smoothing term that avoids division by zero.

Through this algorithm, the learning rate for each parameter is adjusted dynamically.
The default values for ßଵ and ßଶ are 0.9 and 0.999, respectively. As performance metrics
to understand the DNN capabilities, the two main parameters RMSE and MAE were con-
sidered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,

2 are 0.9 and 0.999, respectively. As performance metrics to
understand the DNN capabilities, the two main parameters RMSE and MAE were consid-
ered [15]. The training and the validation steps were performed by splitting the training
dataset, consisting of about 12,000 samples, with the usual 80/20 approach. Afterwards,
the neural network was put to the test in brand new situations that were unknown to the
algorithm.

3. Results and Discussion

We considered the two voyage scenarios A and B to test the physical model and the
deep-learning approach. Scenario A represented a sea passage of about 72 h, and scenario
B represented a sea passage of about 48 h. The first scenario referred to a voyage starting
on the 7th of July and ending on the 10th of July through the Suez Canal (Figure 1). The
second voyage referred to a voyage starting on the 10th of September and ending on the
12th of September within the South China Sea area (Figure 2).

J. Mar. Sci. Eng. 2023, 11, 1854 8 of 14

J. Mar. Sci. Eng. 2023, 11, 1854 8 of 14

the neural network was put to the test in brand new situations that were unknown to the
algorithm.

3. Results and Discussion
We considered the two voyage scenarios A and B to test the physical model and the

deep-learning approach. Scenario A represented a sea passage of about 72 h, and scenario
B represented a sea passage of about 48 h. The first scenario referred to a voyage starting
on the 7th of July and ending on the 10th of July through the Suez Canal (Figure 1). The
second voyage referred to a voyage starting on the 10th of September and ending on the
12th of September within the South China Sea area (Figure 2).

Figures 3 and 4 present the time histories of the calculated brake powers obtained for
the two sea-passage scenarios, A and B, respectively. The vertical axis marks the brake
power expressed in kW, while the horizontal axis represents the chronological sample
points recorded every 15 min. Black lines mark the observed brake power, red lines mark
the brake power determined via the physical method, and blue lines mark the brake
power predicted via the DNN approach.

Figure 1. Sea route for scenario A—Suez Canal.

Figure 2. Sea route for scenario B—South China Sea.

Figure 1. Sea route for scenario A—Suez Canal.

J. Mar. Sci. Eng. 2023, 11, 1854 8 of 14

the neural network was put to the test in brand new situations that were unknown to the
algorithm.

3. Results and Discussion
We considered the two voyage scenarios A and B to test the physical model and the

deep-learning approach. Scenario A represented a sea passage of about 72 h, and scenario
B represented a sea passage of about 48 h. The first scenario referred to a voyage starting
on the 7th of July and ending on the 10th of July through the Suez Canal (Figure 1). The
second voyage referred to a voyage starting on the 10th of September and ending on the
12th of September within the South China Sea area (Figure 2).

Figures 3 and 4 present the time histories of the calculated brake powers obtained for
the two sea-passage scenarios, A and B, respectively. The vertical axis marks the brake
power expressed in kW, while the horizontal axis represents the chronological sample
points recorded every 15 min. Black lines mark the observed brake power, red lines mark
the brake power determined via the physical method, and blue lines mark the brake
power predicted via the DNN approach.

Figure 1. Sea route for scenario A—Suez Canal.

Figure 2. Sea route for scenario B—South China Sea. Figure 2. Sea route for scenario B—South China Sea.

Figures 3 and 4 present the time histories of the calculated brake powers obtained for
the two sea-passage scenarios, A and B, respectively. The vertical axis marks the brake
power expressed in kW, while the horizontal axis represents the chronological sample
points recorded every 15 min. Black lines mark the observed brake power, red lines mark
the brake power determined via the physical method, and blue lines mark the brake power
predicted via the DNN approach.

For scenario A, the brake power obtained from the DNN behaved qualitatively like
the observed (measured) brake power. The predicted brake power from the physical model,
however, fluctuated somewhat, especially over the first 120 sample points. At sample point
75, the physical model predicted a downward peak.

Between sample points 80 and 120, the brake power from the DNN approach deviated
from the observed brake power. Generally, the physical model underpredicted the observed
brake power.

J. Mar. Sci. Eng. 2023, 11, 1854 9 of 14J. Mar. Sci. Eng. 2023, 11, 1854 9 of 14

Figure 3. Comparative time histories of brake power for scenario A.

For scenario A, the brake power obtained from the DNN behaved qualitatively like
the observed (measured) brake power. The predicted brake power from the physical
model, however, fluctuated somewhat, especially over the first 120 sample points. At sam-
ple point 75, the physical model predicted a downward peak.

Figure 4. Comparative time histories of brake power for scenario B.

Between sample points 80 and 120, the brake power from the DNN approach devi-
ated from the observed brake power. Generally, the physical model underpredicted the
observed brake power.

For scenario B, both the physical model as well as the DNN approach delivered ac-
curate brake power predictions over the first 20 sample points. At sample point 25, the
physical model clearly underestimated the observed (measured) brake power. Starting
from sample point 50 until sample point 80, the physical model overestimated the ob-
served (measured) brake power as well as the brake power predicted by the DNN ap-
proach. Starting from sample point 80, the physical model as well as the DNN approach
underestimated the observed (measured) brake power. However, starting from sample
point 250, the DNN approach delivered brake power predictions that compared more fa-
vorably to the observed (measured) brake power predictions.

In general, the brake power obtained from the physical model and the DNN ap-
proach slightly underpredicted the observed (measured) brake power; however, the lesser
brake power fluctuations from the DNN approach agreed more favorably with the ob-
served (measured) brake power. The partial dataset can be found in the Supplementary
Materials related to this article.

The features available in the DNN approach, together with the associated input data
that were not filtered before proceeding with training the model, delivered accurate pre-
dictions. The somewhat less accurate predictions were attributable to the lack of training
data samples necessary to identify the observed (measured) values.

Figure 3. Comparative time histories of brake power for scenario A.

J. Mar. Sci. Eng. 2023, 11, 1854 9 of 14

Figure 3. Comparative time histories of brake power for scenario A.

For scenario A, the brake power obtained from the DNN behaved qualitatively like
the observed (measured) brake power. The predicted brake power from the physical
model, however, fluctuated somewhat, especially over the first 120 sample points. At sam-
ple point 75, the physical model predicted a downward peak.

Figure 4. Comparative time histories of brake power for scenario B.

Between sample points 80 and 120, the brake power from the DNN approach devi-
ated from the observed brake power. Generally, the physical model underpredicted the
observed brake power.

For scenario B, both the physical model as well as the DNN approach delivered ac-
curate brake power predictions over the first 20 sample points. At sample point 25, the
physical model clearly underestimated the observed (measured) brake power. Starting
from sample point 50 until sample point 80, the physical model overestimated the ob-
served (measured) brake power as well as the brake power predicted by the DNN ap-
proach. Starting from sample point 80, the physical model as well as the DNN approach
underestimated the observed (measured) brake power. However, starting from sample
point 250, the DNN approach delivered brake power predictions that compared more fa-
vorably to the observed (measured) brake power predictions.

In general, the brake power obtained from the physical model and the DNN ap-
proach slightly underpredicted the observed (measured) brake power; however, the lesser
brake power fluctuations from the DNN approach agreed more favorably with the ob-
served (measured) brake power. The partial dataset can be found in the Supplementary
Materials related to this article.

The features available in the DNN approach, together with the associated input data
that were not filtered before proceeding with training the model, delivered accurate pre-
dictions. The somewhat less accurate predictions were attributable to the lack of training
data samples necessary to identify the observed (measured) values.

Figure 4. Comparative time histories of brake power for scenario B.

For scenario B, both the physical model as well as the DNN approach delivered ac-
curate brake power predictions over the first 20 sample points. At sample point 25, the
physical model clearly underestimated the observed (measured) brake power. Starting
from sample point 50 until sample point 80, the physical model overestimated the observed
(measured) brake power as well as the brake power predicted by the DNN approach. Start-
ing from sample point 80, the physical model as well as the DNN approach underestimated
the observed (measured) brake power. However, starting from sample point 250, the DNN
approach delivered brake power predictions that compared more favorably to the observed
(measured) brake power predictions.

In general, the brake power obtained from the physical model and the DNN approach
slightly underpredicted the observed (measured) brake power; however, the lesser brake
power fluctuations from the DNN approach agreed more favorably with the observed
(measured) brake power. The partial dataset can be found in the Supplementary Materials
related to this article.

The features available in the DNN approach, together with the associated input
data that were not filtered before proceeding with training the model, delivered accurate
predictions. The somewhat less accurate predictions were attributable to the lack of training
data samples necessary to identify the observed (measured) values.

In general, the physical model tended to simulate a dynamic system with external
conditions varying every 15 min. For instance, the relevant values related to the added
resistance in waves, such as the peak period and wave amplitude, were not available in
the measured dataset. Therefore, these inputs were not adjusted, but they did affect the
predictions. For the DNN approach, this was not the case because the model was not
adjusted manually, and because the effects of the external conditions tuned the values
independently. In addition, this physical model might not be accurate for all types of
vessels; hence, some deviations for a particular ship’s topology could occur.

J. Mar. Sci. Eng. 2023, 11, 1854 10 of 14

Furthermore, to qualitatively understand and visualize the results from a statistical
perspective, Figure 5 presents scatter graphs, plotting the actual ship power versus the
predicted power obtained with both methods. These scatter graphs visualize the model’s
predictive accuracy together with the associated outliers. For scenario A, the two ap-
proaches obtained many data points that fit the regression equation, yielding R-squared
values of 0.09825 and 0.9655, respectively, as shown in Figure 5a,b. For scenario B, many
points deviated from the regression equation, especially at lower values of power, yielding
R-squared values of 0.8676 and 0.7371, respectively, as shown in Figure 5c,d. This was
attributable to the flaws of the two models, as they both underestimated the observed
(measured) values.

J. Mar. Sci. Eng. 2023, 11, 1854 10 of 14

In general, the physical model tended to simulate a dynamic system with external
conditions varying every 15 min. For instance, the relevant values related to the added
resistance in waves, such as the peak period and wave amplitude, were not available in
the measured dataset. Therefore, these inputs were not adjusted, but they did affect the
predictions. For the DNN approach, this was not the case because the model was not ad-
justed manually, and because the effects of the external conditions tuned the values inde-
pendently. In addition, this physical model might not be accurate for all types of vessels;
hence, some deviations for a particular ship’s topology could occur.

Furthermore, to qualitatively understand and visualize the results from a statistical
perspective, Figure 5 presents scatter graphs, plotting the actual ship power versus the
predicted power obtained with both methods. These scatter graphs visualize the model’s
predictive accuracy together with the associated outliers. For scenario A, the two ap-
proaches obtained many data points that fit the regression equation, yielding R-squared
values of 0.09825 and 0.9655, respectively, as shown in Figure 5a,b. For scenario B, many
points deviated from the regression equation, especially at lower values of power, yield-
ing R-squared values of 0.8676 and 0.7371, respectively, as shown in Figure 5c,d. This was
attributable to the flaws of the two models, as they both underestimated the observed
(measured) values.

Figure 5. Scatter graphs of the actual ship brake power against the predicted power: (a) scenario A:
DNN vs. observed power; (b) scenario A: physical model vs. observed power; (c) scenario B: DNN
vs. observed data; (d) scenario B: physical model vs. observed power.

Table 3 summarizes the results for the two scenarios in terms of the normalized Root-
Mean-Squared Errors (RMSEs) and normalized MAEs (Mean Average Errors).

Table 3. Normalized RMSEs and MAEs for the physical model and the DNN method.

Scenario
Normalized RMSE
(Physical Model)

Normalized
RMSE

(DNN Method)

Normalized MAE
(Physical Model)

Normalized
MAE

(DNN Method)
A 0.0465 0.0177 0.0422 0.0151
B 0.0344 0.0242 0.0300 0.0202

Figure 5. Scatter graphs of the actual ship brake power against the predicted power: (a) scenario A:
DNN vs. observed power; (b) scenario A: physical model vs. observed power; (c) scenario B: DNN
vs. observed data; (d) scenario B: physical model vs. observed power.

Table 3 summarizes the results for the two scenarios in terms of the normalized
Root-Mean-Squared Errors (RMSEs) and normalized MAEs (Mean Average Errors).

Table 3. Normalized RMSEs and MAEs for the physical model and the DNN method.

Scenario
Normalized

RMSE (Physical
Model)

Normalized
RMSE

(DNN Method)

Normalized
MAE (Physical

Model)

Normalized
MAE

(DNN Method)

A 0.0465 0.0177 0.0422 0.0151

B 0.0344 0.0242 0.0300 0.0202

Compared to the DNN approach, the physical model predicted brake power values
that agreed less closely with the reported values. For the first scenario, the DNN approach
yielded an RMSE value of 0.0465 and an MAE value of 0.0422. As seen in Table 3, for the

J. Mar. Sci. Eng. 2023, 11, 1854 11 of 14

second scenario, the relatively low MAE and RMSE values obtained for the DNN method
turned out to be 0.0202 and 0.0242, respectively. Despite the relatively low amount of data
used to train the algorithms, the network’s predictions agreed favorably compared to the
physical model.

4. Sensitivity Analysis

Employing the OAT (one-at-a-time) method, we performed a sensitivity analysis to
qualitatively assess the brake power predictions. One variable was modified by varying it a
certain amount while maintaining the other variables constant. The modified variable was
then reset to its nominal value after the simulation. This strategy did not consider possible
interactions between variables.

The advantage of using the OAT method was that any observable changes in the
model could be attributed to a change of just one factor. This method was simple compared
to other multi-factor sensitivity analysis methods and, in addition, it was computationally
efficient.

The modified parameters were chosen to simplify the large number of variables
present in the physical algorithm. Furthermore, these parameters were categorized into
the following macrogroups: calm-water resistance, added resistance in waves, added
resistance due to winds, and efficiency factors. Figure 6 presents the associated box plots
within the framework of the sensitivity analysis for a test scenario consisting of 73 samples
representing one day of a sea passage. The ordinate of the box plots refers to the ship’s brake
power; the abscissa refers to the non-dimensional default values of the wave amplitude,
propeller diameter, ship draft, ship breadth, ship-hull lateral drag coefficient, ship speed,
shaft efficiency, peak period of the seaway, ship length between perpendiculars, and ship
projected lateral area.

The ship geometric parameters applied in the physical model, such as the ship length
between perpendiculars (Figure 6i) and ship breadth (Figure 6d), hardly influenced the
outcome in terms of the brake power. However, the ship’s projected lateral drag coefficient
(Figure 6e) and, to a lesser extent, its lateral projected area (Figure 6j), did affect the brake
power because these parameters determined the wind-load resistance. By varying the
lateral drag coefficient, the brake power reached values of up to 38,000 kW, whereas varying
the lateral area did not significantly contribute to increasing the brake power. Indeed, it
remained constant at about 28,000 kW. The influence of varying the ship’s speed on the
brake power (Figure 6f) was as expected, generally following the cubic relationship between
power and speed. The default values related to the added resistance in waves, (i.e., the
seaway’s wave amplitude (Figure 6a) and peak period (Figure 6h)) played an important
role in the model. The wave amplitude varied almost linearly with the brake power, and
the seaway’s peak period varied almost sinusoidally with the brake power. The effect of
the propeller diameter (Figure 6b) was similar to the effect of the wave amplitude.

The shaft efficiency, having been set to 0.98, affected the overall model performance,
as it led to an unrealistically high-power demand with the risk of causing a defect in the
mechanical propulsion system. A greater draft (Figure 6c) increased the brake power,
thereby highlighting the sensitivity of the analysis in assessing the brake power predictions.
A greater draft increased the wetted surface area markedly. Specifically, doubling the ship’s
draft compared to its nominal draft led to a brake power requirement of 41,000 kW.

J. Mar. Sci. Eng. 2023, 11, 1854 12 of 14J. Mar. Sci. Eng. 2023, 11, 1854 12 of 14

Figure 6. Box plots of brake power from the sensitivity analysis for non-dimensional default values
of (a) wave amplitude, (b) propeller diameter, (c) ship draft, (d) ship breadth, (e) ship-hull lateral
drag coefficient, (f) ship speed, (g) shaft efficiency, (h) peak period of the seaway, (i) ship length
between perpendiculars, and (j) ship projected lateral area.

Figure 6. Box plots of brake power from the sensitivity analysis for non-dimensional default values of
(a) wave amplitude, (b) propeller diameter, (c) ship draft, (d) ship breadth, (e) ship-hull lateral drag
coefficient, (f) ship speed, (g) shaft efficiency, (h) peak period of the seaway, (i) ship length between
perpendiculars, and (j) ship projected lateral area.

J. Mar. Sci. Eng. 2023, 11, 1854 13 of 14

5. Conclusions

The simplified SNAM (Simplified Naval Architecture Method), established on sound
principles of naval architecture, was further enhanced by embedding new input param-
eters and improving the physical algorithm to predict the operational brake power of a
15,000 TEU containership. In parallel, a DNN (deep neural network) was developed and is
presented. The conclusions are summarized as follows:

• Generally, our brake power predictions from the DNN compared more favorably to
the observed (measured) predictions than those obtained from the enhanced SNAM.
The RMSE, the MAE, as well as the R-square approaches obtained more accurate
predictions than the physical model;

• More frequent fluctuations characterized the enhanced SNAM predictions, despite
the more accurate formulations of, for example, the added resistance in waves and
wind resistance. The RMSE and MAE approaches yielded lower values for the two
scenarios presented. By and large, several parameters were defined in advance for
the physical method proposed in our white-box model. This meant that the values
inside the physical approach could not be adjusted during the scenarios, which led to
underpredictions in some cases;

• Our results demonstrated the practical feasibility of this machine-learning DNN ap-
proach, considering the increased number of input features compared to the previous
data-driven approach of ours, lowering the RMSE values as well.

In the future, we plan to investigate the application of more sophisticated approaches,
such as CFD methods, to obtain highly accurate predictions, which will then be compared
with predictions from the machine-learning model. Specifically, we plan to extract the inde-
pendent variables in advance and to correlate these via an appropriate statistical analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse11101854/s1.

Author Contributions: Conceptualization, A.L.F.; method, A.L.F.; software, A.L.F.; validation, A.L.F.,
E.D.N. and Y.Q.; formal analysis, A.L.F. and Y.Q.; investigation, A.L.F. and Y.Q.; resources, A.L.F. and
K.M.; data curation, A.L.F. and Y.Q.; writing—original draft preparation, A.L.F.; writing—review and
editing, A.L.F., O.E.M. and T.E.S.; visualization, A.L.F.; supervision, O.E.M., E.D.N., A.C., and C.R.
All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge support by the Open Access Publication Fund of the University of
Duisburg-Essen.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Placek, M.; «Ocean Shipping Worldwide—Statistics & Facts» Statista. 20 June 2022. Available online: https://www.statista.com/

topics/1728/ocean-shipping/#topicOverview (accessed on 25 May 2023).
2. IMO. 4th Greenhouse Gas (GHG) Report; 2020. Available online: https://www.imo.org/en/ourwork/Environment/Pages/Fourth-

IMO-Greenhouse-Gas-Study-2020.aspx (accessed on 20 July 2023).
3. IMO. Marine Environment Protection Committee (MEPC 80), 3–7 July 2023. Available online: https://www.imo.org/

en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx#:~:text=7%20July%202023-,Marine%20Environ-ment%20
Protection%20Committee%20(MEPC,)%2C%203%2D7%20July%202023&text=The%20MEPC%2080%20session%20adopted,
targets%20to%20tackle%20harmful%20emissions (accessed on 23 July 2023).

4. IMO. RESOLUTION MEPC.353(78); 2022. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/
Environment/Documents/Air%20pollution/MEPC.353(78).pdf (accessed on 28 March 2023).

5. Gupta, P.; Taskar, B.; Steen, S.; Rasheed, A. Statistical modeling of Ship’s hydrodynamic performance indicator. Appl. Ocean. Res.
2021, 111, 102623. [CrossRef]

6. Holtrop, J.; Mennen, G. An approximate power prediction method. Int. Shipbuild. Prog. 1982, 29, 166–170. [CrossRef]

https://www.mdpi.com/article/10.3390/jmse11101854/s1
https://www.mdpi.com/article/10.3390/jmse11101854/s1
https://www.statista.com/topics/1728/ocean-shipping/#topicOverview
https://www.statista.com/topics/1728/ocean-shipping/#topicOverview
https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx
https://www.imo.org/en/ourwork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx#:~:text=7%20July%202023-,Marine%20Environ-ment%20Protection%20Committee%20(MEPC,)%2C%203%2D7%20July%202023&text=The%20MEPC%2080%20session%20adopted,targets%20to%20tackle%20harmful%20emissions
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx#:~:text=7%20July%202023-,Marine%20Environ-ment%20Protection%20Committee%20(MEPC,)%2C%203%2D7%20July%202023&text=The%20MEPC%2080%20session%20adopted,targets%20to%20tackle%20harmful%20emissions
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx#:~:text=7%20July%202023-,Marine%20Environ-ment%20Protection%20Committee%20(MEPC,)%2C%203%2D7%20July%202023&text=The%20MEPC%2080%20session%20adopted,targets%20to%20tackle%20harmful%20emissions
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx#:~:text=7%20July%202023-,Marine%20Environ-ment%20Protection%20Committee%20(MEPC,)%2C%203%2D7%20July%202023&text=The%20MEPC%2080%20session%20adopted,targets%20to%20tackle%20harmful%20emissions
https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Air%20pollution/MEPC.353(78).pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Air%20pollution/MEPC.353(78).pdf
https://doi.org/10.1016/j.apor.2021.102623
https://doi.org/10.3233/ISP-1982-2933501

J. Mar. Sci. Eng. 2023, 11, 1854 14 of 14

7. Guldhammer, H.E.; Harvald, S.A. Ship Resistance—Effect of Form and Principal Dimensions; Danish Technial Press: Copenhagen,
Denmark, 1974.

8. Hollenbach, K. Estimating resistance and propulsion for single-screw and twin-screw ships. Ship Technol. Res. 1998, 45, 72–76.
9. Molland, A.; Turnock, S.R.; Hudson, D.A. Ship Resistance and Propulsion: Practical Estimation of Ship Propulsion Power, 2nd ed.;

University of Southampton: Southampton, UK; Cambridge University Press: Cambridge, UK, 2017.
10. Fan, A.; Yang, J.; Yang, L.; Wu, D.; Vladimir, N. A review of ship fuel consumption models. Ocean. Eng. 2022, 264, 112405.

[CrossRef]
11. Lee, J.-B.; Roh, M.-I.; Kim, K.-S. Prediction of ship power based on variation in deep feed-forward neural network. Int. J. Nav.

Archit. Ocean. Eng. 2021, 13, 641–649. [CrossRef]
12. IACS Guidelines on Numerical Calculations for the Purpose of Deriving the Vref in the Framework of the EEXI Regulation.

No.173, 10 November 2022. Available online: https://iacs.org.uk/ (accessed on 16 June 2023).
13. Lang, X.; Wu, D.; Mao, W. Comparison of supervised machine learning methods to predict ship propulsion power at sea. Ocean.

Eng. 2022, 245, 110387. [CrossRef]
14. Zhou, L.; Sun, Q.; Ding, S.; Han, S.; Wang, A. A Machine-Learning-Based Method for Ship Propulsion Power Prediction in Ice. J.

Mar. Sci. Eng. 2023, 11, 1381. [CrossRef]
15. La Ferlita, A.; Qi, Y.; Di Nardo, E.; el Moctar, O.; Schellin, T.E.; Ciaramella, A. A Comparative Study to Estimate Fuel Consumption:

A Simplified Physical Approach against a Data-Driven Model. J. Mar. Sci. Eng. 2023, 11, 850. [CrossRef]
16. Elkafas, A.G.; Elgohary, M.M.; Zeid, A.E. Numerical study on the hydrodynamic drag force of a container ship model. Alex. Eng.

J. 2019, 58, 849–859. [CrossRef]
17. Deshpande, S.; Sundsbø, P.; Das, S. Ship resistance analysis using CFD simulations in Flow-3D. Int. J. Multiphysics 2020, 14,

227–236.
18. Liu, S.; Shang, B.; Papanikolaou, A.; Bolbot, V. Improved formula for estimating added resistance of ships in engineering

applications. J. Mar. Sci. Appl. 2016, 15, 442–451. [CrossRef]
19. Sigmund, S.; el Moctar, O. Numerical and experimental investigation of propulsion in waves. Ocean. Eng. 2017, 144, 35–49.

[CrossRef]
20. Blendermann, W. Schiffsform und Windlast: Korrelations- und Regressionsanalyse Von Windkanalmessungen Am Modell; Schriftenreihe

Schiffbau, Technische Universität Hamburg Harburg: Hamburg, Germany, 1993.
21. Andersen, I.M.V. Wind loads on post-panamax container ship. Ocean. Eng. 2013, 58, 115–134. [CrossRef]
22. Blendermann, W. Parameter identification of wind loads on ships. J. Wind. Eng. Ind. Aerodyn. 1996, 51, 339–351. [CrossRef]
23. Tupper, C.E. Introduction to Naval Architecture; Butterworth-Heinemann: Oxford, UK, 2013.
24. Bernitsas, M.; Ray, D.; Kinley, P. Kt, Kq and Efficiency Curves for the Wageningen B-Series Propeller; Department of Naval Architecture

and Marine Engineering, College of Engineering, The University of Michigan: Ann Arbor, MI, USA, 1981.
25. Reyad, M.; Sarhan, A.M.; Arafa, M. A modified adam algorithm for deep neural network optimization. Neural Comput. Appl.

2023, 35, 17095–17112. [CrossRef]
26. Jiao, Z.; Ji, C.; Sun, Y.; Hong, Y.; Wang, Q. Deep learning based quantitative property consequence relationship (QPCR) models

for toxic dispersion prediction. Process Saf. Environ. Prot. 2021, 152, 352–360. [CrossRef]
27. Ji, C.; Yuan, S.; Jiao, Z.; Huffmana, M.; El-Halwagi, M.M.; Wang, Q. Predicting flammability-leading properties for liquid aerosol

safety. Process Saf. Environ. Prot. 2021, 148, 1357–1366. [CrossRef]
28. Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: New York, NY, USA, 2019.
29. La Ferlita, A.; Di Nardo, E.; Macera, M.; Lindemann, T.; Ciaramella, A.; Koulianos, N. A Deep Neural Network to Predict the Residual

Hull Girder Strength; SNAME Maritime Conventio: Houston, TX, USA, 2022.
30. Verleysen, M.; Damien, F. The curse of dimensionality in data mining and time series prediction. In International Work-Conference

on Artificial Neural Networks; Springer: Berlin, Germany, 2005.
31. Ramachandran, P.; Zoph, B.; Le Quoc, V.; Le, V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2022.112405
https://doi.org/10.1016/j.ijnaoe.2021.08.001
https://iacs.org.uk/
https://doi.org/10.1016/j.oceaneng.2021.110387
https://doi.org/10.3390/jmse11071381
https://doi.org/10.3390/jmse11040850
https://doi.org/10.1016/j.aej.2019.07.004
https://doi.org/10.1007/s11804-016-1377-3
https://doi.org/10.1016/j.oceaneng.2017.08.016
https://doi.org/10.1016/j.oceaneng.2012.10.008
https://doi.org/10.1016/0167-6105(94)90067-1
https://doi.org/10.1007/s00521-023-08568-z
https://doi.org/10.1016/j.psep.2021.06.019
https://doi.org/10.1016/j.psep.2021.03.012

	Introduction
	The Importance of Power Determination
	Methods to Determine a Ship’s Required Power

	Materials and Methods
	The White-Box Model
	Resistance in Calm Water and in Waves
	Added Resistance Due to Winds
	Efficiency Factors

	The Black-Box-Model DNN

	Results and Discussion
	Sensitivity Analysis
	Conclusions
	References

