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Abstract: This paper proposes a maximum-ratio combining sensor fusion scheme for using an
extended Kalman filter in the underwater vehicle positioning task by means of communication
devices (buoys) providing location information using a slant-range mechanism, inertial sensors, a
Doppler velocity log, and a pressure sensor in the absence of bearing angle data. The parameter
estimation methods for all navigation system components are described. The results of simulation
modeling with corresponding quality metrics are presented. The outcomes were supported by
conducted field experiments. The results obtained allowed us to obtain a position determination
model for the underwater vehicle, which is still a relevant and complex task for seabed explorers.
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1. Introduction

Autonomous underwater vehicles (AUVs) are robots that are capable of moving
underwater without operator assistance along trajectories determined according to the
missions. AUV missions may include, for example, survey and exploration activities,
including wreck search, geological exploration, seabed mapping, surveys of lengthy objects
(submarine cables, pipelines), and environmental monitoring of water areas. At the same
time, the AUV must have a long range [1] and, hence, solve complex navigation and
positioning problems in both single-mission and group operations. The development
of robust navigation strategies is necessary to ensure the proper execution of the AUV
mission [2].

With the development of airborne and land-based navigation technologies, under-
water navigation technologies have also evolved significantly [3–5]. However, due to the
specificity of the underwater environment, there is still a gap between the navigation and
positioning accuracy of AUVs compared to airborne and land-based ones, which needs to
be eliminated [6]. This is mainly due to the fact that the Global Positioning System (GPS) is
not available in the underwater environment [7].

AUV positioning using only onboard sensors such as a Doppler velocity logger (DVL)
or an inertial measurement unit (IMU) will have an accumulated error [8]. AUVs are able
to use their navigation sensors to obtain relevant measurement information for subsequent
integration with underwater acoustic communication technologies, solving the positioning
and navigation problem [9,10].

Due to the complexity of the marine environment, a single navigation method cannot
meet the requirements of high accuracy and stability [11,12]. Approaches to determining
the positioning error of AUVs are defined in [8]. These approaches are based on the fact that
the AUV navigation complex consists of a hydroacoustic and onboard system. The onboard
navigation system may include an inertial measurement unit (IMU), a Doppler velocity
logger (DVL), and a pressure sensor (PS) [13]. Moreover, GPS, DVL, and PS separately
provide position, velocity, and depth information, which are used to correct the navigation
data [13–15].
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In contrast to airborne or ground-based drones, AUVs are dealing with a uniquely dif-
ficult navigational problem due to the lack of high-precision satellite navigation underwater.
Of course, for remotely piloted vehicles, additional navigation information (position, speed)
may be sent to the vehicle via fiber optic cable. However, for unmanned submersibles
without cable communication, this is almost impossible to implement in practice [16]. There
are three main methods of AUV navigation in the literature: dead reckoning and inertial
navigation, acoustic navigation, and geophysical navigation methods [17].

The first method is based primarily on inertial navigation equipment, which has be-
come financially affordable, especially after the creation of microelectromechanical systems
(MEMSs).

Since measurement errors of inertial navigation equipment are monotonically in-
creasing and unlimited, other aids (e.g., differential global positioning system for position
estimation, Doppler velocity log or correlated speed log for velocity estimation; pressure
sensors for depth estimation, etc.) must be integrated to improve positioning system
accuracy [18].

Acoustic navigation is based on using the AUV transponder’s acoustic signals to
determine its position. The most common methods are the long baseline, which uses
at least two widely separated transponders mounted usually on the seafloor, and the
ultra-short baseline, which uses GPS-calibrated transponders on an accompanying surface
vessel. Both methods have a limited range (about 10 km for individual LBLs, about 4 km
in deep water, and less than 0.5 km in shallow water for USBL networks). Because LBL
requires the installation of beacons, its applicability is limited to missions performed in
stationary locations (e.g., harbor defense). In addition, beacon installation and maintenance
are complicated and expensive operations. USBL may not be applicable in some military
applications because of tactical limitations, as it requires an accompanying vessel [19].

The most commonly used method of obtaining absolute position information under-
water is through the buoys. These buoys are in known locations, and the AUV receives
the range and/or azimuth to several of them and then calculates its position through
trilateration or triangulation. Based on the location of the transceivers, three different basic
systems can be distinguished: long baseline (LBL) systems, short baseline (SBL) systems,
and ultra-short baseline (USBL) systems [20,21].

A typical configuration for a standard long baseline is shown in Figure 1a. Two or
more buoys are deployed around the perimeter of the area in which the AUV will operate.
These buoys are anchored and float on the surface or, especially in deeper waters, several
meters above the seafloor. Each unit receives acoustic requested pings from a common
receiving channel. After receiving a request ping from the AUV, each unit waits for a
unique, specific response time and then sends a ping in response via its own separate
transmission channel.

The standard LBL systems mentioned earlier are not well suited for large groups,
as only one AUV can access the buoy network at a time and receive position updates.
Therefore, the position update interval increases with the number of vehicles.

New LBL systems, like the one shown in Figure 1b, synchronized the clocks of the
buoys and the AUV transceiver units. The buoys broadcast a ping containing a unique
identifier at certain intervals. When the AUV receives this ping, the known beacon broad-
cast schedule and the timing of the synchronized clocks ensure that the vehicle knows
when the ping was sent and can directly calculate the OWTT (one-way travel time).

Another improvement over conventional LBLs is the system shown in Figure 1c.
Relying on the setup in Figure 1b, the buoys now transmit their GPS positions along with
a unique identifier. As with the system described earlier, the AUV does not need to send
queries to the buoys. With the buoy positions embedded in the ping, the buoys are free to
swim, and there is no need to save their coordinates to the AUV before deployment.
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Figure 1. Buoy-based underwater positioning methods.

The beacons’ placement depends on the task conditions. Two or more beacons are
placed at known locations, either as buoys on the water surface or moored on the seafloor.
To increase the area of AUV operation, an approach in which surface vehicles are moved
by mobile beacons for AUVs is proposed in [22–24]. A similar approach is proposed in the
“Widely scalable Mobile Underwater Sonar Technology” project [25].

Among the existing solutions for the positioning problem, the work [26] stands out,
which considered a system of sensor data fusion, among which the values of slant range
from three hydroacoustic buoys located on the surface. A similar problem was presented
in [27], except that four buoys are already involved. In the presented sources, it is possible
to allocate essential deficiencies, such as the absence of tuning parameters for the filter and
sensor fusion methodology. Moreover, quality metrics for filter errors are not given, which
makes it difficult to determine the accuracy of the state recovery algorithms.

The use of hydroacoustic communication devices to obtain relative observations is an
effective and reliable measurement method. However, AUVs are used in complex marine
environments where unfavorable conditions may affect the sensors, leading to unknown
errors in the measurement system. This inevitably leads to a decrease in the accuracy and
stability of the filtering procedure.

The main problem in solving the AUV navigation and positioning problem is the state
estimation and accurate collection of observation information. Filtering algorithms for
AUV state estimation are a key factor in guaranteeing satisfactory underwater navigation
accuracy.

Various filter models and algorithms have been proposed to improve the accuracy of
an integrated navigation system [7]. The Kalman filter (KF) is a well-known method for
integrated navigation applications; see, for example, [11]. The traditional Kalman filter can
be applied to linear systems. Most existing AUV positioning methods comprise improved
Kalman filter (KF)-based navigation algorithms combined with measurement data from
underwater navigation sensors. The model of a joint AUV positioning system is often
nonlinear. Therefore, the extended Kalman filter (EKF) [28–30] and the uncentered Kalman
filter (UKF) [31,32] are commonly used for state estimation. The accuracy of both EKF and
UKF is affected by various factors, such as filter model and noise characteristics.

In this work, it will be acceptable to use two buoys on the surface to provide the
positioning of the submersible when complexing information with inertial navigation
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sensors (INSs/IMUs), a Doppler velocity logger (DVL), and a pressure sensor (PS). It is
assumed that the buoys do not provide bearing angle data.

The hydroacoustic transceiver arrangement was based on [26], except for the existence
of only two buoys. The studies [33,34] were used as a basis for mathematical modeling of
the navigation system object dynamics (ANPA and buoys). Hydrodynamic parameters
were determined using tabular data [35,36], and SDC-form [37] was used to represent all
equations of dynamics and kinematics. The expressions presented in [38] were used to
simulate the measurements of each sensor in the navigation system. The extended Kalman
filter for state filtering was formed according to the general methodology presented in a
number of sources [26–30]. The well-known maximum-ratio combining method was used
as the considered method of sensor fusion.

Table 1 shows the overview of related work.

Table 1. Overview table.

Reference Key Features Perspectives Cons

[4]

A multilateration algorithm
derived from Potluri’s

algorithm has been used to
compute the receiver position

Fusion with additional
sensors is in
perspective

The system uses four
buoys. No additional
position sensors are

used

[5]

A robust integrated
navigation algorithm based
on a maximum correntropy
criterion and FGO scheme is

proposed

-

The proposed method
is the most

computationally
intensive

[26]

A data association layer and
a dynamic SBL master

selection heuristic were
implemented

The extrinsic position
of each beacon will be

incorporated in the
localization state vector,
and thus, better results

can be achieved

Using multiple
transponders

[27]

An algorithm based on
multi-beacon is proposed,

and the propagation time is
used as the measurement

-

The problem is
considered in the 2D

plane. The system uses
four buoys. No

additional position
sensors are used

[28]

Proposed an improved
Sage–Husa adaptive

extended Kalman filter
(improved SHAEKF)

Expanding from a
two-dimensional plane
to a three-dimensional

space

The problem is
considered in the 2D

plane

[29]

The algorithm proposed in
this paper adds the

zero-space vector as the
observability constraint,

which improves the
consistency of the

cooperative positioning
system

Improving the
robustness of the

system by reducing the
communication

frequency

No additional position
sensors are used

This paper has the following structure: Section 2 is devoted to the used methods
and means for the positioning task, Section 3 describes the components of the proposed
navigation system, and Section 4 is devoted to the simulation modeling. Section 5 contains
conclusions on the work performed and further research directions.
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2. Materials and Methods
2.1. Underwater Vehicle Model Description

General coordinates of an autonomous underwater vehicle (AUV) are determined in a
geocentric coordinate system using SNAME notation [33,34]:

η =

[
η1
η2

]
∈ R6, (1)

where η1 =
[
x y z

]T determines the longitudinal, lateral, and vertical positions, respec-

tively, and the vector η2 =
[
ϕ θ ψ

]T determines the Euler angles of roll, pitch, and yaw,
respectively.

The velocity vector ν is expressed in the coordinate system associated with the
body [33]. The velocities (linear and angular), according to the notation announced above,
should be written as

ν =

[
ν1
ν2

]
=
[
u v w p q r

]T . (2)

Under the influence of hydrodynamic effects caused by the aquatic environment, it is
possible to write down the expression for the underwater vehicle dynamics in the following
form:

M
.
ν + C(ν)ν + D(ν)ν + g(η) = τ + JT(η) f e,

M = MRB + MA,

C(ν) = CRB(ν) + CA(ν),

(3)

where MRB ∈ R6×6—solid body inertia matrix (6 is the DoF number),
MA ∈ R6×6—added mass matrix,
CRB(ν) ∈ R6×6—solid body Coriolis matrix,
CA(ν) ∈ R6×6—added mass Coriolis matrix,
D(ν) ∈ R6×6—dissipative coefficients matrix,
g(η) ∈ R6×1—gravitational forces and moments vector,
τ ∈ R6×1—vector (of forces and moments) of the controls applied to the body expressed in
the body-fixed frame,
f e ∈ R6×1—vector (of forces and moments) of external disturbances applied to the body
expressed in the inertial frame.

In real systems, τ is calculated with the thruster’s models using the thruster’s distribu-
tion matrix (T) as

τ = Tu, (4)

where u ∈ Rp×1 is a vector that describes the thrusters’ load (p is the number of thrusters),
and the matrix T ∈ Rn×p relates the thrusters’ load u and the forces/moments vector τ.

The kinematics equation linking (1) and (2) is written in the form

.
η = J−1(η)ν =

[
RB

I (η) 03×3
03×3 Jk,o(η)

]−1

ν =

[
RI

B(η) 03×3
03×3 J−1

k,o (η)

]
ν, (5)

where RB
I (η) ∈ R3×3 is the rotation matrix obtained from the Euler angles [33], which links

the navigation (inertial) frame and the underwater vehicle (body) frame, and Jk,o(η) ∈ R3×3

is the Jacobian linking the angular velocities of the world reference system and the body
system [33].

Given x =

[
η
.
η

]T

, it is possible to write the state vector

.
x =

[ .
η

M−1
(

Tu + JT(η) f e − C(ν)ν− D(ν)ν− g(η)
)]. (6)
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The latter equation can be represented in the state-dependent coefficients (SDCs)
form [37]

dx
dt

= A(x, t)x + B(x, t)u, x(t0) = x0,

y = C(t)x +D(t)u,

A(x, t)x =

[
06×6 J(x)−1

06×6 −M−1(C(x) + D(x))

]
, B(x, t) =

[
06×6
M−1

]
,

u = Tu + uadd(x), uadd = JT(x) f e − g(x).

(7)

where A ∈ R2n×2n—dynamics matrix,
B ∈ R2n×n—control matrix,
C ∈ Rm×2n—output matrix (m—number of system outputs),
D ∈ Rm×n—input–output coupling matrix,
u ∈ Rn×1—control vector, including the vector of external perturbations uadd ∈ Rn×1.

2.2. Description of the Controlled Object MMT-300

The MMT-300 AUV is designed to perform bottom and aquatic surveys at depths
of up to 300 m. Search programs (missions) can be described as AUV tacking through
the surveyed area with activation of onboard search devices (one or several) at specified
intervals and then returning the vehicle to the supplying vessel. The visual appearance of
the AUV MMT-300 is shown in Figure 2.
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The locations of the main AUV elements are shown in Figure 3.
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Figure 3. Location of the AUV’s main components: 1—sustainer propulsion system, 2—stabilizers,
3—aft compartment, 4—charge connector, 5—aft cover, 6—navigation and communication com-
partment, 7—side-scan sonar, 8—hermetic payload compartment, 9—bow cover, 10—outboard
payload compartment, 11—horizontal thruster, 12—compartment cover, 13—radio module, 14,
16—cargo arm, 15—autopilot compartment, 17—vertical thruster, 18, 22—payload compartment
cover, 19—towing arm, 20—emergency ballast mechanism, 21—Doppler velocity logger, 23—ELS
antennas, 24—hermetic communication connector.

2.2.1. Software Control and Onboard Navigation System

The onboard control and navigation system (OCNS) is designed to control all systems
of the vehicle in all operating modes of the AUV.

The OCNS provides the following:

• Execution of a pre-programmed AUV task;
• Detection of emergencies and their adequate handling;
• Trajectory control of various types;
• Determination of the resulting AUV location in geographical coordinates.

The onboard control and navigation system includes the following:

• Emergency sensors and actuators (water sensors, voltage sensor, power failure and
low battery detectors, thrusters);

• Magnetic compass and orientation sensors;
• Radio module;
• Depth sensor;
• Doppler velocity logger.
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2.2.2. Propulsion–Steering Complex

The propulsion–steering complex (PSC) is a program-controlled executive device. The
AUV uses a propulsion system consisting of four aft reversible thrusters and two thrusters
of horizontal and vertical channels. Stern thrusters are located in pairs in the horizontal
and vertical planes at an angle of 22◦ to the longitudinal axis. This propulsion scheme
makes it possible to create arbitrary forces and moments to control the AUV, as well as to
implement various movement modes. The AUV motion is controlled by five degrees of
freedom. The range of possible values for a given longitudinal velocity is 0–2.0 m/s.

2.2.3. Hydroacoustic Navigation and Communication System (Option)

The HNCS provides vehicle tracking, as well as periodic correction in determining the
onboard coordinates of the AUV. The error in determining the distance depends signifi-
cantly on the hydrological conditions of the working area, as well as on the error in the set
sound velocity. In the absence of HANS, the AUV uses calculus (using magnetic compass
(MC), depth sensor (DS), and Doppler velocity logger (DVL) readings) and GNSS (on the
surface) to determine its own coordinates.

The main HNCS features are summarized in Table 2.

Table 2. HNCS features.

Parameter Value

Operating depth, m up to 300
Operating range (slant), km up to 3.5

Slant-range measurement error, m no more than 0.01
Operating frequency, kHz 18 . . . 34

Bearing measurement error, deg 0.1
Data transfer rate, kbit/s up to 13.9

2.3. MMT-300 Mathematical Model

The main MMT-300 vehicle parameters are summarized in Table 3.

Table 3. AUV parameters.

Mass, m Length, L Radius, r Center-of-Mass
Vector, rb

g

Buoyancy Center
Vector, rb

b
Buoyancy, B

150 kg 3.081 m 0.147 m
[
0 0 0

]T m
[
0 0 0.07

]T m mg, N

2.3.1. Thrusters Allocation Matrix

Given the geometric and physical parameters of the thrusters, it is possible to deter-
mine the thrusters’ allocation matrix (4) by the following expression

ti =

[
fi

ri × fi

]
, T =

[
t1 · · · tn

]
, (8)

where fi is the force created by the i-th thruster, and ri is the geometric position of the force
application point of the i-th thruster relative to the vehicle’s center of mass.

It is worth noting that the forces generated by the MMT-300 thrusters depend on the
software control, which leads expression (8) to the parametric form

ti(code) =
[

fi(code)
ri × fi(code)

]
, T(code) =

[
t1(code) · · · tp(code)

]
, (9)

where code ∈ [−128; 128] is the software control code.
From Figure 4, it is possible to determine the values ri, which are presented in Table 4.
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0
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𝐹(𝑐𝑜𝑑𝑒) 𝑐𝑜𝑠(22 )
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−𝐹(𝑐𝑜𝑑𝑒) 𝑠𝑖𝑛(22 )
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𝐹(𝑐𝑜𝑑𝑒)
0
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0
0

−𝐹(𝑐𝑜𝑑𝑒)
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Figure 4. MMT-300 geometric parameters.

Table 4. Thrusters’ moments of arms of the MMT-300.

Thruster No. ri, (mm)

lxi , (mm) lyi
, (mm) lzi , (mm)

1 −1330 0 189
2 −1330 159 30
3 −1330 0 −129
4 −1330 −159 30
5 1330 0 30
6 882 0 30

Since all thrusters are the same in design, they create a single force that depends on
the software control code F(code). In this case, fi(code) is defined by taking into account
the geometry of the control object as

f1(code) =

F(code)cos(22◦)
0

F(code)sin(22◦)

, f2(code) =

F(code)cos(22◦)
F(code)sin(22◦)

0

,

f3(code) =

 F(code)cos(22◦)
0

−F(code)sin(22◦)

, f4(code) =

 F(code)cos(22◦)
−F(code)sin(22◦)

0

,

f5(code) =

 0
F(code)

0

, f6(code) =

 0
0

−F(code)

.

(10)

From the thruster’s static characteristic (Figure 5), it is possible to write down the
functional dependence between the control code and the generated force, for example, by
means of a sixth-order polynomial

F(code) = 7.2937·10−13·code5 − 6.9155·10−10·code4 − 2.2935·10−8·code3+
2.3559·10−5·code2 + 1.9049·10−4·code + 0.1332.

(11)

With the dependencies defined above, it is possible to determine T(code), which makes
it possible to define the expression for forces and moments (4) already in parametric form
τ(code) = T(code)·u. In this case, u determines the thruster’s load percentage. At full
performance, u =

[
1 1 1 1 1 1

]T .
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2.3.2. Inertia and Added Masses Matrices

The matrix MRB in (3) is constant, symmetric, and positively determined (MRB > 0).
The values filling it largely depend on the geometric configuration and, in the most general
case, have the following form [33,34]

MRB =

 mI3×3 −mS
(

rb
g

)
mS
(

rb
g

)
IOb

 ∈ R6×6, (12)

where m—rigid body mass,
I3×3—3× 3 identity matrix,
IOb —inertia tensor in the reference frame of the body,

rb
g =

[
xg yg zg

]T—vector from the origin to the gravity center of the body,
S( · )—operator of vector transformation into a skewed matrix [33].

The inertia tensor for a solid cylinder is defined as

IOb =


1
2

mr2 0 0

0
1
12

m
(
3r2 + L2) 0

0 0
1

12
m
(
3r2 + L2)

. (13)

Given the symmetric form approximation of the underwater vehicle, the matrix nota-
tion will be greatly simplified and will take a diagonal form [33]:

MA = −diag
{

X .
u, Y .

v, Z .
w, K .

p, M .
q, N.

r

}
=

MTr
A ∈ R3×3 . . .

. . . MRot
A ∈ R3×3

 (14)

There is no uniquely correct way to calculate the MA matrix elements, so, as a rule,
a variety of estimation methods are used. For a solid cylinder of mass m, length L, and
radius r, the added masses (14) are defined as [33]

X .
u = −0.1m,

Y .
v = −πρr2L,

Z .
w = −πρr2L,

K .
p = 0,

M .
q = − 1

12
πρr2L3,

N.
r = −

1
12

πρr2L3.

(15)
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2.3.3. Coriolis Matrix

According to Fossen [34], the matrix C(ν) is generally defined from the blocks of the

inertia matrix M. In this case, M =

[
M11 M12
M21 M22

]
, then

C(ν) =
[

03×3 −S(M11ν1 + M12ν2)
−S(M11ν1 + M12ν2) −S(M21ν1 + M22ν2)

]
∈ R6×6. (16)

2.3.4. Gravitational and Buoyancy Vector

In [34], to calculate g(η), the author uses the expression

g(η) =



(mg− B)sinθ
−(mg− B)cosθsinφ
−(mg− B)cosθcosφ

−
(
ygmg− ybB

)
cosθcosφ +

(
zgmg− zbB

)
cosθsinφ(

zgmg− zbB
)
sinθ +

(
xgmg− xbB

)
cosθcosφ

−
(
xgmg− xbB

)
cosθsinφ−

(
ygmg− ybB

)
sinθ

, (17)

where m—vessel’s mass including water in space,
g—acceleration of gravity,
B = ρg∇—buoyancy force,
where ρ—liquid density,
∇—liquid volume displaced by the vessel,

xb, yb, zb—components of the vector rb
b =

[
xb yb zb

]T from the origin to the center of
buoyancy.

2.3.5. Damping Forces and Moments

The drag force/lifting force (Figure 6) is calculated with

FD = CD

(
ρv2

2

)
SD, FL = CL

(
ρv2

2

)
SL, (18)

where CD—drag coefficient,
CL—lift coefficient,
ρ—environmental density,
v—body velocity in the fluid,
SD—surface area, relative to the flow,
SL—surface area perpendicular to the flow.
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The CL coefficients for the cylindrical approximation form AUV are given in [35]. For
a given ratio of length and radius, the corresponding coefficient is CL = 0.64.

The CD coefficient is determined relative to the bow cover’s geometry. In this case, the
closest shape is a hemispherical bowl. In [36], the corresponding value of CD = 0.4.

The frontal and side areas are determined solely from the basic geometric parameters
of the submersible by the following expressions:

SD = π(0.147)2 = 0.06789
(
m2).

SL = 2π 0.1473.081 = 2.8457
(
m2). (19)



J. Mar. Sci. Eng. 2023, 11, 1847 12 of 23

The forces induced by the cylindrical body motion, FDAMP =
[
FOX

D FOY
L FOZ

L
]T ,

are approximately defined as

FOX
D = 0.4

(
1000·u2

2

)
0.06789 = 13.578u2,

FOY
L = 0.64

(
1000·v2

2

)
2.8457 = 910.624v2,

FOZ
L = 0.64

(
1000·w2

2

)
2.8457 = 910.624w2,

(20)

The moments created by the cylindrical body motion are approximately defined as

MDAMP = ν1 ×MTr
A ν1. (21)

The damping forces, taking into account the calculated parameters, are defined as

D(ν)ν = diag{FDAMP, MDAMP}. (22)

2.4. Mathematical Model of the Buoy

The scheme of the buoys involved in the system is shown in Figure 7. Their parameters
are summarized in Table 5.
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Table 5. Buoy parameters.

Mass, m Length, L Radius, r Center-of-Mass
Vector, rb

g

Buoyancy Center
Vector, rb

b
Buoyancy, B

12 kg 0.36 m 0.08 m
[
0 0 −0.16

]T m
[
0 0 0.21

]T m 171, N

Given that the buoy has a cylindrical shape, it is possible to describe its dynamics
similar to MMT-300, except that the inertia tensor is rotated and defined as

IOb =


1

12
m
(
3r2 + L2) 0 0

0
1

12
m
(
3r2 + L2) 0

0 0
1
2

mr2

. (23)

2.5. Description of Onboard Sensors

No one sensor can measure perfectly, i.e., without errors. An error is the difference
between the true value and the actual measured value. Sensor errors are divided into
random and systematic components. Random components are also called random mea-
surement errors. Their specific realization at a particular time cannot be predicted; it is
only possible to describe a general pattern of their behavior. The mathematical model of
random components is defined as a sequence of the white noise counts sum with Markov
process counts or flicker noise [38]. Determining the characteristics of the random processes
allows us to correctly describe their dynamics when integrating the IMU with other sensors,
improving the filtering quality.

2.5.1. Inertial Sensors

When combining the IMU with other sensors, the zero-point biases of accelerometers
and gyroscopes are included in the vector of estimated parameters; this allows us to take
into account their random component, which is the main source of positioning errors after
compensating for other systematic errors. The temperature has the greatest effect on the
zero-offset of MEMS sensors; at the same time, its influence on the axis unorthogonality
and scale coefficient errors is limited.

The output vector of velocity measurements from the 3-axis accelerometer unit is
modeled as

ν̃IMU = ν +
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Consider the problem of constructing a filter for a nonlinear system, known as an 

extended Kalman filter. It allows us to estimate the controlled object state, even if the di-
mensionality of the state vector of the system under study exceeds the number of meas-
ured parameters. To calculate the current state of an a priori known dynamic system, it is 
necessary to know its current measured state, as well as the state of the filter at the time 
of the previous measurement. The purpose of the filter is to minimize the sum of squared 
errors of the state vector estimation [28–30]. 

Taking into account the white noise of the system, 𝓌, and the white noise of meas-
urements, 𝓋, the system in SDC form has the following view: 𝑑𝑥𝑑𝑡 = 𝐴(𝑥, 𝑡)𝑥 + 𝐵(𝑥, 𝑡)�̄� + 𝐺𝓌, 𝑥(𝑡 ) = 𝑥 ,𝑦 = 𝐶(𝑡)𝑥 + 𝒟(𝑡)�̄� + 𝐻𝓌 + 𝓋,  (32) 
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where 𝑃(𝑡) is the state covariance estimation, 𝑃  is the initial value of the state covari-
ance estimation, 𝐾 (𝑡) is the Kalman filter gain matrix, and 𝑄 and 𝑅 are the cost ma-
trices in the Riccati equation. 

Noises 𝓌 and 𝓋 must satisfy the following conditions: 𝐸(𝓌) = 𝐸(𝓋) = 0, 𝐸(𝓌𝓌 ) = 𝑄, 𝐸(𝓋𝓋 ) = 𝑅. (34) 

3.4. Sensor Fusion 
According to Figure 8, it is required to combine information from the sensors to form 

a measurement vector for subsequent filtering. There are numerous methods of combin-
ing sensor readings. 

In telecommunications, maximum-ratio combining (MRC) is a data fusion method in 
which the signals of each channel are summed, and the gain of each channel is set propor-
tional to the RMS signal level and inversely proportional to the RMS noise level in that 
channel: 𝑠 = 𝜎 𝑠 + 𝜎 𝑠𝜎 + 𝜎 . (35) 

Maximum-ratio combining is the optimal fusion tool for independent channels with 
additive white Gaussian noise. If hydroacoustic buoys unambiguously determine the po-
sition, it is necessary to combine the Doppler logger data with the IMU in the measure-
ments vector: 𝑢 =     , 𝑣 =     . (36) 

4. Navigation System Modeling 
The filtering software simulation considers the following situation: the MMT-300 

moves to a predetermined point, and two hydroacoustic buoys are located on the water 
surface. The influence of surface current is taken into account by influencing the displace-
ment of buoys. If the measurement error is larger than the state uncertainty estimate, the 
filter will “trust” the simulation data more. That is why it is important to correctly select 
the values of covariance matrices, the main tool for tuning the filter. With the given meas-
urement devices’ noise parameters, the EKF parameters are as follows: 

IMU + bIMU , (24)

where
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0, σ2

IMU
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IMU is the RMS error of the accelerometer, and bIMU is the
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Similarly, the real output of the gyroscope is defined as

η̃2GYRO = η2 +
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0, σ2

GYRO
)
, σ2

GYRO is the RMS error of the accelerometer, and bGYRO is
the gyroscope bias, which is modeled as a 1st-order Markov process.

2.5.2. Depth Sensors

Depth and underwater pressure have a direct correlation. As the unit goes deeper into
the water, the pressure readings increase linearly.

The actual depth sensor output is simulated by adding noise to the actual depth:

z̃ = z +
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0, σ2

z
)

and σ2
z is the RMS error in depth.
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2.5.3. Doppler Velocity Logger

The Doppler logger measures the change in acoustic frequency to determine the
vehicle’s speed relative to the seafloor. The actual Doppler logger output is modeled by
adding noise to the actual vehicle speed:[

ũDVL
ṽDVL

]
=

[
u
v

]
+

[
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0, σ2

DVL
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, and σ2

DVL is the RMS of the velocity error.

2.5.4. Underwater Acoustic Positing System

The underwater acoustic positing system measures the distance and direction of the
vehicle from the reference positions. It can be interfaced with GPS to provide Earth-related
coordinates. However, acoustic position estimate is affected by GPS accuracy, system
installation, ship attitude, sound velocity profile, ray bending, and measurement noise [18].

Assuming the system is precisely calibrated, buoy installation and attitude have
negligible effects. The mathematical model of the system’s actual output is given as

p̃UAPS = pUAPS +
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UAPS ∼ N
(
0, σ2

UAPS
)
, σ2

UAPS is the RMS positional error, and bUAPS is the time-
varying bias modeled as a 1st-order Markov process and depends on the sound velocity
profile and ray-bending effect.

3. Navigation System Components
3.1. AUV Navigation System

In this work, the USBL positioning method is taken into consideration. The principle
of USBL and LBL operation is based on the range measurements to the responding beacons
with known coordinates. The onboard AUV transmitter emits a hydroacoustic signal, and
the receiver records the response signal from the beacon. The range is determined by
measuring the propagation time of the hydroacoustic signal. The error in determining
the location of the vehicle depends on the accuracy of setting the beacon coordinates,
determining the effective sound speed, and the accuracy of fixing the moments of the
arrival response from the beacon.

USBLs use a beacon that emits hydroacoustic pulses without prior interrogation. The
information delivered by the beacon and the submersible must be synchronized. The
measured quantity is the time of signal propagation, as well as the phase difference of the
signal’s arrival at the receiving antenna elements mounted on the AUV. The used USBL
system parameters are shown below:

• Operating range, <2000 m;
• Slant-range accuracy, 0.01 m;
• Acoustic connection, up to 31.2 kbit/s;
• Update rate, ≤1 Hz.

The specifications of the operator’s computer with position correction software are as
follows:

• Intel Core i5 11th Gen 1155G7 (2.50 GHz);
• 8 GB memory 512 GB NVMe SSD;
• Intel Iris Xe graphics.

As can be seen in Figure 8, it is necessary to provide measurements fusion of different
sensors in order to estimate AUV position together with errors.
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3.2. Slant Range Usage

If there are two or more buoys, it is possible to reconstruct information about the
location of the modem object using the slant-range mechanism to recalculate the position
in the global coordinate system by GPS or GLONASS.

Two buoys are considered for the task. Their locations at longitudinal, lateral, and vertical
displacements are determined by the η

(b1)
1 =

[
xb1 yb1 zb1

]T and η
(b2)
1 =

[
xb2 yb2 zb2

]T

vectors. Assuming that the depth is constant (without considering wave perturbations),
it is possible to neglect the zb1 and zb2 values, obtaining the positions in the planes

pb1 =
[
xb1 yb1

]T and pb2 =
[
xb2 yb2

]T .
The possibility of obtaining the slant range to the underwater vehicle will allow us to

calculate its position but preliminarily requires knowledge of its depth z (assuming that
the pressure sensor is always working) to determine the projection of the range on the XY
plane. Denoting the slanted ranges as rb1 and rb2 , expressions for their plane projections are
obtained as follows:

rb1 =
√

r2
b1
− z2,

rb2 =
√

r2
b2
− z2.

(29)

Further, the positioning problem is reduced to the geometric problem of finding
intersection points between two circles whose centers are the buoy positions and whose
radii are the projections found earlier (rb1 and rb2 ).

The distance between the circles d =
∣∣pb2 − pb1

∣∣ allows the use of the cosine theorem:

cos α =
r2

b1
+ d2 − r2

b2

2drb1

. (30)

The possible positions of the AUV are now defined by the expression[
xSR
ySR

]
= rb1 +

⇀
Ud
(
rb1 cos α

)
±

⇀
U⊥
(

rb1

√
1− cos2 α

)
, (31)

where
⇀
Ud =

pb2 − pb1

d
=

⇀Udx
⇀
Udy

 is the unit vector between the first and the second center,

and
⇀

U⊥ =

[ ⇀
Uy

−
⇀
Ux

]
is perpendicular to the unit vector.

The duality of solving the equation is resolved if the previous underwater vehicle
position is known. In this case, it is necessary to choose the point closest to the last vehicle
position (Figure 9).
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3.3. Description of the Kalman Filter Model

Consider the problem of constructing a filter for a nonlinear system, known as an
extended Kalman filter. It allows us to estimate the controlled object state, even if the
dimensionality of the state vector of the system under study exceeds the number of mea-
sured parameters. To calculate the current state of an a priori known dynamic system, it is
necessary to know its current measured state, as well as the state of the filter at the time
of the previous measurement. The purpose of the filter is to minimize the sum of squared
errors of the state vector estimation [28–30].

Taking into account the white noise of the system,
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(32)

The state vector estimation of the Kalman filter is defined as

dx̂
dt

= A(x, t)x̂ + B(x, t)u + KKF(t)[y− C(t)x̂], x̂(t0) = x̂0,

KKF(t) = P(t)C(t)T R−1, P(t0) = P0,
.
P(t) = A(x, t)P(t) + P(t)A(x, t)T + GQGT − P(t)C(t)T R−1C(t)P(t),

(33)

where P(t) is the state covariance estimation, P0 is the initial value of the state covariance
estimation, KKF(t) is the Kalman filter gain matrix, and Q and R are the cost matrices in
the Riccati equation.

Noises
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3.4. Sensor Fusion

According to Figure 8, it is required to combine information from the sensors to form
a measurement vector for subsequent filtering. There are numerous methods of combining
sensor readings.

In telecommunications, maximum-ratio combining (MRC) is a data fusion method
in which the signals of each channel are summed, and the gain of each channel is set
proportional to the RMS signal level and inversely proportional to the RMS noise level in
that channel:

sopt =
σ2

sy sx + σ2
sx sy

σ2
sx + σ2

sy

. (35)

Maximum-ratio combining is the optimal fusion tool for independent channels with
additive white Gaussian noise. If hydroacoustic buoys unambiguously determine the posi-
tion, it is necessary to combine the Doppler logger data with the IMU in the measurements
vector:

ũ =
σ2

DVLũIMU + σ2
IMU ũDVL

σ2
IMU + σ2

DVL
, ṽ =

σ2
DVLṽIMU + σ2

IMU ṽDVL

σ2
IMU + σ2

DVL
. (36)

4. Navigation System Modeling

The filtering software simulation considers the following situation: the MMT-300
moves to a predetermined point, and two hydroacoustic buoys are located on the water
surface. The influence of surface current is taken into account by influencing the displace-
ment of buoys. If the measurement error is larger than the state uncertainty estimate,
the filter will “trust” the simulation data more. That is why it is important to correctly
select the values of covariance matrices, the main tool for tuning the filter. With the given
measurement devices’ noise parameters, the EKF parameters are as follows:

P0 = I12×12, Q = 0,
x̂0 = x0 +
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x0 ∼ N (0, 0.05),
R = diag{0.8; 0.8; 0.102; 0.15; 0.15; 0.15; 0.25; 0.25; 0.35; 0.14; 0.14; 0.14}.

(37)

It is assumed that a Doppler logger is used when fusing sensor information due to the
small distance from the seafloor. It should also be noted that zero-order extrapolators with
update frequencies, presented in the Table 6, are used to simulate the discrete nature of the
measurement devices.

Table 6. Update rates of the sensors.

Sensor Update Rate

IMU 50 Hz
GPS 1 Hz
DVL 25 Hz
PS 50 Hz

The block diagram of the system model is shown in Figure 10 and reflects its main
components: hydroacoustic buoys to obtain slant ranges to AUV, a controller to send
control signals, the dynamics/kinematics block of the underwater vehicle, and the sensor
fusion block.

The simulation results are presented below. The initial state of the underwater vehicle,
in this case, is defined as zero. Figure 11 shows the trajectories of the submersible and the
hydroacoustic buoys.

The charts of the system output are shown in Figure 12. The measurement sensor
errors are evident here: noise and high update frequencies are noticeable. The results of the
Kalman filter for state recovery are shown in Figure 13 and show more appropriate results
relative to the actual data.
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A more correct assessment of the filter performance can be made by the error with
respect to the real data (Figure 14). Quantitative evaluation is already defined by quality
metrics. MSE, MAE, and RMSE metrics are summarized in Table 7.

Table 7. Quality metrics.

Metric Value

MSE (η)
[
1.868327 3.291973 0.390871 0.030260 0.044263 0.318385

]T

MSE (ν)
[
0.191705 0.115427 0.063261 0.002418 0.043486 0.013741

]T

MAE (η)
[
0.029913 0.082423 0.008349 0.001244 0.002044 0.004935

]T

MAE (ν)
[
0.003227 0.001675 0.004679 0.000030 0.000247 0.000525

]T

RMSE (η)
[
0.074581 0.116712 0.139543 0.000732 0.003981 0.016776

]T

RMSE (ν)
[
0.007249 0.004172 0.002344 0.000038 0.000389 0.000886

]T
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5. Discussion

The main goal of this paper was to develop a high-quality autonomous navigation
performance using MEMS-sensor-based IMUs with a rough accuracy class, a Doppler log,
and a pressure sensor. During this study, a simulation model of underwater robot motion
was developed. All proposed algorithms and approaches were tested with simulation
modeling tools and using natural data.

The presented position estimation graphs showed that the filtering of noisy data is
fully realized. On the considered time interval, the error between the measured value and
the actual value tends toward zero. The above judgment is supported by the numerical
results of the given quality metrics. The finest results were obtained in restoring the
velocities of the underwater vehicle.

The specified goal was achieved: it was shown that it is practically possible to achieve
an acceptable quality of navigation in autonomous mode using a class of sensors with
rough accuracy. The positioning error turns out to be limited over a long time interval, even
if the motion starts from a large area of initial uncertainty. The outcomes were supported
by conducted field experiments, which were carried out in the Black Sea water area with
the navigation coordinate system origin at longitude 33.46◦ and latitude 44.58◦.



J. Mar. Sci. Eng. 2023, 11, 1847 21 of 23

6. Conclusions

This paper has presented a positioning method to utilize the information integration
mechanism for various onboard sensors using EKF and MRC techniques. The error plots
and numerical quality metrics showed that the system is able to recover the AUV position
values with high accuracy.

At the same time, the method is not lacking in disadvantages. The duality of the
position determination problem is preserved. This fact allows us to avoid USBL systems
that provide information about bearing angles but sets certain limitations since knowledge
of the previous position is required. Moreover, the EKF proposed for combining the
readings is rather demanding on computational resources.

Further research will be focused on the generation of control laws for a swarm of
submersibles relative to the leader since the main problem of cooperative navigation and
positioning still remains state estimation and accurate collection of observations, especially
for the leading element.
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