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Abstract: Floating pontoons have played a supreme and indispensable role in crises and disasters
for both civil and military purposes. Floating bridges and ferries are exposed to blast loadings in
the case of wars or terrorist attacks. The protection effectiveness of sacrificial cladding subjected to a
blast was numerically investigated. In this study, a steel ferry has been simulated and exposed to
side explosions with different explosive charges at certain stand-off distances, according to military
standards from NATO and American standard TM5. In this simulation, nonlinear three-dimensional
hydro-code numerical simulation ANSYS autodyn-3d has been used. The results reported that the
ferry could withstand a charge of 5 kg TNT at a stand-off distance of 1 m without failure. The
main objective of this research is to achieve a design that would increase the capacity against the
blast loading with minimal plastic deformation in the absence of any failure in the ferry. Therefore,
an innovative mitigation system has been proposed to dissipate the blast energy of the explosion
based on the scientific theory of impedance using sacrificial cladding. The new mitigation system
used a specific structural system in order to install the existing pontoon structure without any
distraction. The response, elastic deformations, plastic deformations and plastic failure of the ferry
were illustrated in this paper. Furthermore, the results revealed that the proposed mitigation system
could mitigate more than 50% of the blast waves. The new design revealed promising results, which
makes it suitable for mitigating blast waves. Finally, the results were provided with a reference
for the preliminary design and application of sacrificial cladding for structural protection against
blast waves.
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1. Introduction

Due to accidental explosions and increasing terrorist attacks, preventive and blast-
resistant techniques are needed to ensure the survivability of structures. The development
of new technologies to protect structures against explosions has gained significant attention,
not only for military applications but also for civilian purposes. Any design of the blast
load mitigation system must incorporate influence on the mitigation efficiency and the
study of attenuation mechanisms.

Techniques of protection against explosion dangers and various mitigation strategies
have recently attracted the attention of many researchers [1–9]. Liu et al. [10] investigated
the blast load attenuation of sandwich panels. The results demonstrated that sandwich
panels could reduce the peak load by 64.69% compared with mild steel plates without a
foam core. Cheng et al. [11] studied the effect of cladding sandwich panels subjected to
blast loading with different configurations of tubular cores. The results illustrated that
cladding panels could be used as an option for blast mitigation. Chen et al. [12] designed
sandwich panels with layered-gradient aluminum foam cores subjected to blast loading.
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The results illustrated that the layered-gradient sandwich panel has advantages in terms of
blast resistance and energy absorption. Wang et al. [13] presented a numerical method to
simulate a rocket explosion on a launch pad to study the propagation law of near-ground
explosions and quantify the enhancement effect on peak overpressure. Zhou and Hao [14]
demonstrated that a protective barrier could effectively reduce blast loading and protect
the structures from explosion effects. Furthermore, Abdel Wahab et al. [15] presented a
protection system to protect vehicles from blast effects. Alqwasmi et al. [16] studied the
behavior of sacrificial sandwich steel panels with axially oriented octagonal tapered tubular
cores subjected to blast loading. Additionally, it was found that the top plate and tube
thickness are significantly affected by energy absorption. Additionally, Alogla et al. [17]
designed protective panels to segregate building façades from the effect of an explosion.
The robust design demonstrated great performance, not only in resisting the blast waves
but also in providing protection against fragments. Markose and Lakshmana [18] explored
a composite plate with V-shaped steel plates and coatings of hyperplastic materials, such
as polyurea, to enhance blast mitigation. Moreover, Moustafa et al. [19] developed a novel
blast load mitigation system employed as a protection fence, using a bent tube technique to
manipulate the shockwave. The results showed that this technique could mitigate 94% of
the blast waves, which means that only 6% of the blast impulse is considered an applied
load on the targeted structure.

Additionally, Jin et al. [20] proposed different configurations for steel poles used as
a fence for a building in order to enhance its protection by mitigating the pressure wave.
As an alternative blast mitigation method, sacrificial cladding has attracted attention in
recent years [21]. Sacrificial cladding generally consists of a core sandwiched with one
or two face plates [22,23]. With the aid of sacrificial cladding, the load transmitted to the
structure can be significantly reduced [24]. However, further investigations are still needed
to provide more convincing predictions regarding the blast mitigation effectiveness of
sacrificial cladding. Yasser A. Khalifa et al. [22] studied the performance of lightweight,
cold-formed steel sandwich panels subjected to explosions, as well as energy absorption
and scalability. The results suggested that panels with a unidirectional core configuration
are preferable to mitigating blast risk. Hong yuan Zhou et al. [21] presented an experimen-
tal and numerical investigation to study the effectiveness of using a sacrificial cladding
consisting of a steel face plate and an aluminum foam core for near-field blast mitigation.
Additionally, Zhang et al. [25] studied the dynamic response of corrugated sandwich struc-
tures with different core arrangements to maximize the mitigation effects of blasts. Britan
et al. [26] investigated the possibility of using foam materials with high deformability and
energy absorption capacity in sacrificial lightweight blast walls. Taha et al. [27] studied
the effect of using ultra-high-performance concrete in curved concrete barrier walls to
capture the damage produced due to blast explosions. The results illustrated that using
ultra-high-performance concrete in barrier walls has a good influence on mitigating the
effect of blast explosions, with an average percentage of 32% compared to ordinary concrete
barriers. Ehasni et al. [28] incorporated composite materials for protection against an explo-
sive charge of 100 kg of TNT. Furthermore, McDonald et al. [29] experimentally studied
the dynamic responses of high-strength and armor-grade steel subjected to explosions at
different stand-off distances. Guangyong et al. [30] investigated the effect of the face–sheet
configuration and materials on the blast resistance of a structure constructed from sandwich
panels. Zong et al. [31] used fence walls for blast wave distraction and investigated their
mitigation capabilities. The results showed that the fence walls could reduce the peak
pressure and impulse. Moreover, Xia et al. [32] numerically investigated the protective
performance of metallic foam cladding on a reinforced concrete slab. Wu and Sheikh [33]
studied the influence of metallic foam cladding on protecting a concrete slab subjected to an
explosion. Yazici et al. [34] determined the dynamic responses of a sandwich panel against
blast loading. The results showed that the deflections were decreased by 50%, and the
weight of the panel decreased by approximately 2.3%. Abdel Wahab et al. [35] and Markose
and Rao [18] established a mitigation system (V-shape) for protecting the hull of a military
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vehicle subjected to an explosion. Marcel et al. [36] numerically investigated the effect
of the core topologies of sandwich-structured composites in terms of dynamic responses,
failure mechanisms and energy absorption. The results clarified that comparable structural
characteristics could be achieved by changing the external dimensions and shapes and also
by changing the core density. Lin et al. [37] designed and compared sandwich panels with
different types of honeycomb cores to construct an optimized blast wall on an offshore
platform. The results clarified that the sandwich plate with a concave arc honeycomb core
had the best anti-blast performance.

Based on the previous studies, further investigations are needed to provide more
convincing predictions about blast mitigation effectiveness. In the present study, the
protective effects of sacrificial cladding were proposed. Three-dimensional numerical
simulations using commercial finite element ANSYS AUTODYN have been performed to
develop a blast load mitigation system that can be used as a fence to satisfy acceptable
protection for a floating steel ferry. The model has first been validated using previous
experimental tests. The validation process was based on a real experiment and a series of
practical experiments performed by Aune et al. [38]. In addition, a new mitigation system
has been proposed and simulated to attenuate the generated blast wave and significantly
reduce its effect.

1.1. Blast Loading

An explosion is a very rapid release of an enormous amount of energy in a very short
time accompanied by an air pressure shock wave [39,40]. This air pressure shock wave
compresses the surrounding air and then decays after reaching the peak according to the
type, stand-off distance and the charge mass of the explosive [41]. The pressure profiles and
equivalents can be determined from Hopkinson–Cranz scaling laws, where the pressure
and stand-off distance are expressed as variables of the Hopkinson scaled distance (Z), as
in Equation (1) [42–45].

Z = R/W1/3 (1)

where “R” represents the stand-off distance (meter), and “W” represents TNT equivalent
charge mass (kg). The blast load depends on the explosive material and the basis of its
physical state [46]. Explosions are classified as far-range explosions when the offset distance
is equal to or greater than 1.2 m/kg1/3, and near-range explosions are when the offset
distance is less than 1.2 m/kg1/3. The typical pressure–time history, which results from air
explosions, is analyzed and illustrated in Figure 1 [17,47–50].
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Figure 1. Typical pressure-time history from air explosions [17,47–50].

This curve represents the change in the pressure versus time at any location away
from the center of the explosion. Where “PSO” represents the peak incident pressure, “PO”
represents the ambient atmospheric pressure, “P−

SO” represents the negative pressure and
“ta” is the arrival time. The blast wave reaches the structure according to the stand-off
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distance and the charge mass at the time equal to “ta”, and at this point, the pressure
reaches its maximum and is equal to (PSO). After that, the incident pressure decreases
until it reaches atmospheric pressure. The elapsed time that the blast wave takes from the
peak pressure to reach the atmospheric pressure is known as the positive phase duration
(tO). This is followed by a negative pressure called the negative phase duration (t−O ). The
incident impulse (i) is the integrated area under the pressure–time history curve. The
pressure can be calculated at any time according to Equation (2) [17,51].

P(t) = PO + PSO (1 − t/tO )e−µ(t/tO )) (2)

where P(t) represents the pressure at any time “t”, “µ” represents the pressure wave decay
parameter, “PSO” represents the peak incident pressure and “PO” represents the ambient
atmospheric pressure.

1.2. Strain Rate Effect

The response of the materials varies according to the type of loading. The blast and
impulsive loads affect the structures with a very high velocity. The very rapid influence in
a short period of time with high energy causes the nonlinearity behavior of the materials.
The materials that are exposed to such high impulsive loads generate high strain rates up to
(106 s−1) [52]. This strain rate affects the strength of the materials; therefore, the simulation
of these materials requires a proper understanding of the strain rate effect. Many efforts
have been devoted to understanding the strain rate influence since 1960 [52–54]. Zener and
Hollomon [55] concluded that most engineering structures were only affected by the strain
rate in their elastic ranges, and this follows the elastic zone of the stress–strain curves, which
is because of the slow loading rate of static loads. The responses of those structures have
changed from the elastic zone to the plastic zone for the blast loads, affecting the high strain
rate. This effect is a result of the very short duration of loading (impulse loading). Due to
the importance of the strain rate in problems where plastic deformations are expected to
appear, the strain rate effect must be considered in impulsive loading problems [55,56]. The
Taylor impact test was performed to determine the plasticity parameters at high strain rates
(up to 105 s−1) for metals [57]. Koerber et al. [58] presented an experimental investigation
of the influence of the strain rate on unidirectional carbon-epoxy characteristics, such as
mechanical properties and failure strength. It was concluded that the compressive failure
strain is not the strain rate sensitive to the studied strain rates.

The Johnson–Cook equation is one of the most important material models used to
determine the dynamic response of materials under a high strain rate of order 103 s−1 or
higher [4,59]. This model is used to represent the strength behavior of materials, typically
metals that are subjected to large strains, high strain rates and high temperatures. Such
behavior might arise in problems of intense, impulsive loading due to high-velocity impact.
In addition, the yield stress in this model varies depending on the strain, strain rate and
temperature. Equation (3) illustrates the Johnson–Cook equation [59,60].

σ = [A + B × ε
p
n][1 + C × ln ε∗][1 − Tm

H ] (3)

ε∗ =
ε

εo
(4)

where “σ” represents the material strength, “εn
P” represents the effective plastic strain, “ε∗”

is the dimensionless plastic strain for ε0 = 1, “Tm
H ” represents the temperature material

softening and A, B, C, n, and m are five constants that depend on the characteristics of
the used material [59] and are defined as follows [61–64]: Constant “A” represents the
yield stress corresponding to an offset strain value of 0.2%, constant “B” and exponent
“n” represents the effect of the material strain hardening, and constant “C” represents the
strain rate effect. The Johnson–Cook model is represented by three terms that affect the
strength of materials; the first one represents the relationship between the stress and the
strain, the second represents the relationship between the stress and the strain rate while
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the last one represents the temperature effect on stress during plastic deformation. The
proper simulation of any material in AUTODYN depends upon the definition of the used
parameters according to the used equation of state, strength and failure equations.

2. Problem Explanation and Numerical Modeling

Floating bridges are very important for both civilian and military purposes [65,66]. For
military usage, blast loadings have a disastrous effect on the floating ferry in the present
design. Altering the design of the floating ferry requires replacing the whole number of
floating pontoons already used. This problem can be solved by the implementation of an
additional structure with specific characteristics to dissipate the explosive energy.

2.1. Problem Description and Methodology

The objective is to mitigate the explosion’s energy to facilitate floating steel ferry/bridge
operation in hazardous scenarios. For military purposes, standards and manuals (e.g., NATO
Standards [67,68] and American Standards [69]) determine the levels of protection and the
possible charges of several water mines. The innovative system has a simple internal con-
figuration that can be attached to existing floating pontoons (no need to manufacture new
pontoons). The simulation was performed using ANSYS AUTODYN. The reduction in the
transmitted pressure waves depends on the mechanical impedance (I) of the medium [70],
which is defined as the ratio between the change in the pressure (∆p) to the change in the
velocity of the shock wave (∆v) traveling through the medium [71].

I = (∆p)/(∆v) (5)

Using a medium with a low mechanical impedance (such as air) between two mediums
with high impedance values (such as steel) attenuates the peak value of the transmitted
overpressure [72,73]. In this study, an air gap is present in the mitigation system in order to
dissipate the pressure wave depending on the mechanical impedance.

2.2. Uni-Float Steel Ferry

The Uni-float steel ferry is used for military purposes to accommodate the tank
load of the Military Load Capacity (MLC-70). The ferry is composed of sixteen floating
pontoons [74]. Figure 2 illustrates the configuration of the steel pontoons used to form
the ferry.
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Figure 2. Schematic illustrating the ferry and steel pontoon configuration.

Lotfy et al. [65] illustrated the specifications of the floating steel ferry. The properties
of the steel used are illustrated in Table 1 [75]. Additionally, a sensitivity analysis is carried
out to obtain the sizes of the reasonable elements [65].
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Table 1. The properties of the used steel (steel 37) [75].

Density 7850 (kg/m3) Erosion factor 1
Shear modulus 8.18 × 1010 (G Pa) Max. eff. strain rate at failure 2.1
Elastic modulus 2.1 × 105 (G Pa) Thermal softening exponent 1.03
Poisson’s ratio 0.28 Hardening exponent 0.26

Yield stress 2.4 × 105 (kPa) Melting temperature 1790 (K)
Hardening constant 5.1 × 105 (kPa) Reference strain rate 1
Strain rate constant 0.014 Bulk modulus 1.59 × 105 (G Pa)

2.3. The Simulation Domain

The commercial software ANSYS AUTODYN 19.0 [76] was used for the numeri-
cal simulations and the implementation of the fluid–structure interactions (FSI). The Eu-
ler/Lagrange interaction model couples the Eulerian to the Lagrangian structural domain.
The domain is defined in Euler solver as a 3D-multi-material. The volume of the domain
must be determined according to the experiment’s behavior.

The ferry was simulated, and the boundaries were defined to match realistic conditions,
preventing the explosion from being confined; therefore, the boundaries were assigned to a
flow-out type in all faces, as shown in Figure 3.
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The domain was divided into the air (upper side) and water (lower side). The water
surfaces were simulated without any boundary due to the effect of the water on the reflec-
tion of the pressure wave. The ferry was exposed to explosive charges of Trinitrotoluene
(TNT) at a stand-off distance of one meter. The material properties of the air and TNT
were retrieved from the standard AUTODYN library. The air part was modeled using 3D
Euler equations, while the explosive charge (TNT) was represented according to the Jones
Wilkens Lee (JWL) equation of state EOS, with a reference density of 1630 kg/m3, according
to Equation (6) [31,77,78]:

P = C1

(
1 − w

r1v

)
e−r1v + C2

(
1 − w

r2v

)
e−r2v +

we
v

(6)

where “P” indicates the hydrostatic pressure, “v” denotes the specific volume and “e”
indicates the specific internal energy, while C1, r1, C2, r2 and w are the material constants.
The values of the constants C1, r1, C2, r2 and w have been determined for many common
explosives from the dynamics. The values of the constants for a TNT explosive are available
in AUTODYN, as shown in Table 2 [31,78,79].

Table 2. TNT explosive parameters.

Parameters C1 C2 r1 r2 w

Value 3.7377 × 105 MPa 3.7471 × 103 MPa 4.15 0.9 0.35
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In addition, the air is modeled by an ideal gas EOS, which can be expressed as in
Equation (7).

P = C1(γ − 1)ρe (7)

where “γ” denotes the heat-specific ratio and “ρ” denotes the density. The standard
constants of the air were taken from the AUTODYN material library, with an air reference
density (ρ) equal to 1.225 kg/m3 and γ equal to 1.4. The initial internal energy of the air is
assumed to be 2.068 × 105 kJ/kg [78].

The floating pontoons were exposed to side air explosions at a stand-off distance of
1 m and a height of 0.90 m from the bottom of the ferry. This height represents the mid-span
of the un-submerged part of the ferry. Global erosion was performed as 1.3 geometric
strains; additionally, the global cutoff of the maximum expansion was 0.2. Furthermore,
the trajectory interaction between the Lagrangian part and the fully coupled Euler sub-grid
and shell elements was performed. Charges of 1 kg, 10 kg, 50 kg and 100 kg were used to
study their effect on the ferry in order to determine the maximum side charge that the ferry
can withstand. Figure 4 illustrates the charge position for the side explosions. The gauges
were installed to determine the displacement of the ferry due to the explosions. Figure 5
illustrates the gauges for the side explosions.
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3. Validation

Simulating explosion in ANSYS AUTODYN requires the accurate definition of the
properties of the used material, the medium that transfers the shock wave, the boundary
conditions and the interaction between the different materials. The validation is divided
into two parts: First, the validation of the shock wave and the pressure–time history,
which affect the materials, and second, the validation of the deformation response of the
used material.

3.1. Pressure-Time History

The validation of the pressure–time history depends on both the practical and nu-
merical experiments performed by Fairlie [80]. Fairlie presented a practical example that
described the air blast and determined the pressure–time history at the front of a building.
Additionally, Fairlie used the scaling law to simulate the test with a scale of 1/50th. A
small charge of TNT (8 g) is exploded, and the pressure is measured at the elevation of the
opposite building. Figure 6 illustrates the physical and numerical experiments.
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Figure 6. Details of the air blast experiment. (a) schematic diagram of the air blast physical [80].
(b) Numerical modelling of the experiment.

The maximum overpressure was measured in the field to be about 380 kPa. The
maximum overpressure value from the numerical modeling equals 390 kPa. The matching
percentage is 97.4%. Figure 7 illustrates the pressure–time history of both the experimental
and numerical results. The pressure–time history curves are similar in both cases. The
small changes in the time of arrival between the practical and numerical results are due to
the change in the TNT pressure wave velocity.
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Figure 7. Pressure-time history from simulation and air blast experiment results [80]. 
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3.2. Validation Deformation Response

The validation in this section is based on both a real experiment and a series of physical
experiments performed by Aune et al. [38]. Aune et al. performed a series of physical
experiments and numerical simulations to study the effect of the stand-off distance and
the dynamic responses of different materials with different thicknesses. Square steel plate
specimens with dimensions of 400 mm × 400 mm × 0.8 mm were tested with a TNT
charge of 40.2 gm at different stand-off distances. The verified experiment is mentioned as
experiment number S23. Figure 8 illustrates the setup of the experiment.
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Figure 8. Field experiment [38].

The steel plate was simulated in AUTODYN with the same characteristics as that used
in the experiment. The boundary conditions assigned to the plate were the same as the real
experiment boundaries. The domain was simulated as an air cube around the plate with
flow-out boundaries, which allowed the shockwave to propagate away and prevent its
reflection. Figure 9 illustrates the simulated steel plate and the domain with the remapped
TNT charge.
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The obtained deformation value from a spherical charge of 40 gm of TNT with a
stand-off distance of 0.25 m equals 18.3 mm, as mentioned in [38]. The maximum numerical
displacement value was obtained from the simulation to be 17.4 mm, with a matching
percentage of about 95%. Figure 10 illustrates the displacement distribution from the
numerical simulation.
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4. Side Blast of the Traditional Steel Ferry

The ferry was exposed to the explosion of 5 and 10 kg of TNT sequentially at a stand-
off distance of 1 m. The expansion of the side explosion is illustrated in Figure 11. The
explosion caused local deformations at the critical positions (in front of the charge).
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4.1. Results for the Charge 5 kg of TNT

The explosion of a side charge of 5 kg of TNT reveals that there are local deformations
at the side shells in addition to the side transition motion of the ferry. The incident pressure
wave from the explosion first affects the side shell in a very short rapid time causing local
deformations, and then the ferry is affected by this pressure wave. The ferry starts to gain
kinetic energy from the explosion, which causes a side translation motion. This translation
motion vanishes by the effect of the ferry weight and inertia. Figure 12 illustrates the
displacement of the ferry during the explosion. The side translation of the ferry reaches
about 8.4 cm, and the material status of the steel remains in the elastic zone.
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4.2. Results for the Charge 10 kg of TNT

The charge is increased to 10 kg of TNT at the same stand-off distance (1 m) to
determine the maximum charge that the ferry can withstand. The explosion resulted
in excessive local deformations at the critical section (in front of the charge). Figure 13
illustrates the deformed ferry due to the side explosion.
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Figure 13. Deformations of the ferry.

These local deformations increase until reaching the plastic failure at the lower con-
nection between the side and lower shells. The failure occurs at this section and not at the
upper connection because of the increased rigidity in the upper connection between the
upper and side shells, as the upper shell’s thickness is larger than the lower shell’s thickness.
Plastic failure occurs at the critical section, while the plastic deformations occur at other
lower connections and the side shells around the plastic failure, as illustrated in Figure 14.
These deformations illustrate the plastic failure and the erosion of the ferry material.
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ture is a panel composed of a curved steel surface with internal stiffeners. Every panel is 
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The displacement of the ferry from a side explosion due to 10 kg of TNT is illustrated
in Figure 15.
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5. Mitigation System

The proposed mitigation system depends on the wave impedance by using an air
gap, which results in the dissipation of the pressure wave; additionally, the shape of the
mitigation system greatly affects the dissipation of the pressure wave. The proposed
structure is a panel composed of a curved steel surface with internal stiffeners. Every
panel is connected to the side of the pontoon. This panel weighs 270 kg, which is very
low in comparison to the pontoon’s weight (3.6 t). These panels are only added to the
right and left sides of the ferry. Figure 16 illustrates the proposed mitigation system. This
mitigation panel has internal stiffeners in order to increase the stiffness of the structure to
withstand the explosive charge and increase the capacity against lateral buckling, as shown
in Figure 17.
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Figure 17. Internal stiffeners arrangement.

These mitigation panels are installed on two sides of the steel ferry (four panels on
each side). The internal spaces between the panels and the pontoons are used as air gaps,
which is the basis for using the scientific theory of impedance. Figure 18 illustrates the
mitigation panels on one side of the steel ferry. The ferry is still stable on both sides after
installing the mitigation panels due to the symmetry.
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5.1. Ferry Stability

The ferry is still stable after the installation of these new panels, whereas the centroid
of the ferry is the same as before (without mitigation panels). The ferry weight is increased
by about 2.15 t, but the volume of the ferry is increased, which results in almost the same
values as the draft.

5.2. Side Blast Results

The fortified ferry was exposed to the same charge as the previous case (10 kg of TNT
at a stand-off distance of 1 m). Figure 19 illustrates the material condition of the ferry with
the new mitigation system after the explosion of the charge.
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Figure 19. Deformations on the mitigation panels.

The mitigation system was found to dissipate the blast waves and reduce the effect of
the explosion. The blast waves were divided into incident waves, diffracted waves and
dissipated waves, which were successfully dissipated by the mitigation system.

The ferry can resist the charge without any plastic failure in the pontoons or even
in the mitigation system. The installed panels are exposed to plastic deformations, while
the pontoons of the ferry are not exposed to any plastic deformations or plastic failure.
The effects of the explosion on the pontoons and the mitigation panels are illustrated in
Figure 20.
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Figure 20. Material statues beyond the mitigation system.

Plastic deformations only occurred at the stiffener’s positions of the mitigation panels
and not in the steel pontoons. The deformations of the fortified ferry corresponding to the
explosion are illustrated in Figure 21.

The maximum value of the total deformations was found to be 6.9 cm, which is
lower than the used curvature of the mitigation panel (7.5 cm). Figure 22 illustrates the
response of the floating ferry subjected to an explosion of 10 kg of TNT after installing the
mitigation system.
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Figure 22. The displacement response.

The maximum displacement occurs at the side shell of the ferry behind the mitigation
system. The maximum deformation at the critical section behind the mitigation system
equals about 8.8 cm. This deformation value occurs as a combination of the transitional
movement of the ferry and the local deformations of the critical section. As a result, the
ferry moved transversely in the water by about 6 cm, while the local deformations reached
about 2.8 cm.

6. Conclusions

This paper presents the results of numerical analyses on steel floating pontoons
exposed to side explosions with different explosive charges to achieve a design that can
sustain the blast loads with minimal deformations. The fluid–structure interactions with
the air and water were simulated using ANSYS AUTODYN 19.0. The ferry hull was
analyzed under an explosion of 5 kg and 10 kg of TNT. For the charge of 5 kg of TNT,
the maximum displacement was found to be about 8.4 cm with the elastic behavior of
the ferry material, while the ferry is damaged under the explosion of 10 kg of TNT. An
innovative mitigation system was proposed to resist explosion attacks from terrorists or
conventional bombs. The proposed mitigation system is composed of separated mitigation
steel panels. These panels increase the capacity of the floating steel ferry to withstand
explosive charges until a charge of 10 kg of TNT at a stand-off distance of 1 m, while
the original ferry could not withstand this charge. The mitigation panels are capable of
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reducing the deformation and impulse transmitted to the base structure. The maximum
displacement from the explosion of 10 kg of TNT after using the mitigation panels reaches
about 8.8 cm. It has been found that the mitigation system dissipates the pressure wave by
using the air gap between the original pontoons and the proposed panels. The presented
mitigation system showed outstanding blast wave mitigation capabilities. The results
showed that the mitigation system could mitigate more than 50% of the blast waves with
almost full protection for the targeted structure. Such success can only be attributed to its
exceptional design. Furthermore, ANSYS AUTODYN demonstrated a great capability in
studying air–water–structural interactions with a good level of accuracy.
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