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Abstract: This study investigates the numerical evolution of an initially internal random wave
field characterized by a Gaussian spectrum shape using the Benjamin–Ono (BO) equation. The
research focuses on analyzing various properties associated with the random wave field, including
the transition to a steady state of the spectra, statistical moments, and the distribution functions of
wave amplitudes. Numerical simulations are conducted across different Ursell parameters, revealing
intriguing findings. Notably, it is observed that the spectra of the wave field converge to a stationary
state in a statistical sense, while exhibiting statistical characteristics that deviate from a Gaussian
distribution. Moreover, as the Ursell parameter increases, the positive skewness of the wave field
intensifies, and the kurtosis increases. The investigation also involves the computation of the
probability of rogue wave formation, revealing deviations from the Rayleigh distribution. Notably,
the study uncovers distinct types of internal rogue waves, specifically referred to as the “two sisters”
and “three sisters” phenomena.

Keywords: Benjamin–Ono equation; interfacial waves; random waves; rogue waves; deep water

1. Introduction

Ocean internal waves are fascinating phenomena characterized by underwater oscilla-
tions with amplitudes ranging from 50 to 100 m, and sometimes even more [1–3]. These
waves are generated when there is a disturbance at the interface between water layers of
varying densities. This disturbance can propagate over vast distances, causing the layers
to oscillate in relation to their initial equilibrium state. One of the main causes of internal
waves is the deterministic mechanism triggered by tidal flows interacting with bathymetric
features like seamounts or continental shelves; other mechanisms may include instability
of ocean currents in zones with strong shear flow (such as an ocean gulf), or directly by
wind stress [4]. This phenomenon is commonly referred to as an internal tide. As the tides
flow over these underwater obstacles, they create disturbances that propagate as internal
waves throughout the ocean. In addition to deterministic mechanisms, internal waves can
also be excited by random events such as tsunamis or severe ocean storms. These powerful
and unpredictable phenomena have the ability to generate significant disturbances in the
ocean, leading to the formation of large-scale internal waves.

Extensive research has been conducted to investigate weakly nonlinear models that
depict the behavior of internal waves. Notably, the Korteweg–de Vries (KdV) equation
and the Gardner equation have received significant attention in this regard [4–6]. The
KdV and Gardner equations are applicable to shallow water scenarios, while the Interme-
diate Long Wave (ILW) equation is suitable for fluids of finite depth [7–9]. Additionally,
the Benjamin–Ono (BO) equation pertains to deep water dynamics [7,10–17]. These
well-established models exhibit intriguing features, such as the existence of periodic and
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solitary wave solutions that endure over time. However, it is crucial to acknowledge that
these model equations have inherent limitations that constrain their applicability to more
generalized problems.

The widely recognized Benjamin–Ono (BO) equation [7,11]

ητ + c0ηy −
3c0

2h1
ηηy +

c0h1

2ρr
H[ηyy] = 0 (1)

is frequently employed to examine the behavior of a perturbed interface between two
inviscid fluids. This interface is characterized by a flat rigid lid and infinite depth. In this
equation, various parameters and functions play important roles. The thickness of the
upper fluid layer with density ρ1 is represented by h1, while ρ2 denotes the density of the
lower fluid. The ratio of densities between the lighter upper layer and the heavier lower
layer is denoted as ρr = ρ1/ρ2 < 1. The linear speed c0 is [7,11]

c2
0 = gh1

( 1
ρr
− 1
)

, (2)

where g is the acceleration of gravity. More details of the geometry of the problem are
depicted in Figure 1. The elevation of the interface in the position y and time τ is denoted
by η(y, τ), andH denotes the Hilbert transform defined as [7,11]

H[η(y, τ)] =
1
π

∫ +∞

−∞

η(z, τ)

z− y
dz. (3)
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Figure 1. Sketch of the BO model.

The BO equation is used to model several problems such as ship wakes, flow of water
over rocks, the formation of storms in the ocean, and even atmospheric problems such as
atmospheric flows encountering obstacles [18,19]. These problems are typically approached
as deterministic, where the initial state of the perturbed interface is precisely known, and
the evolution of the phenomenon over time can be computed using the BO equations.
However, in many cases, the scarcity of data for initializing deterministic models presents a
challenge. In such instances, assuming random initial states becomes preferable, allowing
for the study and formulation of statistically reliable predictions [20–24]. Analogously,
the medium in which a wave propagates can also be considered random [25–28]. This
approach is commonly employed to investigate rogue waves, which are characterized as
large waves that abruptly emerge within the wave field. Rogue waves are characterized
by their exceptionally high wave heights and their abrupt appearance. The physical
mechanisms behind their formation can be attributed to two primary factors: dispersion
compression and geometric focusing. Dispersion compression arises due to the varying
propagation speeds of waves with different wavelengths. In essence, waves of different
lengths move at different speeds, causing them to temporarily converge and create a
rogue wave. Geometric focusing, on the other hand, occurs when multiple wave systems
converge from different directions, amplifying their combined effect and giving rise to
rogue waves. Additionally, changes in environmental conditions, such as variable water
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depth and strong, non-uniform currents, can contribute to the concentration of energy
within surface waves [29–31]. Rogue waves have been extensively catalogued, and they
have been shown to pose a significant threat to coastal areas, often causing substantial
damage. To ensure the safety of both small boats navigating in shallow waters and people
on the shoreline, in-depth investigations into rogue wave phenomena, including the study
of their lifetimes (as indicated by Didenkulova and Pelinovsky [32]), are essential. Rogue
waves have been part of maritime folklore for centuries, but their systematic measurement
only began in the mid-20th century. This measurement process involves recording the
displacement of the water–air interface at specific measurement points, utilizing various
equipment such as floating moored buoys, laser altimeters mounted on platforms, or
overpressure sensors located on the seabed. The first digitally documented instance of
a rogue wave, famously known as the ”Draupner wave,” was recorded on 1 January
1995, at the Draupner platform in the North Sea. This rogue wave reached an astounding
maximum wave height of 25.6 m and caused minor damage to the platform, which was
situated high above sea level. Understanding the dynamics of rogue waves is crucial for
enhancing maritime safety and improving the design of marine platforms. Although rogue
waves are typically associated with large surface waves, they can also manifest within
internal waves [5]. However, detecting these internal rogue waves with the naked eye
can be challenging, and they occasionally induce distinct surface responses. In general,
internal waves exhibit higher amplitudes compared to surface waves. A rogue internal
wave can unexpectedly displace less dense water beneath a neutrally buoyant submarine,
causing it to descend to depths beyond the hull’s pressure capacity. These waves maintain
well-defined patterns as they propagate along the interface, in contrast to the more chaotic
nature of turbulence.

In the context of surface waves, the study conducted by Pelinovsky and Sergeeva [22]
focused on numerically examining the evolution of an initially random wave field with
a Gaussian spectrum shape using the KdV equation. Their findings revealed that the
irregular wave field, resulting from the wave evolution within the KdV model, does not
adhere to Gaussian statistics. Instead, its statistical properties are influenced by the Ursell
parameter, which represents the ratio of nonlinear effects to dispersion. Consequently, the
wave field becomes asymmetric, exhibiting sharper crests and leading to a positive third
moment. Importantly, the study demonstrates the existence of a steady state for statistical
characteristics, including skewness, kurtosis, distribution functions, and spectral density.
Through computations, it was observed that both statistical moments and distribution
functions evolve until they reach a certain bound level. A similar effect is observed in
the evolution of a random wave spectrum. In a related study, Didenkulova et al. [20]
conducted direct numerical simulations of nonlinear wave evolution within the framework
of the KdV equation for cases involving bimodal wave spectra models. They investigated
the coexistence effect of an additional wave system on the evolution of wave statistical
characteristics, spectral shapes, and the resulting equilibrium state. Furthermore, the study
demonstrated that the presence of a low-frequency spectral component leads to more
asymmetric waves with more extreme statistical properties.

The objective of this study is to investigate the behaviour of the evolution of a random
internal wave field through the BO equation. As our model is deterministic, we conduct
numerous simulations with randomly generated initial conditions with identical statistical
characteristics. More precisely, our approach involves assuming that the initial conditions
possess a power spectrum that adheres to a Gaussian distribution. This assumption serves
as our initial step in unraveling the intricate nature of nonlinear dynamics, laying the
foundation for the analysis of internal wave turbulence. Notably, in cases of more complex
stratification, the Garrett–Munk spectrum typically constitutes the fundamental spectrum
for internal waves. However, in scenarios featuring a two-layer stratification, our selected
spectrum becomes a more suitable choice due to its relevance and appropriateness. For
the mechanism of turbulence on internal waves, the readers are referred to [33–36]. Our
approach is related with a case of integrable turbulence of internal waves because the BO
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equation is an integrable model. Through a series of numerical simulations, we investigate
spectrum evolution and stabilization, the third and the fourth statistical moments of the
random wave field, and the distribution function for the crest amplitudes. In addition,
we pay special attention to the formation of ”rogue internal waves”, finding the so-called
“three sister” and other extensions.

For reference, this article is organized as follows: The BO equation is presented in
Section 2. In Section 3, we describe the numerical methods, and the results are presented in
Section 4. The final considerations are presented in Section 5.

2. The Benjamin–Ono Equation

Our study aims to investigate the underlying cause of the dominant dynamic, focusing
on the nonlinearity of dispersion. To achieve this, it is convenient to utilize dimensionless
variables by introducing the BO equation. Equation (1) is typically initialized with [22]

η(y, 0) = AsF(Kk0y) sin(k0y). (4)

Here, As represents a standard wave amplitude, F denotes the wave envelope with spec-
trum width K, and k0 corresponds to the carrier wave number. Thus, we introduce dimen-
sionless variables

x = k0(y− c0t), t =
3c0k0 As

2h1
τ, and η(y, τ) = −Asu(x, t). (5)

Notice that with these choices, the crests of the wave field represented by η align with the
troughs of the wave field denoted by u and vice versa. Substituting the dimensionless
variables (5) into Equation (1), we derive the dimensionless BO equation

ut + uux +
1

Ur
H[uxx] = 0, (6)

where Ur represents the Ursell parameter, given by Ur = Asρr/h1k0. This parameter gov-
erns the nonlinearity of the BO equation, with higher values of Ur indicating predominantly
nonlinear dynamics, while lower values of Ur suggest predominantly linear dynamics. Ad-
ditionally, the Ursell parameter depends on the thickness of upper layer: hence, variations
on the thickness of the upper layer may change the wave regime significantly.

To incorporate randomness into the problem, we introduce a zero-mean random state
modeled as a Fourier series with M harmonics. The initial condition is given by

u(x, 0) =
M

∑
i=1

√
2S(ki)∆k cos(kix + ϕi), (7)

Here, S(k) represents the initial power spectrum, ki = i∆k, with ∆k being the sampling
wave number, and ϕi denotes a random variable uniformly distributed in the interval
(0, 2π). The length of the initial realization is L = 2π/∆k. We assume that the initial power
spectrum follows a Gaussian distribution:

S(k) = Q exp
(
− 1

2
(k− k0)

2

2K2

)
, k > 0. (8)

The wave characteristics are determined by several parameters: the dimensionless
peak wave number is k0 = 1, the spectral width is denoted as K = 0.18, and the relative
energy is indicated by the values of Q. All scenarios share the same total energy of the
waves, which is defined by the variance σ2 = 0.25

σ2 =
1
L

∫ L

0
u2(x, t)dx. (9)
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Within the framework of the integrable Benjamin–Ono (BO) equation, an intriguing charac-
teristic emerges: the variance remains constant throughout the motion, offering a stable
reference point for analyzing its behavior. In our spectral domain, we opt for a dimension
featuring 256 harmonics. This choice accommodates a gradual spectrum decay in the
higher wave number (k) region, allowing us to capture a more realistic representation of
the wave dynamics. It is worth noting that these specific parameter selections closely align
with those employed by Pelinovsky and Sergeeva [22] as well as Didenkulova et al. [20]
in their respective studies. By adopting these consistent parameters, we facilitate a robust
basis for comparing our research findings with the results presented in the subsequent
sections, thus enhancing the overall comprehensibility and validity of our analysis.

3. Numerical Methods

In this section, we present the numerical method used to compute solutions of the BO
Equation (6). Equation (6) is solved numerically by employing a Fourier pseudospectral
method that incorporates an integrating factor, a technique akin to the one presented
by Trefethen in [37]. This integrating factor effectively resolves the linear component of
Equation (6), thereby circumventing numerical instabilities stemming from the dispersive
term. It is worth noting that for a given function f (ξ), we can compute the nonlocal
operatorH using the formula

H[ f (ξ)] = F−1[−i sign(k) f̂ (k)],

where F−1 denotes the Fourier inverse transform.
Rewriting Equation (6) in the Fourier frequency space, it takes the form

ût +
1
2

∂̂xu2 +
ik2

Ur
sign(k)û = 0. (10)

The integrating factor is defined as

E(k, t) = exp

[( ik2

Ur
sign(k)

)
t

]
.

Defining Û(k, t) = E(k, t)û(k, t) and replacing it in Equation (10), we obtain the equation

Ût +
1
2

EF
[
∂xF−1

(
E−1Û

)2]
= 0, (11)

where F denotes the Fourier transform, and F−1 is its inverse. It is important to note that
once we have computed Û(k, t), we can recover the original function u as

u(x, t) = F−1
[

E−1Û(k, t)
]
.

The solution of Equation (11) is performed within a periodic computational domain
[0, L] using a uniform grid consisting of an even number of points denoted as N. The spatial
points are discretized as

xj = (j− 1)∆x, j = 1, 2, . . . , N, where ∆x = L/N, (12)

and the frequencies are discretized as

(k1, k2, · · · , kN) =
π

L
(0, 1, · · · , N/2− 1, 0,−N/2 + 1, · · · ,−1). (13)

Fourier transforms and the Hilbert operator are computed using the Fast Fourier Transform
(FFT), while spatial derivatives are evaluated spectrally following the methods outlined
by Trefethen in [37]. The time advance is computed using the Runge–Kutta fourth-order
method (RK4) with time step ∆t. The parameters used in the following simulations are
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L = 2π/∆k, where ∆k = 0.023, and there is a uniform grid containing N = 212 points.
For the time evolution of the equation, we utilize the classical fourth-order Runge–Kutta
method with discrete time steps of size ∆t = 0.005. For a more detailed resolution study
and comprehensive understanding of a similar numerical method, readers are referred
to the work of Flamarion et al. [38]. Furthermore, it is noteworthy that the reliability of
the identical numerical method has been confirmed in a recent study by Flamarion and
Pelinovsky [39]. In this context, we use the fact that the BO Equation (6) conserves both the
total mass (m(t)) and the momentum (p(t)) to verify the accuracy of the chosen numerical
method. The total mass is defined as

dm
dt

= 0, where m(t) =
1
L

∫ L

0
u(x, t)dx, (14)

and the momentum is defined as

dp
dt

= 0, where p(t) =
1
L

∫ L

0
u2(x, t)dx. (15)

Numerical simulations are controlled by retaining of the first and second moments
with precision of machine and 10−9, respectively. Figure 2 illustrates the conservation of
mass and momentum over time for different simulations. As observed, both quantities
remain conserved throughout the simulations. Notice that for the mass conservation, we
have machine precision.
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0

0.5

1

1.5
10

-9

Figure 2. The conserved quantities of BO equation for different simulations. On the left is the mass
conservation and on the right is the momentum.

4. Results
4.1. Wave Field

The evolution of the wave record is depicted in Figure 3 at various time instances.
Initially, the wave field exhibits a relatively narrow spectrum, resulting in smooth group
structures of the waves. However, as time progresses, the wave profile becomes asymmetric,
transitioning from smooth crests to sharp ones. This signifies an increase in the skewness of
the wave field beyond its initial value, indicating a departure from a symmetric distribution,
which will be discussed later. Moreover, the chosen parameter Ur = 6.7 corresponds to
a significant nonlinearity, leading to the emergence of large-amplitude waves during
the interaction.
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Figure 3. The evolution of the wave field at different times with Ur = 6.7.

To comprehend the role of the Ursell parameter in the dynamics, we analyze the
trajectory patterns displayed in Figure 4. On the time–space plane, we observe that for
higher values of Ur, the wave propagation results in the formation of prominent peak
amplitudes, as indicated in Figure 4. The distribution of crest amplitudes presented
in Figure 5 shows that nonlinearity is essential for the existence of waves with large
amplitudes: in particular, in the formation of rogue waves, which will be discussed below.

Figure 4. Cont.
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Figure 4. The evolution of the wave field for different values of the parameter Ur. From (top) to
(bottom) and (left) to (right) Ur = 6.7, Ur = 4.0, Ur = 2.0 and Ur = 1.0.
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Figure 5. (Left): Maximum of wave amplitudes over time. (Right): Distribution of maximum crest
amplitudes over 300 realizations for different values of Ur.

In recent years, there has been a growing fascination with rogue waves, an intriguing
type of nonlinear wave also known as freak waves. These waves have captured the attention
of researchers from various scientific disciplines due to their unique characteristics. Initially
observed in the deep ocean, rogue waves exhibit abnormal behavior, with amplitudes
two to three times higher than the surrounding waves. What makes them particularly
captivating is their sudden formation, seemingly appearing out of nowhere.

Rogue waves, characterized by their sudden and exceptionally high amplitudes, have
emerged as a compelling subject of extensive investigation across diverse scientific disci-
plines. They have piqued the interest of researchers in fields such as oceanography [29,30],
where understanding their behavior is critical for maritime safety and coastal protection.
Furthermore, rogue waves have made their presence felt in areas as diverse as optical
fibers [40–42], impacting the reliability of communication networks and signal transmis-
sion. In the realm of quantum physics, rogue waves have found relevance in Bose–Einstein
condensates [43–45], offering insights into the behavior of ultracold atomic systems. Even
financial markets have not remained untouched, with rogue-wave-like events manifesting
themselves in market fluctuations and risk assessment [46]. These broad-ranging applica-
tions underscore the pervasive influence of rogue wave phenomena in both natural and
man-made systems. Mathematically, the criterion for the occurrence of freak waves can be
described by the equation [30]
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A f r > 2Hs, (16)

where A f r represents the height of the freak wave, and Hs represents the height of the
”significant" wave field. The value of Hs is determined by averaging one-third of the largest
waves observed in the given context, such as in the field of oceanology.

Figure 6 (left) displays different simulated wave fields at different time records, where
prominent peaks significantly surpass the surrounding waves, representing various types
of freak waves. Zooming in on the left panels, Figure 6 (right) provides a closer look at
their distinctive appearance. For instance, the top-right image showcases a freak wave of
substantial amplitude known as the “two sisters" and “three sisters". The available data,
along with theoretical studies, provide ample evidence for the existence of rogue waves in
diverse shapes. For example, these types of waves were also documented and their lifetimes
estimated in a recent study by Didenkulova and Pelinovsky [32], where they were examined
within the context of wind waves utilizing the KdV equation. It is worth mentioning that
series of big waves with more than four peaks were also observed. The occurrence of freak
waves is strongly influenced by the parameter Ur, with a higher frequency expected in wave
fields characterized by stronger nonlinearity and smaller values of Ur.

By studying and understanding the characteristics and behavior of these rogue waves,
researchers aim to shed light on their formation mechanisms and develop methods to
predict and mitigate their potentially hazardous effects.
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Figure 6. Cont.



J. Mar. Sci. Eng. 2023, 11, 1853 10 of 15

0 50 100 150 200 250

-1

-0.5

0

0.5

1

1.5

2

2.5

18 20 22 24 26 28 30 32

-0.5

0

0.5

1

1.5

2

2.5

Figure 6. (Left): The occurrence of a freak wave, “two sisters” and “three sisters” at simulation
number 142, time t = 99, number 4, time t = 99 and number 84 and time t = 20, respectively, for
Ur = 6.7. (Right): Zoom of the freak wave.

4.2. Spectra

The evolution of the spectrum is studied across various Ur values, ranging from 0.1
(representing nearly linear progression) to 6.7 (indicating a highly nonlinear wave behavior).
To ensure reliable statistical outcomes, 300 realizations are averaged over different time
periods. As anticipated, the presence of nonlinearity triggers a transformation in the
spectrum, leading to its widening and eventual convergence into a stable state (refer to
Figure 7). The nature of this stable state, determined by the Ursell parameter, displays an
asymmetrical shape with a noticeable shift of energy towards lower frequencies, commonly
known as the spectrum downshift effect. In cases of larger Ursell parameter values (as
illustrated in (refer to Figure 7) (top)), the spectral density becomes more evenly distributed
across smaller wave numbers (k-values). The prominence of spectrum flatness intensifies
under strong nonlinearity (Ur = 6.7), indicating a higher energy level in the wave field and
an increased significance of nonlinear effects. Consequently, a broader range of frequencies
is necessary to accurately represent the wave spectrum. This inclination towards spectrum
flatness aligns with the concept of statistical equilibrium in the absence of external inputs or
outputs. These findings corroborate and strengthen the outcomes reported by Pelinovsky
and Sergeeva [22] within the framework of the KdV equation.
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Figure 7. Averaged evolution of spectra of the wave fields at different times. From (top) to (bottom)
and (left) to (right) Ur = 6.7, Ur = 4.0, Ur = 2.0, Ur = 1.0, Ur = 0.5 and Ur = 0.1.

4.3. Statistical Moments

To gain a deeper understanding of the wave fields interactions described in the
previous subsection, we focus on examining four specific integrals, corresponding to four
statistical moments

µn(t) =
1
L

∫ L

0
un(x, t)dx, where n = 1, 2, 3, 4. (17)

More precisely, we focus on two statistical quantities that characterize the wave spectrum.
The kurtosis excess (κ) and the skewness (ς) are defined as

κ(t) =
µ4

µ2
2
− 3 and ς(t) =

µ3

µ3/2
2

. (18)

The kurtosis is a measure that indicates the tail heaviness of the spectrum. In simpler
terms, it quantifies the degree of peakedness in the distribution and characterizes the
influence of large waves on the overall distribution. A positive kurtosis implies a substantial
contribution from large waves. Skewness, on the other hand, measures the asymmetry
of the spectrum relative to the mean. Specifically, it represents the statistical measure of
vertical asymmetry in the wave field, with its sign indicating the ratio of crests to troughs.
A positive skewness signifies that crests are larger than troughs.

The behavior of statistical moments provides insights into the presence of a station-
ary state and its evolution over time. During a transition period of approximately 10 to
20 nonlinear time units, both moments of the wave field converge towards nearly constant
values (see Figure 8). Regardless of the conditions, the skewness of the wave field remains
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positive, indicating that positive waves (crests) have larger amplitudes compared to neg-
ative waves (troughs). Furthermore, the asymptotic value of skewness increases as the
Ursell parameter rises.

When the Ursell number is 2, the kurtosis shows oscillatory patterns centered around
zero. This scenario resembles the findings reported by Onorato et al. [47] and Tanaka [48]
in the context of deep water and the findings of Dutykh [21] for different depths using
the Euler equations. In their studies, it was demonstrated that in deep water, the calcu-
lated kurtosis values exhibit oscillations around zero. For highly nonlinear random wave
processes, some values surpass zero, indicating an increased likelihood of encountering
large-amplitude waves, including freak waves. On the other hand, for smaller values, the
kurtosis becomes negative, suggesting a lower probability of encountering such extreme
events compared to what is expected for Gaussian processes. Conversely, under strong
nonlinearity, the asymptotic value of kurtosis exceeds zero, indicating a higher probability
of encountering large waves, with significant contributions from smaller waves within the
wave field.
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Figure 8. Temporal evolution of the skewness and kurtosis for different values of the parameter Ur

averaged over 300 realizations. On the right, the zooming of the figures on the left.

4.4. Crest Distribution

In this section, we compare the exceedance probability distributions of wave crests
for different Ur values with the Rayleigh distribution of amplitudes for a narrow-band
Gaussian process

P(umax) = exp
(
− u2

max
2σ2

)
. (19)

The instant distributions of wave crests, denoted as umax (representing local maxima of u
between consecutive zero-crossing points), are computed for a dataset comprising approxi-
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mately 150,000 waves. Initially, the wave phases are randomly distributed, and the crest
distributions, denoted as P(umax), exhibit a reasonable agreement with the Rayleigh law
for narrow-banded waves (refer to Figure 9 (left)).

The probability distributions evolve over time. In the quasi-equilibrium stage (Figure 9
(right)), the wave crest distributions are compared with the theoretical predictions provided
by Equation (19). Across all five cases, the distributions exhibit qualitatively similar behav-
ior in relation to the reference Rayleigh curve for small amplitude waves. The asymptotic
distribution surpasses the Rayleigh distribution, indicating an increased probability of
encountering higher wave crests. Qualitatively, the shape of the amplitude distribution
function aligns with the behavior of skewness and kurtosis depicted in Figure 8. The
positive waves exhibit larger amplitudes than the negative waves, as indicated by the
skewness, while the kurtosis highlights the significant contribution of small waves to the
overall distribution.
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Figure 9. The exceedance probability distributions for wave crests at the initial moment (t = 0) and the
asymtotic distribution (t = 100) (right) for different Ursell numbers over 300 realizations. The black
solid line with circles corresponds to the Rayleigh distribution of the narrow-band Gaussian process.

5. Conclusions

In this work, we have explored the statistical properties of a random internal wave
field with initially identical statistical properties. Based on the numerical simulations,
our findings indicate that under strong nonlinearity, different types of freak waves might
exist, including the intriguing three sisters phenomenon. We have observed that the
spectral evolution of the wave field reaches a steady state across all Ursell parameters,
but with increased nonlinearity, the spectral density becomes more uniformly distributed.
This outcome aligns with previous research conducted by Pelinovsky and Sergeeva [22].
Furthermore, we have computed the kurtosis and skewness of the wave field. The positive
skewness values indicate the asymmetry of the wave field, with sharper crests. As for the
kurtosis, strong nonlinearity (large Ursell parameter values) demonstrates a significant
contribution from larger waves in the wave dynamics. In contrast, strong dispersion (small
Ursell parameter values) leads to kurtosis oscillating around zero or becoming negative.
Additionally, we have examined the wave crest distribution for various Ursell parameter
values, comparing it with the Rayleigh distribution. Our analysis reveals that as the Ursell
number increases, the probability distribution function deviates slightly from the theoretical
Rayleigh distribution, indicating differences in the distributions.
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