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Abstract: In order to simultaneously address the issues of ship operating area limitation, unknown
time-varying disturbances, immeasurable ship speed, unknown dynamics, and input saturation, this
paper investigates the position-constrained ship dynamic positioning output feedback control, taking
thruster system dynamics into account. Firstly, a barrier Lyapunov function (BLF) is utilized to limit
the ship position inside the dynamic positioning system’s acceptable working range and to limit the
ship position error. Second, the set total disturbance, which is made up of unknown time-varying
disturbances and unknown dynamics and is further handled by the control strategy, is estimated
using a fixed-time extended state observer (FDESO). Additionally, the thruster system dynamics
equations are incorporated into the controller design process so that the generated thrust signal
varies gradually without abrupt fluctuations, in keeping with engineering realities. Furthermore, the
thruster input saturation issue is dealt with using a finite-time auxiliary dynamic system. Finally,
a robust control term is introduced to handle the errors generated in the controller design. The
stability proof section demonstrates that the designed control strategy can cause the ship to arrive
and maintain at the desired location and heading, as well as stay continuously inside the designated
operating area with all signals of the closed-loop control system being consistently and eventually
bounded. The simulation results demonstrate that the proposed system is valid.

Keywords: ship dynamic positioning; barrier Lyapunov function; fixed-time extended state observer;
thruster system dynamics

1. Introduction

When ships operate in deep sea, such as offshore drilling, marine geological ex-
ploration, submarine cable laying, pipe-laying, etc., they usually need to be continually
positioned on a fixed position. To carry out the abovementioned deep-sea operations,
the position of the ship at sea needs to be determined first, and then continuous positioning
is achieved through surface positioning technology. There are various methods used to
determine the position of a ship at sea, among which the Differential Global Positioning
System (DGPS)-based is more advanced and is of interest to many scholars [1–8]. As for
the sea surface positioning technology, there are two main categories, namely, mooring
positioning technology and dynamic positioning technology. The mooring positioning
technology uses mooring devices to resist unknown external disturbances to keep the ship
in a fixed position. However, due to the limitation of water depth in the deep sea, there
are problems such as poor maneuverability and unreliable positioning, which affect the
positioning effect. Dynamic positioning technology relies on the thrust generated by its
own thruster system to compensate the unknown external disturbances and keep the ship
in a certain state at the desired position on the sea surface.

The first dynamic positioning systems were born in the 1960s and were implemented
using a PID with a low-pass filter control strategy [9]. Dynamic positioning systems have
been using Kalman filter theory and optimum control strategies since the 1970s and 1980s,
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when control theory began to take shape [10,11]. However, the above control methods were
applied to linear models, which implied poor control because of the ship model with a
highly nonlinear property. Therefore, most of the subsequent studies adopted nonlinear
control methods. Since the 1990s, nonlinear control methods have been gradually utilized
in dynamic positioning control systems. Grøvlen et al. presented a nonlinear control
method grounded on the dynamic positioning control with a backstepping approach [12].
In the paper, the ship position was measured by designing a nonlinear observer applied to
the controller design. However, the backstepping method in the paper [12] consisted of six
steps, and its controller design process was tedious. In the paper [13], a vector backstepping
method was used to integrate the six states in the paper [12] into two vectors, which in turn
simplified the backstepping method from six steps to two steps, effectively simplifying
the controller design process. At present, some of the literature on dynamic positioning is
not about control methods but about methods to evaluate the capability and operability of
dynamic positioning systems [14–18].

However, few of the above studies considered the effects of unknown external distur-
bances during the ship’s operation at sea. To handle the external disturbances, a lot of work
had been undertaken by many scholars. Do et al. used the vector backstepping approach
to develop a robust output feedback control rule and considered the unknown external dis-
turbances as constant value disturbances [19]. However, disturbances from the ocean were
bounded and unknown time-variant, and unknown environmental disturbances could
lead to changes in the ship model [20,21]. In the paper [22], the unknown time-varying
disturbances and the ingestion of the ship model were considered, and a robust adaptive
neural controller was designed for dynamic positioning. Radial basis neural network
(RBFNN) was one of them, and it was utilized to manage the unidentified time-variant
disturbances and model intake. However, due to the physical upper constraint on the thrust
produced by the ship thruster, the amplitude of the control action needed to be limited in
order to produce a good control effect for the designed control signal. The thruster input
saturation issue was taken into account by Du et al. when designing the controller, and they
added an auxiliary dynamic system to account for the input saturation and create a reliable
nonlinear dynamic positioning control rule [23]. In order to increase the control effect
and reduce the complexity of the control law, the paper also used disturbance observer
and dynamic surface approaches to handle the unknown time-varying disturbances and
differential terms generated during the controller design phase, respectively. However,
the control action generated in the paper [23] generated large oscillations at the initial
time. Poor control resulted from the thruster’s physical properties, making it impossible
to provide the required action. To enable the thruster to carry out the generated control
action, Hu et al. incorporated the thruster system dynamics equation into the controller
architecture [24]. The paper also introduced a disturbance observer to handle unknown
time-varying disturbances and a command filter to handle the differential terms generated
during the controller design.

There are many uncertainties in the marine environment, such as reefs, hazardous
materials left over from war, other operating vessels, etc. Therefore, a safe operating area
needs to be defined for dynamic positioning operation ships to prevent accidents, such as
reefing and ship damage. Therefore, it is necessary to constrain the position of the dynamic
positioning ship to make it work within a certain range. At this stage, the methods of ship
position constraint are mainly divided into the following categories: artificial potential field
method, path planning, BLF, preset performance control, reference regulation control, etc.
Among them, the BLF method is widely used because of its easy controller combination,
simple design and ease of validating the stability of the presented system, etc.

Tee et al. were the first to introduce the idea of barrier function into the design of a
nonlinear constraint control system, combining the Lyapunov function with the barrier
function and proposing the BLF [25]. When the function variables tended to the preset
boundary values, the BLF values tended to infinity. Therefore, when the Lyapunov of the
overall control system was bounded, the constrained function variables were bounded to
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be within the bounded range, thus achieving the purpose of state constraint. Because of its
ability to constrain the state of nonlinear systems, BLF is nowadays prevalently applied in
the sphere of ship motion control. In the paper [26], a nonlinear adaptive filtering based on
the BLF was proposed for dynamic positioning output feedback control in which a neural
network-based passive wave trap filter was applied to conjecture the uncertainty term in
ship motion, and the creation of the vector for the intermediate control function was com-
bined with the BLF to constrain the output state variables, resulting in an output feedback
control law. BLF not only appeared in dynamic positioning control, but also applied in
trajectory tracking control. Yin et al. applied BLF in ship trajectory tracking control to
constrain the full state of the ship [27]. In the paper [28], based on the paper [27], the BLF
was improved to design a trajectory tracking controller with time-varying asymmetric
output constraints. Kong et al. by introducing a class of time-varying continuous error
constraint functions in the BLF. The tracking error was always within the set time-varying
constraint bound [29]. Qin et al., further aiming at improving the convergence speed of
the system, applied a tangent type BLF for ship to design a trajectory tracking constraint
controller based on finite-time stability so that its tracking error could converge to zero in
finite time [30].

However, it is challenging to obtain all the exact information during the actual ship
operation since the ship state feedback control requires knowing the location and velocity
information of the ship. Therefore, it is necessary to introduce a state observer to estimate
the ship’s speed so that the ship only needs to know the location information to complete
the control effect [31–34]. Since less information is required, both the control accuracy and
the failure rate can be improved and reduced. For the state estimation problem, the ex-
tended state observer (ESO) could estimate the unknown ship speed as well as the total set
of disturbances formed by the model parameter ingestion, unknown time-varying distur-
bances and nonlinear hydrodynamic damping terms. Applying the extended state observer
to the controller design handles not only the ship speed unpredictability problem but also
the unknown time-varying disturbances and unknown dynamics problem. Miao et al.
designed the path-tracking control law by compensating the set total disturbances formed
by the model ingestion, external disturbances, etc., through the reduced-order linear ex-
tended state observer [35]. In the papers [36,37], finite-time ESOs were proposed in order
to improve the observer convergence rate. However, the convergence time of the above
observer was related to the initial value. To further improve the convergence speed of the
observer, the papers [38,39] proposed an FDESO to estimate the unknown state and the set
total disturbance and applied it to the controller design.

When operating in real marine environments, the thruster cannot fully execute the
control signal to generate the corresponding thrust due to the thruster’s physical properties
and the interference produced by the external environment on the thruster blades, resulting
in a decrease in thrust efficiency. Therefore, in practical applications, to guarantee that
the resulting control signal can permit good control of the actual thrust, the thruster
system dynamics equation needs to be stressed during the control law design process.
Sørensen et al. initially took into account the dynamics of the thruster system in dynamic
positioning control system by introducing a linear thruster model equation [40]. In order
to achieve the best thrust, Berge et al. analyzed the thruster system dynamics in a robust
overdrive ship experiment [41]. The robust nonlinear dynamic positioning control design
in the paper [24] takes into account the dynamics of the thruster system, causing the control
action produced by the control signal acting on the thruster to change gradually without
sudden changes, as required by engineering reality. There are also some papers that use a
thrust allocation algorithm in dynamic positioning prediction, and they also have good
results [42–45].
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Based on the above, the problems of ship operating position limitation, unmeasurable
ship speed, unknown time-varying disturbances, unknown dynamics and input satura-
tion are simultaneously handled in this paper. The ship position is always within the
dynamic positioning operation range by introducing the BLF to limit the ship position
error. A FDESO is used to estimate the ship’s unmeasurable velocity as well as the set
total disturbance, which consists of unknown time-varying disturbances and unknown
dynamics. In order to ensure that the generated thrust signal adheres to engineering reality,
the controller design takes the thruster system dynamic into account. The input saturation
issue is dealt with via a finite-time auxiliary dynamic system. To combat unwanted errors,
a robust control term is used. The proposed control law enables the ship position (x, y) and
yaw ψ to be reached and keep the anticipated value ηd = [xd, yd, ψd]

T with arbitrarily small
errors, without exceeding the specified operating area throughout and with all signals in the
closed-loop control system consistently and eventually bounded. The major contributions
of this paper can be summarized as the following three points.

1. Throughout the paper, as much as possible, the problems encountered by dynamic
positioning systems in complex sea conditions are considered to make them more
realistic. For example, there are effects, such as unmeasurable velocity, uncertainty
of model parameters, uncertainty of external disturbances, physical characteristics of
the thruster system and thruster input saturation. The aforementioned issues are ad-
dressed, respectively, using the FDESO, the thruster dynamics equation, and the finite-
time auxiliary dynamic system. Among them, FDESO not only estimates the unknown
ship speed, but also estimates the total set disturbance caused by unknown model
parameters, unknown external disturbance, etc. In addition, a robust control term is
introduced in the control strategy to improve the stability of the controlled system.

2. In the controller design, the ship position is constrained to be within the set range.
By introducing the BLF to constrain the ship position error, the ship position is always
within the safe working range, which ensures the safety of the ship during operation.

3. The paper improves the convergence speed of dynamic positioning control method in
two ways.

• The use of FDESO significantly improves the convergence speed compared to
the high-gain state observer in [46]. According to the detail figure in Figure 4c,d,
the convergence speed compared of the presented control scheme is increased by
38.66% comparing with [46].

• The convergence speed is further improved by using a finite-time auxiliary
dynamic system to handle the potential input saturation problem.

The rest of this paper is shown below. Section 2 gives the models, assumptions,
and lemmas required in the controller design. The design of the FDESO-based dynamic po-
sitioning output feedback control rule for position-constrained ships is illustrated, and the
system stability is examined in Section 3. In Section 4, lots of comparative simulations are
designed, which illustrate the effectiveness and advantages of the control strategy. Section 5
summaries the entire paper.

2. Problem Formulation and Preliminaries

O-X0Y0Z0, which denotes the Earth-fixed inertial frame, and XYZ, which denotes the
body-fixed frame, are shown in Figure 1.
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Figure 1. The Earth-fixed inertial and body-fixed frames.

As is the case for the dynamic positioning control system, the three degrees of freedom
of surge, sway and yaw are frequently taken into account in the field of ship motion control.
The following diagram illustrates the nonlinear mathematical model of the ship’s dynamic
location [47].

η̇ = J(ψ)υ (1)

Mυ̇ = −Dυ + τ + d (2)

where the ship’s location, expressed in the Earth’s coordinate system as η = [x, y, ψ]T ,
includes the surge position x, sway position y and heading angle ψ of the ship. With surge
velocity u, sway velocity v and yaw velocity r being the projections of the velocity vector
υ = [u, v, r]T in the three directions of the surge, sway and yaw on the ship body coordinate
system, respectively, υ = [u, v, r]T is the ship velocity as it is represented in the body
coordinate system. J(ψ) ∈ R3×3 is the rotation matrix to convert the physical quantities
between the Earth and body coordinate systems, as follows:

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

where J−1(ψ) = JT(ψ), ‖J(ψ)‖ = 1. M ∈ R3×3 and D ∈ R3×3 are the mass matrix and
linear damping matrix of the ship, respectively; τ = [τ1, τ2, τ3]

T is the thrust generated by
the thruster, where τ1 is the surge thrust, τ2 is the sway thrust, and τ3 is the yaw thrust.
The vector that disturbs the marine ecosystem is d ∈ R3.

A thruster system dynamics equation is inserted in the controller design as follows
to allow the thrust produced by the thruster to make up for the loss of thrust efficiency
caused by the actual maritime environment:

τ̇ = −Atrτ + Atrτp (4)

where Atr ∈ R3×3 is the thruster dynamics matrix, as follows:

Atr =


1

Ttr1
0 0

0 1
Ttr2

0
0 0 1

Ttr3

 (5)
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where 1
Ttr1

, 1
Ttr2

, and 1
Ttr3

are the equivalent thruster time constants in surge, sway and

yaw. For a conventional thruster system, 1
Ttr1

can be approximated by the time constants

corresponding to the main propellers; 1
Ttr2

and 1
Ttr3

can be approximated by the time
constants to the tunnel and azimuth thrusters. Moreover, it is reasonable to assume that
Ttr2 ≈ Ttr3.

Here, τp ∈ R3 is the thruster system’s control signal restricted because of real-world
physical constraints, as in:

τpi = sat(τci) =

{
sig(τci)τMi |τci| ≥ τMi

τci |τci| < τMi
, i = 1, 2, 3 (6)

where τMi > 0 is the maximum thrust value that the thruster can generate, and τc =

[τc1, τc2, τc3]
T is the control signal generated by the designed control strategy. The difference

between the restricted control signal τp and the unrestrained control signal τc is known as
∆τ = τp − τc.

Assumption 1.

1. The ship model parameter matrices M and D are unknown.
2. The ship speed vector υ = [u, v, r]T is unmeasurable.
3. The marine environmental disturbance vector d ∈ R3 is bounded and unknown time-variant;

there exists a positive constant d∗ > 0 that satisfies

‖d‖ ≤ d∗ < ∞ (7)

Remark 1. First, the operational circumstances and environment have an impact on the ship.
Additionally, the ship is exposed to unidentified time-variant disturbances, which cause the ship
model matrices M and D to change. Secondly, most ships’ velocities are not measurable, leading to
difficulties in their application in controller design. In addition, the disturbance vector acting on the
ship is unknown time-varying and bounded because the ocean environment is constantly changing
but energy-limited. Assumption 1 holds.

Since the ship model parameter matrices M and D ingest, we define M = M0 + ∆M
and D = D0 + ∆D, where M0, D0 are nominal values and ∆M, ∆D are uncertainty terms.
Therefore, (2) can be expressed as

M0υ̇ = −D0υ + τ + d + ∆ (8)

where

M0 =

m11 0 0
0 m22 0
0 0 m33

 (9)

D0 =

d11 0 0
0 d22 d23
0 d32 d33

 (10)

∆ = −∆Mυ̇− ∆Dυ (11)

is a composite uncertainty term that includes the model mass matrix and the linear damping
matrix ingestion information; m11, m22, m33, d11, d22, d23, d32 and d33 are all ship model
parameters, which will be given later.
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Lemma 1 ([48,49]). Consider the following system:

ż1 = z2 − k1sigς1(z1)− κ1sigπ1(z1)
ż2 = z3 − k2sigς2(z1)− κ2sigπ2(z1)
...
żn−1 = zn − kn−1sigςn−1(z1)− κn−1sigπn−1(z1)
żn = −knsigςn(z1)− κnsigπn(z1)

(12)

where 0 < ςi < 1, πi > 1 (i = 1, 2, · · · , n) and satisfies ςi = iς− (i− 1), πi = iπ − (i− 1)
(i = 1, 2, · · · , n), where 1− `1 < ς < 1, 1 < π < 1 + `2, and `1, `2 are sufficiently small positive
constants. The matrices formed by the observer gains ki, κi (i = 1, 2, · · · , n):

A1 =


−k1 1 0 · · · 0
−k2 0 1 · · · 0

...
−kn−1 0 0 · · · 1
−kn 0 0 · · · 0

 (13)

A2 =


−κ1 1 0 · · · 0
−κ2 0 1 · · · 0

...
−κn−1 0 0 · · · 1
−κn 0 0 · · · 0

 (14)

are Hurwitz matrices. Then, the system (12) is stable at fixed time and is stable for a time T:

T ≤ λmax
1−ς(P1)

r1(1− ς)
+

1
r2(π − 1)χ0π−1 (15)

where r1 = λmin(Q1)
λmax(P1)

, r2 = λmin(Q2)
λmax(P2)

, 0 < χ0 < λmin(P2), and P1, P2, Q1, Q2 are positive definite

non-singular matrices and satisfy P1 A1 + A1
T P1 = −Q1, P2 A2 + A2

T P2 = −Q2.

Lemma 2 ([50]). For a positive definite continuous Lyapunov function V(x, t), the independent
variable is defined on U1 ∈ Rn. For the following form:

V̇(x, t) ≤ −c1Vα(x, t) + c2V(x, t), ∀x ∈ U1\{0} (16)

where c1 > 0, c2 > 0, and 0 < α < 1, then the system is finite-time stable.

Lemma 3 ([51]). For any positive constant kbi (i = 1, 2, . . . , n), let Si := {zi ∈ R||zi| < kbi } ⊂
R (i = 1, 2, . . . , n), where z = [z1, z2, · · · , zn]

T (i = 1, 2, . . . , n), and N := Rl × Si ⊂ Rl+1 is an
open set, consider the following system:

ẋ = f (t, x) (17)

where x = [wT , zi]
T ∈ N is the state vector of the system, and the function f : R+ × N → Rl+1

is segmentally continuous with respect to the variable t and satisfies the local Lipschitz condition
on R+ × N. Suppose there exists a continuously derivable positive definite function U : Rl → R+

and Vi : zi → R+ (i = 1, 2, . . . , n) satisfying when |zi| < kbi, there is

Vi(zi)→ ∞ (18)

δ1(‖w‖) ≤ U(w) ≤ δ2(‖w‖) (19)
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where δ1, δ2 are K∞ functions. Let V(x) :=
n
∑

i=1
Vi(zi) + U(w) and zi(0) ∈ Si. If

V̇ =
∂V
∂x
≤ −µV + λ (20)

where x ∈ N, and µ and λ are positive constants, then −kbi < zi(t) < kbi is satisfied for
any t ≥ 0.

Establishing a reliable nonlinear output feedback dynamic positioning control system
based on a BLF is the control goal of this study when some of the model parameters,
velocity information and external disturbances are unknown, and there are positional limits
on the ship. The proposed control law enables the ship position (x, y) and heading angle ψ

to be reached and kept at the expected value ηd = [xd, yd, ψd]
T with arbitrarily small errors,

and all signals in the closed-loop control system are consistent and eventually bounded.

3. Robust Output Feedback Control Design and System Stability Analysis

During dynamic positioning operations, it is often necessary to delineate a certain
working area for each ship for safety reasons to prevent accidents, such as collisions,
groundings and ship damage. Therefore, a ship dynamic positioning output feedback
control law with position constraint is proposed in this section. Firstly, the unknown ship
speed and set total disturbance are estimated by an FDESO and used in the subsequent
controller design. Secondly, a BLF is introduced to constrain the ship position. A finite-time
auxiliary dynamic system is then used to handle the input saturation problem. In addition,
robust control term is used to tackle undesirable errors. The ship dynamic positioning
schematic is depicted in Figure 2.

Figure 2. Schematic of DP control system for ships.

3.1. Design of FDESO

In order to satisfy the condition for the use of FDESO, the ship model depicted in (1)
and (2) are transformed and following is the definition of the auxiliary variable.

ζ = J(ψ)υ (21)

where, ζ = [ζ1, ζ2, ζ3]
T .

According to (1) and (21), one can see that

η̇ = ζ (22)
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According to (8) and (21) it is known that

ζ̇ = J̇(ψ)υ + J(ψ)υ̇

=J(ψ)S(r)υ + J(ψ)(−M0
−1D0υ + M0

−1τ + M0
−1d + M0

−1∆)

=J(ψ)M0
−1τ + J(ψ)S(r)υ− J(ψ)M0

−1D0υ + J(ψ)M0
−1d + J(ψ)M0

−1∆ (23)

where S(r) =

0 −r 0
r 0 0
0 0 0

.

Define the total set disturbance Γ ∈ R3 as depicted below:

Γ =J(ψ)S(r)υ− J(ψ)M0
−1D0υ + J(ψ)M0

−1d + J(ψ)M0
−1∆. (24)

Assumption 2. The set total disturbance Γ satisfies
∥∥Γ̇
∥∥ ≤ Γ1, where Γ1 is a known bounded

constant.

Therefore, according to (22)–(24), the mathematical model of ship dynamic positioning
(1) and (2) is rewritten in the following form:

η̇ = ζ (25)

ζ̇ = J(ψ)M0
−1τ + Γ. (26)

Since the designed control law requires ship speed information, and to compensate
for the set total disturbance formed by unmodeled parameters and external environmental
disturbances, a FDESO is designed as depicted below:

˙̂η = ζ̂ + κo,1sigαo,1(η − η̂) + εo,1sigβo,1(η − η̂)
˙̂ζ = J(ψ)M0

−1τ + Γ̂ + κo,2sigαo,2(η − η̂) + εo,2sigβo,2(η − η̂)
˙̂Γ = κo,3sigαo,3(η − η̂) + εo,3sigβo,3(η − η̂) + Xsig(η − η̂)

(27)

where η̂, ζ̂ and Γ̂ are the estimates of η, ζ and Γ, respectively. The parameter values satisfy
0 < αo,i < 1, βo,i > 1 (i = 1, 2, · · · , n), and satisfy αo.i = iαo − (i− 1), βo.i = iβo − (i− 1),
1− ᾱ < αo < 1, 1 < β0 < 1 + β̄, where ᾱ, β̄ are both sufficiently small positive constants,
X > Γ1. The matrix consisting of the gain κo,i, εo,i (i = 1, 2, 3) of the observer

Ao,1 =

−κo,1 1 0
−κo,2 0 1
−κo,3 0 0

 (28)

Ao,2 =

−εo,1 1 0
−εo,2 0 1
−εo,3 0 0

 (29)

are all Hurwitz matrices.

Theorem 1. The designed FDESO (27) can estimate the ship position η, auxiliary variables ζ and
set total disturbance Γ under the conditions that satisfy Assumption 1 and Assumption 2, and the
estimation error can converge to 0 in fixed time. The convergence time To satisfies:

To ≤
λmax

1−αo (P1)

ro1(1− αo)
+

1
ro2(βo − 1)χβo−1 (30)

where ro1 = λmin(Q1)
λmax(P1)

, ro2 = λmin(Q2)
λmax(P2)

, 0 < χ < λmin(P2), and where P1, P2, Q1 and Q2 are all

positive definite non-singular matrices and satisfy P1 A1 + A1
T P1 = −Q1, P2 A2 + A2

T P2 = −Q2.
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Proof of Theorem 1. Define the estimation error of the FDESO:
eo,1 = η − η̂

eo,2 = ζ − ζ̂

eo,3 = Γ− Γ̂.
(31)

According to (25)–(27), the derivative of (31) is obtained
ėo,1 = eo,2 − κo,1sigαo,1(eo,1)− εo,1sigβo,1(eo,1)
ėo,2 = eo,3 − κo,2sigαo,2(eo,1)− εo,2sigβo,2(eo,1)
ėo,3 = Γ̇− κo,3sigαo,3(eo,1)− εo,3sigβo,3(eo,1)− Xsig(eo,1).

(32)

Decompose ėo,3 in (32) into the following form:

ėo,3,1 = −κo,3sigαo,3(eo,1)− εo,3sigβo,3(eo,1) (33)

ėo,3,2 = Γ̇− Xsig(eo,1) (34)

where

ėo,3 = ėo,3,1 + ėo,3,2. (35)

Combining ėo,1, ėo,2 in (32) with (33), it is obtained that
ėo,1 = eo,2 − κo,1sigαo,1(eo,1)− εo,1sigβo,1(eo,1)
ėo,2 = eo,3 − κo,2sigαo,2(eo,1)− εo,2sigβo,2(eo,1)
ėo,3,1 = −κo,3sigαo,3(eo,1)− εo,3sigβo,3(eo,1).

(36)

According to Lemma 1, the system (36) converges to 0 in a fixed time, which means
that the observer estimation errors eo,1, eo,2 and eo,3 converge to 0 in a fixed time. and the
convergence time To satisfies (30). For (34), it follows from [48–50] that eo,3,2 ≡ 0 when
t > To. Therefore, at t > To, eo = [eo,1, eo,2, eo,3]

T converges to 0. Theorem 1 is proved.

Thus, at steady state, one can conclude that

η = η̂ (37)

ζ = ζ̂ (38)

Γ = Γ̂. (39)

According to (21) and J−1(ψ) = JT(ψ), it follows that{
υ = JT(ψ)ζ
υ̂ = JT(ψ)ζ̂.

(40)

From (38), (40), it is clear that

υ̂− υ = JT(ψ)ζ̂ − JT(ψ)ζ

= JT(ψ)(ζ̂ − ζ)

= 0. (41)

Therefore, υ = υ̂ holds.
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3.2. Design of Robust Output Feedback Control for Dynamic Positioning Considering
Position Constraint

The design coordinate transformation is shown below with the velocity measurable:

S1 = η − ηd (42)

S2 = υ− α1 (43)

S3 = τ − β1 (44)

where ηd = [xd, yd, ψd]
T denotes the desired position and heading of the ship, and both

α1 ∈ R3 and β1 ∈ R3 are intermediate control function vectors, which will be designed later.
According to (1), the derivative of (42) is

Ṡ1 = J(ψ)υ. (45)

Due to the need to constrain the position error S1 ∈ R3, the BLF V1 is established for
the system (45) as

V1 =
1
2

ln
KB

TKB

KB
TKB − S1

TS1
(46)

where KB ∈ R3 is a vector of constant value of ship position error constraint.
Derive (46) from (43), (45)

V̇1 =
1
2
· KB

TKB − S1
TS1

KB
TKB

· −KB
TKB(−2S1

T Ṡ1)

(KB
TKB − S1

TS1)
2

=
S1

T Ṡ1

KB
TKB − S1

TS1

=
S1

T J(ψ)(S2 + α1)

KB
TKB − S1

TS1
. (47)

Therefore, the intermediate control function vector α1 ∈ R3 is set to

α1 = −(KB
TKB − S1

TS1)JT(ψ)K1S1 (48)

where K1 = K1
T ∈ R3×3 is the positive definite matrix of the design.

Substituting (48) into (47), the collation gives

V̇1 =
S1

T J(ψ)S2 + S1
T J(ψ)α1

KB
TKB − S1

TS1

=
S1

T J(ψ)S2 − S1
T J(ψ)(KB

TKB − S1
TS1)JT(ψ)K1S1

KB
TKB − S1

TS1

= −S1
TK1S1 +

S1
T J(ψ)S2

KB
TKB − S1

TS1
. (49)

According to (21), (26), it can be obtained

d[J(ψ)υ]
dt

= J(ψ)M0
−1τ + Γ

J(ψ)S(r)υ + J(ψ)υ̇ = J(ψ)M0
−1τ + Γ

J(ψ)υ̇ = J(ψ)M0
−1τ − J(ψ)S(r)υ + Γ

M0υ̇ = τ −M0S(r)υ + M0 JT(ψ)Γ. (50)
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According to (50), the derivative of (43) is

M0Ṡ2 = M0υ̇−M0α̇1

= τ −M0S(r)υ + M0 JT(ψ)Γ−M0α̇1. (51)

Establish the Lyapunov function V2 for the system (45), (50) as

V2 = V1 +
1
2

S2
T M0S2. (52)

Derive (52) from (49), (51)

V̇2 = V̇1 + S2
T M0Ṡ2

=− S1
TK1S1 +

S1
T J(ψ)S2

KB
TKB − S1

TS1
+ S2

T(τ −M0S(r)υ + M0 JT(ψ)Γ−M0α̇1). (53)

Define the intermediate control function vector β1 ∈ R3 as

β1 =− K2S2 −
JT(ψ)S1

KB
TKB − S1

TS1
+ M0S(r)υ−M0 JT(ψ)Γ + M0α̇1 + hr (54)

where K2 = K2
T ∈ R3×3 is the positive definite matrix of the design.

In order to make the design of the dynamic positioning controller more accurate,
the undesirable errors generated in the design are dealt with as follows:

δ = c∗ (55)

where c∗ is the normal number, which is the upper bound of the design process that
produces undesirable errors, and hr is the robust control term, as follows:

hr = −
δ̂2S2

δ̂‖S2‖+ ρ
(56)

˙̂δ = γ1(‖S2‖ − γ2δ̂), δ̂(0) > 0 (57)

where δ̂ is an estimate of δ, and ρ, γ1 and γ2 are all design parameters.
Based on (4) and ∆τ = τp − τc, the derivative of (44) is

Atr
−1Ṡ3 = Atr

−1τ̇ − Atr
−1 β̇1

= −τ + τp − Atr
−1 β̇1

= −τ + τc + ∆τ − Atr
−1 β̇1. (58)

Furthermore, to address the issue of thruster input saturation, the illustration that
follows introduces an auxiliary dynamic system with finite time:

ξ̇ =

 −Kξ1 ξ − Kξ2 |ξ|
r0 −

3
∑

i=1
|s3,i∆τi|+0.5Kξ3

∆τT∆τ

‖ξ‖2 + Kξ3 ∆τ ‖ξ‖ ≥ ξ0

03×1 ‖ξ‖ < ξ0

(59)

where ξ = [ξ1, ξ2, ξ3]
T is the state vector of the auxiliary dynamic system, Kξ1 and Kξ2 are

positive definite parameter design matrices, Kξ3 is a positive parameter, ξ0 is a positive
constant, and the exponential parameter r0 satisfies 0 < r0 < 1.

Theorem 2. The state vector ξ = [ξ1, ξ2, ξ3]
T of the finite-time auxiliary dynamic system (59) can

converge to zero in finite time.
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Proof of Theorem 2. A Lyapunov function is created for system (59) as follows:

Vξ =
1
2

ξTξ. (60)

When ‖ξ‖ ≥ ξ0, according to (59) and Young’s inequality, the derivative of (60) is

V̇ξ =ξT ξ̇

=− ξTKξ1 ξ −
3

∑
i=1

Kξ2,i|ξi|r0+1 −
3

∑
i=1
|s3,i∆τi| −

1
2

Kξ3 ∆τT∆τ + Kξ3 ξT∆τ

≤− λmin(Kξ1)‖ξ‖
2 − λmin(Kξ2)‖ξ‖

r0+1 −
3

∑
i=1
|s3,i∆τi|+

1
2

Kξ3 ξTξ

≤− 2[λmin(Kξ1)−
1
2

Kξ3 ]Vξ − 2
r0+1

2 λmin(Kξ2)Vξ

r0+1
2 . (61)

According to Lemma 2, the state vector ξ = [ξ1, ξ2, ξ3]
T converges to 0 in finite time

when λmin(Kξ1) >
1
2 Kξ3 . Theorem 2 is proved.

Further, the dynamic positioning state feedback control law in the case where the state
is known is designed as

τc0 = −K3S3 + τ + Atr
−1 β̇1 + Kξ ξ − S2 (62)

where K3 = K3
T ∈ R3×3 is the positive definite matrix of the design.

According to Assumption 1, it is known that some of the required states in the control
law (62) are unknown, and the estimates η̂, ζ̂, Γ̂ and υ̂ obtained in the FDESO (27), and (40)
need to be used instead of the true values η, ζ, Γ and υ in the previous section.

Define the new error vector as follows for the ship dynamic positioning output feed-
back control system in the case of an unknown state:

Ŝ1 = η̂ − ηd (63)

Ŝ2 = υ̂− α̂1 (64)

Ŝ3 = τ − β̂1 (65)

where

α̂1 =− (KB
TKB − ŜT

1 Ŝ1)JT(ψ)K1Ŝ1 (66)

β̂1 =− K2Ŝ2 −
JT(ψ)Ŝ1

KB
TKB − ŜT

1 Ŝ1
+ M0S(r̂)υ̂−M0 JT(ψ)Γ̂ + M0 ˙̂α1 + ĥr (67)

where the estimated value of the robust control term hr is

ĥr = −
δ̂2Ŝ2

δ̂
∥∥Ŝ2
∥∥+ ρ

(68)

˙̂δ = γ1(
∥∥Ŝ2
∥∥− γ2δ̂), δ̂(0) > 0. (69)

In the state unknown case, the finite-time auxiliary dynamic system changes to (70)

˙̂ξ =

 −Kξ1 ξ̂ − Kξ2

∣∣ξ̂∣∣r0 −

3
∑

i=1
|ŝ3,i∆τi|+0.5Kξ3

∆τT∆τ

‖ξ̂‖2 + Kξ3 ∆τ
∥∥ξ̂
∥∥ ≥ ξ0

03×1
∥∥ξ̂
∥∥ < ξ0.

(70)
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Thus, the dynamic positioning output feedback control strategy in the case of unknown
state is designed as

τc = −K3Ŝ3 + τ + Atr
−1 ˙̂β1 + Kξ ξ̂ − Ŝ2. (71)

From (37)–(39), and (41), it follows that at steady state (t > To), the estimates η̂, ζ̂, Γ̂
and υ̂ of the state vector of the FDESO agree with the true values η, ζ, Γ and υ. Therefore,
at the steady state (t > To), there are Ŝ1 = S1, Ŝ2 = S2, Ŝ3 = S3, α̂1 = α1, β̂1 = β1, ĥr = hr,
ξ̂ = ξ and τc = τc0 hold.

3.3. Proof of Stability

A Lyapunov function is created for the dynamic positioning output feedback system
as depicted below:

V =
1
2

ln
KB

TKB

KB
TKB − S1

TS1
+

1
2

S2
T M0S2 +

1
2

S3
T Atr

−1S3 +
1
2

ξTξ +
1

2γ1
δ̃2 (72)

where δ̃ = δ̂− δ.
Performing a deflationary transformation on (72) yields

V >
1
2
· S1

TS1

KB
TKB

+
1
2

S2
T M0S2 +

1
2

S3
T Atr

−1S3 +
1
2

ξTξ +
1

2γ1
δ̃2. (73)

Derivation of (72)

V̇ =
S1

T Ṡ1

KB
TKB − S1

TS1
+ S2

T M0Ṡ2 + S3
T Atr

−1Ṡ3 + ξT ξ̇ +
1

γ1
δ̃ ˙̂δ. (74)

According to (44), (47), (49), (53), (54) and Young’s inequality, it is known that

V̇2 =
S1

T Ṡ1

KB
TKB − S1

TS1
+ S2

T M0Ṡ2

=− S1
TK1S1 +

S1
T J(ψ)S2

KB
TKB − S1

TS1
+ S2

T(τ −M0S(r)υ + M0 JT(ψ)Γ−M0α̇1)

=− S1
TK1S1 +

S1
T J(ψ)S2

KB
TKB − S1

TS1
+ S2

T(−K2S2 −
JT(ψ)S1

KB
TKB − S1

TS1
− β1 + hr + τ)

=− S1
TK1S1 +

S1
T J(ψ)S2

KB
TKB − S1

TS1
+ S2

T(−K2S2 −
JT(ψ)S1

KB
TKB − S1

TS1
+ S3 + hr)

=− S1
TK1S1 − S2

TK2S2 + S2
TS3 + S2

Thr

≤− S1
TK1S1 − S2

TK2S2 +
1
2

S2
TS2 +

1
2

S3
TS3 + S2

Thr. (75)

Using (58), (71), (72), Ŝ2 = S2, Ŝ3 = S3, β̂1 = β1, ξ̂ = ξ and Young’s inequality, it
follows that

S3
T Atr

−1Ṡ3 =S3
T(−τ + τc + ∆τ − Atr

−1 β̇1)

=S3
T(−K3Ŝ3 + Atr

−1 ˙̂β1 + Kξ ξ̂ − Ŝ2 + ∆τ − Atr
−1 β̇1)

=− S3
TK3S3 + S3

TKξ ξ − S3
TS2 + S3

T∆τ

≤− S3
TK3S3 −

1
2

S2
TS2 +

1
2

ξTKξ
TKξ ξ + S3

T∆τ. (76)
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When ‖ξ‖ ≥ ξ0, according to (61) and Young’s inequality yields

ξT ξ̇ =− ξTKξ1 ξ −
3

∑
i=1

Kξ2,i|ξi|r0+1 −
3

∑
i=1
|s3,i∆τi| −

1
2

Kξ3 ∆τT∆τ + Kξ3 ξT∆τ

≤− ξTKξ1 ξ −
3

∑
i=1

Kξ2,i|ξi|r0+1 −
3

∑
i=1
|s3,i∆τi|+

1
2

Kξ3 ξTξ

≤− ξTKξ1 ξ −
3

∑
i=1
|s3,i∆τi|+

1
2

Kξ3 ξTξ. (77)

When ‖ξ‖ < ξ0, according to (59) and Young’s inequality obtains

ξT ξ̇ = 0 (78)

1
2

ξTKξ
TKξξ = ξTKξ

TKξξ − 1
2

ξTKξ
TKξξ

< −1
2

ξTKξ
TKξξ + ξ0

2
∥∥∥Kξ

TKξ

∥∥∥ (79)

S3
T∆τ ≤ 1

2
S3

TS3 +
1
2
‖∆τ‖2. (80)

From (57), it follows that

1
γ1

δ̃ ˙̂δ =
1

γ1
δ̃γ1(‖S2‖ − γ2δ̂)

= δ̃(‖S2‖ − γ2δ̂)

= δ̃‖S2‖ − γ2δ̃δ̂. (81)

Further, according to (56) and δ̃ = δ̂− δ, it is known that

S2
Thr + δ̃‖S2‖ = −

δ̂2S2
TS2

δ̂‖S2‖+ ρ
+ δ̃‖S2‖

≤ − δ̂2S2
TS2

δ̂‖S2‖+ ρ
+ δ̂‖S2‖

≤ ρ
δ̂‖S2‖

δ̂‖S2‖+ ρ

≤ ρ (82)

−γ2δ̃δ̂ = −γ2

2
δ̃2 − γ2

2
δ̂2 +

γ2

2
(δ̃− δ̂)

2

= −γ2

2
δ̃2 − γ2

2
δ̂2 +

γ2

2
(−δ)2

≤ −γ2

2
δ̃2 +

γ2

2
δ2. (83)

In the case of ‖ξ‖ ≥ ξ0, substituting (75)–(77) and (81)–(83) into (74), it follows that

V̇ ≤− S1
TK1S1 − S2

TK2S2 − S3
TK3S3 +

1
2

S3
TS3 +

1
2

ξTKξ
TKξ ξ − ξTKξ1 ξ +

1
2

Kξ3 ξTξ − γ2

2
δ̃2 + ρ +

γ2

2
δ2. (84)

Organize, obtain

V̇ ≤ −S1
TK1S1 − S2

TK2S2 − S3
T(K3 −

1
2

I3×3)S3 − ξT(Kξ1 −
1
2

Kξ
TKξ −

1
2

Kξ3 I3×3)ξ −
γ2

2
δ̃2 + ρ +

γ2

2
δ2

≤ −2µ1V + C1 (85)
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where

µ1 =min{λmin(K1)KB
TKB, λmin(K2M0

−1), λmin((K3 −
1
2

I3×3)Atr), λmin(Kξ1 −
1
2

Kξ
TKξ −

1
2

Kξ3 I3×3),
γ1γ2

2
} (86)

and

C1 =
γ2

2
δ2 + ρ. (87)

The design matrices K1, K2, K3, Kξ and Kξ1 need to satisfy the following conditions

λmin(K1) > 0 (88)

λmin(K2) > 0 (89)

λmin(K3) >
1
2

(90)

λmin(Kξ1 −
1
2

Kξ
TKξ −

1
2

Kξ3 I3×3) > 0. (91)

In the case of ‖ξ‖ < ξ0, substituting (75), (76) and (78)–(83) into (74), it follows that

V̇ ≤− S1
TK1S1 − S2

TK2S2 − S3
TK3S3 + S3

TS3 −
1
2

ξTKξ
TKξ ξ − γ2

2
δ̃2 + ξ0

2
∥∥∥Kξ

TKξ

∥∥∥+ 1
2
‖∆τ‖2 +

γ2

2
δ2 + ρ. (92)

Organize and obtain

V̇ ≤ −S1
TK1S1 − S2

TK2S2 − S3
T(K3 − I3×3)S3 −

1
2

ξTKξ
TKξ ξ − γ2

2
δ̃2 + ξ0

2
∥∥∥Kξ

TKξ

∥∥∥+ 1
2
‖∆τ‖2 +

γ2

2
δ2 + ρ

≤ −2µ2V + C2 (93)

where

µ2 =min{λmin(K1)KB
TKB, λmin(K2M0

−1), λmin((K3 − I3×3)Atr), λmin(Kξ
TKξ),

γ1γ2

2
} (94)

and

C2 = ξ0
2
∥∥∥Kξ

TKξ

∥∥∥+ 1
2
‖∆τ‖2 +

γ2

2
δ2 + ρ. (95)

The design matrices K1, K2, K3 and Kξ , need to satisfy the following conditions:

λmin(K1) > 0 (96)

λmin(K2) > 0 (97)

λmin(K3) > 1 (98)

λmin(Kξ
TKξ) > 0. (99)

According to (85) and (93), it follows that

V̇ ≤ −2µV + C (100)

where µ = min{µ1, µ2}, C = max{C1, C2}.

Theorem 3. The dynamic positioning control system with position constraint is able to make the
position error vector S1 of the ship (1)–(4) considering the thruster system dynamics always within
the bounded set at any moment by choosing the proper design matrix and design parameter values.
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Proof of Theorem 3. According to Lemma 3, when (100) is satisfied, the position error
vector S1 satisfies the following condition:

‖S1‖ ≤ ‖KB‖. (101)

Therefore, Theorem 3 is proved.

Theorem 4. The robust output feedback control system with position constraint for dynamic
positioning can enable the ship (1)–(4) considering the thruster system dynamics to arrive and
stay on the desired position and heading ηd = [xd, yd, ψd]

T within a certain time while satisfy-
ing Assumptions 1 and 2. Moreover, by selecting a reasonable design matrix and design param-
eters, it is possible to make all signals in the whole closed-loop control system consistent and
ultimately constrained.

Proof of Theorem 4. Solving for (100) yields

0 ≤ V(t) ≤ C
2µ

+ [V(0)− C
2µ

]e−2µt. (102)

According to (102), it is known that the Lyapunov function of the dynamic positioning
output feedback system is consistently and eventually bounded. Then, from (72), it is
known that ‖S1‖, ‖S2‖, ‖S3‖, ‖ξ‖ and

∥∥δ̃
∥∥ are consistently eventually bounded. Since ηd is

a set constant, it follows from (42) that η is bounded. By (48), α1 is bounded, and further,
by (43), υ is bounded. From (6), τp is bounded, and by extension, from (4), τ is bounded.
Therefore, from (44), one knows that β1 is bounded. Because there is an upper bound for
∆τ, and ∆τ = τp − τc, the control signal τc is bounded. According to (55), it is clear that δ is
bounded. From the fact that δ̃ = δ̂− δ and

∥∥δ̃
∥∥ are bounded, it follows that δ̂ is bounded. It

is evident from (56) that hr is bounded. From (7) and (11), it is known that d, ∆ is bounded.
Then, according to (24), Γ is bounded. Therefore, all signals within the closed-loop control
system are bounded. Further, according to (102), it is obtained that

‖S1‖ ≤ ‖KB‖
√

1− e
C
µ +2[V(0)− C

2µ ]e
−2µt

. (103)

From (97), it is clear that for any positive constant ζS1 > ‖KB‖
√

1− e
C
µ , there exists

a positive constant TS1 , when t > TS1 , ‖S1‖ ≤ ζS1 . Therefore, S1 converges to a tight set

ΩS1 = {S1 ∈ R3
∣∣‖S1‖ ≤ ζS1 ζS1 > ‖KB‖

√
1− e

C
µ }. By changing the parameters, this tight

set can be made arbitrarily small in a specific amount of time. Therefore, taking into account
the dynamics of the thruster system, the ship (1)–(4) is able to reach and maintain the target
position and direction in a specific amount of time. Theorem 4 is proved.

4. Simulation and Analysis

In this section, lots of dynamic positioning simulation experiments are used to demon-
strate the efficacy of the suggested control technique. First, to verify that the output
feedback control strategy in the speed-unmeasurable case can effectively recover the per-
formance of the state feedback control strategy in the speed-measurable case, the output
feedback control law τc proposed in (71) and the state feedback control law τc0 proposed
in (62) of this paper were subjected to separate dynamic positioning simulation experiments
and compared. Secondly, the output feedback control strategy τc provided in this paper is
contrasted with the output feedback control strategy provided in [46], and then the effec-
tiveness and superiority of introducing the BLF, introducing the FDESO and considering
the thruster system dynamics are illustrated. Here, a supply vessel Northern Clipper with
dimensions of 76.2 m in length and 4.591× 106 kg in mass is simulated with the nominal
model parameters and thruster parameters shown in Table 1 [47]:
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Table 1. Parameter of the supply vessel Northern Clipper.

m11 5.3122× 106 m22 8.2831× 106

m33 3.7454× 109 d11 5.0242× 104

d22 2.7229× 105 d23 −4.3933× 106

d32 −4.3933× 106 d33 4.1894× 108

Ttr1 5 Ttr2 5
Ttr3 5

The thruster input saturation issue must be taken into account in the intended control
strategy due to the physical constraints of the supply vessel thrusters. Table 2 shows the
thruster input saturation limits for the supply ship Northern Clipper.

Table 2. Thruster input saturation limit values.

Thrusters Limits

Surge τM1 3.76815× 102 (kN)
Sway τM2 6.8072× 102 (kN)
Yaw τM3 7.31× 103 (kN)

The unknown time-varying disturbance d ∈ R3 in the text is set as d(t) = JT(ψ)b,
where b ∈ R3 is taken from the first-order Markov process ḃ = −T−1b + Ψω̄ as the bias
force and moment vector, T ∈ R3×3 is the time constant matrix, ω̄ ∈ R3 is the Gaussian
white noise vector with mean 0, and Ψ ∈ R3×3 is the diagonal matrix of the tuning ω̄. Set the
disturbance scene parameters as b(0) = [10 kN, 10 kN, 10 kNm]T , T = diag(103, 103, 103)
and Ψ = diag(3× 104, 3× 104, 3× 105).

The desired position and heading of the ship are set to ηd = [0 m, 0 m, 0◦]T , and the
initial values of the initial state of the ship and some of the controller parameters are
η(0) = [20 m, 20 m, 10◦]T, υ(0) = [0 m/s, 0 m/s, 0◦/s]T, τ(0) = [0, 0, 0]T, η(0) = [20 m, 20 m,

10◦]T , ζ̂(0) = [0, 0, 0]T , Γ̂(0) = [0, 0, 0]T , δ̂(0) = 10, ξ(0) = [5× 104, 5× 104, 5× 104]
T

.
The design parameters are K1 = diag(0.2, 0.2, 0.2), K2 = diag(1× 107, 1× 107, 8× 109),
K3 = diag(0.3, 0.4, 0.4), κo,1 = 5, κo,2 = 20, κo,3 = 50, εo,1 = 5, εo,2 = 20, εo,3 = 50, αo,1 = 0.8,
αo,2 = 0.6, αo,3 = 0.4, βo,1 = 1.2, βo,2 = 1.4, βo,3 = 1.6, X = 1× 10−3, KB = [25, 25, 100]T ,
ρ = 1× 103, γ1 = 3× 102, γ2 = 1× 10−7, Kξ1 = diag(5, 3, 5), Kξ2 = diag(2, 2, 5), Kξ3 = 0.02,
ξ0 = 20, r0 = 6

7 , Kξ = (5, 5, 5).

4.1. Performance of Proposed Output Feedback Control Law

To verify the performance of the proposed output feedback control strategy in the
case of unmeasurable speed, the output feedback control strategy τc in (71) is contrasted
with the state feedback control strategy τc0 in (62) in the case of known speed, as shown
in Figure 3a–d. To verify the validity of the FDESO, the velocity observation υ̂ and the set
total disturbance observation Γ̂ are compared with the velocity true value υ and the set
total disturbance true value Γ, respectively, as shown in Figure 3e,f.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of simulation results for output feedback vs. state feedback: (a) ship horizontal
motion trajectory; (b) ship position and heading; (c) ship speed; (d) actual thrust generated by ship
thrusters; (e) estimated and true values of speed; (f) estimated and true values of set total disturbance.
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Figure 3a,b show that the ship can achieve and maintain the desired location and
direction ηd = [0 m, 0 m, 0◦]T within a certain time under both output feedback and state
feedback control laws, and the ship’s motion trajectory is within the position error bounded
range −25 m < x < 25 m, −25 m < y < 25 m. The ship’s velocity u, v and r are shown to
be constrained in Figure 3c, and the ship velocity produced by the output feedback control
technique is nearly identical to the ship velocity produced by the state feedback. Figure 3d
indicates that the signals shift smoothly without abrupt changes, and the actual thrust
generated by the thruster is within the thruster input saturation limits shown in Table 2.
Additionally, the thrusts produced by the output feedback approach and those produced
by the state feedback technique are essentially identical. Therefore, the output feedback
control strategy proposed in this paper can effectively recover the performance of the state
feedback control strategy. Figure 3e shows that the FDESO can effectively observe the
unmeasurable velocity, and Figure 3f indicates that the FDESO can estimate the unknown
set of total thrusters. Therefore, the FDESO is effective.

4.2. Comparison with Existing DP Control Law

The dynamic positioning output feedback control strategy τh based on the high-gain
observer proposed in [46] is compared with the dynamic positioning output feedback
control law τc based on the FDESO proposed in this paper to show the effectiveness and
superiority of introducing BLF and FDESO, taking into account the dynamics of the thruster
system. This comparison is shown in Figure 4a–e.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e)

Figure 4. Simulation comparison between this paper and paper [46] for dynamic positioning output
feedback control strategy: (a) ship horizontal motion trajectory; (b) ship position and heading;
(c) comparison between the observed speed of FDESO proposed in this paper and the real speed;
(d) comparison between the observed speed of high-gain observer proposed in [46] and the real
speed; (e) comparison between the actual thrust generated by the ship thruster in this paper and
in [46].

Figure 4a,b indicate that the control strategy proposed in this paper can reach and
stay on the desired position and heading ηd = [0 m, 0 m, 0◦]T within a certain time,
and the ship’s motion trajectory is within the position error limit −25 m < x < 25 m,
−25 m < y < 25 m. Additionally, it takes about the same amount of time to get to the
desired point as the control method of [46]. Figure 4c,d show that both the FDESO pro-
posed in this paper and the high-gain observer proposed in [46] can effectively estimate
the unmeasured velocity, and the estimation speed of the FDESO is faster than that of the
high-gain observer. Figure 4e illustrates that the actual thrust produced by the control
strategy discussed in this paper and the control strategy in [46] are both within the thruster
input saturation limit, but the actual thrust signal produced in this paper changes smoothly
without abrupt changes, whereas the actual thrust signal produced in [46] has significant
fluctuations at the beginning and clearly abrupt changes. As a result, the control technique
provided in this work is more in tune with engineering realities than [46].

4.3. Marine System Simulator Toolbox Simulations

It is necessary to plan the related experiments in order to test the suggested control
strategy. However, because of the constraints of current engineering development, conduct-
ing actual ship testing to verify the applicability of the offered approach is very challenging.
About 99 percent of the control systems that have been devised for ship dynamic position-
ing control cannot be tested on a real ship. However, this study can be replicated using
the MSS toolbox, which is well-known in the area and whose disturbance model and ship
model are accepted in that field. A semi-realistic ship and disturbance may be constructed
using the MSS toolbox, and the developed control system can be utilized as a substitute for
an engineering verification system.

The simulation example is a supply vessel from DP MotionRAO, the essential details
of which are presented in Table 3. The MSS toolbox contains the nominal values M0 and D0
of the parameters of its motion mathematical model. Also offered is a simulated comparison
with the [46] DP control legislation that is now in place.
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Table 3. Main particulars of the supply vessel in DP_MotionRAO.

Length between perpendiculars 82.8 m
Draft 6 m

Breadth 19.2 m
Mass 6.3622× 106 kg

Displacement 6.2070× 103 m3

In simulations, the sea state four is represented by the Jonswap wave spectrum type,
significant wave height of 1.5 m, peak frequency of 0.76 rad/s, and mean wave direction of
(35◦/180◦)× π rad in the northeast frame. The mean wind angle is (30◦/180◦)× π rad,
and the wind speed is 5 m/s. The current direction is (350◦/180◦)× π, and the current
speed is 0.1 m/s.

To verify the performance of the proposed output feedback control strategy in the
case of unmeasurable speed, the output feedback control strategy τc in (71) is compared
with the state feedback control strategy τc0 in (62) in the case of known speed, as shown
in Figure 5a–d. To verify the validity of the FDESO, the velocity observation υ̂ and the set
total disturbance observation Γ̂ are compared with the velocity true value υ and the set
total disturbance true value Γ, respectively, as shown in Figure 5e,f.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Comparison of simulation results for output feedback vs state feedback in MSS toolbox:
(a) ship horizontal motion trajectory; (b) ship position and heading; (c) ship speed; (d) actual thrust
generated by ship thrusters; (e) estimated and true values of speed; (f) estimated and true values of
set total disturbance.

Figure 5a,b show that the ship can reach and stay on the desired location and ori-
entation ηd = [0 m, 0 m, 0◦]T within a certain time under both output feedback and state
feedback control laws, and the ship’s motion trajectory is within the position error bounded
range −25 m < x < 25 m, −25 m < y < 25 m. Figure 5c shows that the ship velocity u, v
and r is bounded, and the ship velocity generated by the output feedback control strategy is
basically the same as the ship velocity generated by the state feedback. Figure 5d indicates
that the actual thrust generated by the thruster is within the thruster input saturation
limits shown in Table 2, and the signals change smoothly without sudden changes. More-
over, the thrusts produced by the output feedback strategy are basically the same as that
generated by the state feedback strategy. Therefore, the output feedback control strategy
proposed in this paper can effectively recover the performance of the state feedback control
strategy. Figure 5e shows that the FDESO can effectively observe the unmeasurable velocity,
and Figure 5f indicates that the FDESO can estimate the unknown set of total thrusters.
Therefore, the FDESO is effective.

The dynamic positioning output feedback control law τh based on the high-gain
observer proposed in [46] is compared with the dynamic positioning output feedback
control strategy τc based on the FDESO proposed in this paper in order to demonstrate
the effectiveness and superiority of introducing BLF and FDESO, taking into account the
dynamics of the thruster system. This comparison is shown in Figure 6a–e.

Figure 6a,b indicate that the control strategy presented in this paper can reach and
stay on the desired location and direction ηd = [0 m, 0 m, 0◦]T within a certain time,
and the ship’s motion trajectory is within the position error limit −25 m < x < 25 m,
−25 m < y < 25 m. In addition, it takes about the same amount of time to get to the
desired point as the control method of [46]. Figure 6c,d show that both the FDESO pro-
posed in this paper and the high-gain observer proposed in [46] can effectively estimate
the unmeasured velocity, and the estimation speed of the FDESO is faster than that of
the high-gain observer. Figure 6e shows that the actual thrust produced by the control
strategy discussed in this paper and the control strategy in [46] are both within the thruster
input saturation limit, but the actual thrust signal produced in this paper changes smoothly
without abrupt changes, whereas the actual thrust signal produced in [46] has significant
fluctuations at the beginning and clearly abrupt changes.
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(a) (b)

(c) (d)

(e)

Figure 6. Simulation comparison between this paper and paper [46] for dynamic positioning output
feedback control strategy with MSS toolbox: (a) ship horizontal motion trajectory; (b) ship position
and heading; (c) comparison between the observed speed of FDESO proposed in this paper and the
real speed; (d) comparison between the observed speed of high-gain observer proposed in [46] and
the real speed; (e) comparison between the actual thrust generated by the ship thruster in this paper
and in [46].
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In the MMS toolbox, the disturbance model is less energetic than white noise, as can
be observed by comparing Figures 3–6. Because of this, the ship using the toolbox produces
less thruster force to mitigate the disruption than the initial supply ship did. The supply
ship model using white noise as the disturbance provides control performance that is
equivalent to that produced by the ship model and the semi-realistic disturbance in the
MMS toolbox, despite the fact that both are capable of creating the required control effect.
As a result, it can be shown that the study’s proposed control strategy is dependable
and effective.

5. Conclusions

In this paper, the problems encountered in the actual dynamic positioning operation
are considered. For example, there are problems, such as ship operation area limitation,
unmeasurable speed, unknown time-varying disturbances, unknown dynamics and input
saturation. By introducing the BLF to limit the ship position error, the ship position is
always within the dynamic positioning operation range. The ship’s unmeasurable veloc-
ity and the set total disturbance consisting of unknown time-varying disturbances and
unknown dynamics are estimated by an FDESO. The thruster system dynamics equation
is considered in the controller design to make the generated thrust signal conform to the
engineering reality. The input saturation issue is dealt with via a finite-time auxiliary
dynamic system. To combat unwanted mistakes, one uses the robust control concept.
A position-constrained dynamic ship positioning output feedback control rule that takes
the dynamics of the thruster system into account is constructed by combining the aforemen-
tioned parts. The theoretical analysis section shows that the ship position and heading can
eventually be maintained at the expected value and that the ship position remains within
the designated operating area throughout. All signals in the designed dynamic positioning
output feedback control system are eventually and consistently bounded. The simulation
results show that the control law is effective and satisfies the engineering reality.

This paper improves the existing dynamic positioning technique by considering as
many problems encountered in complex sea conditions as possible to make it more realistic.
This paper also considers the effects of unmeasurable speed, the uncertainty of model
parameters, the uncertainty of external disturbances, physical characteristics of the thruster
system, and input saturation of the thruster system. In addition, in this paper, the ship
position error is constrained by introducing BLF in the controller design so that the ship
position is always kept within the safe working range, which ensures the safety of the
ship during operation. Finally, this paper speeds up the convergence speed by introducing
FDESO and a finite-time auxiliary dynamic system.

Since the ship model, actuation dynamics model and disturbance model used in the
design of the controller in this paper deviate from the real physical model, the perfor-
mance of the designed control law will be lower than expected when applied to the actual
dynamic positioning.

The following two elements are included in upcoming work. To first achieve dynamic
positioning control under various sea circumstances, the switching control technique is
included into the dynamic positioning control. In order to achieve automated berthing
control, the dynamic positioning control will also introduce the switching control technique
and event triggering mechanism.
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Abbreviations

The following abbreviations are used in this manuscript:

DGPS Differential Global Positioning System
BLF Barrier Lyapunov Function
FDESO Fixed-Time Extended State Observer
DP Dynamic Positioning
ESO Extended State Observer
MSS Marine System Simulator

Nomenclature with Symbols

(x, y) ship position
x surge position
y sway position
ψ heading angle
ηd expected value
xd expected surge position
yd expected sway position
ψd expected heading angle
O− X0Y0Z0 Earth-fixed inertial frame
O− XYZ body-fixed frame
η ship position and heading
υ ship velocity
u surge velocity
v sway velocity
r yaw velocity
J(ψ) rotation matrix
M mass matrix
D linear damping matrix
τ thrust force vector
τ1 surge thrust
τ2 sway thrust
τ3 yaw thrust
d marine environmental disturbance vector
Atr thruster dynamics matrix
Ttr1, Ttr2, Ttr3 thruster model parameters
τp control signal for the thruster system constrained
τMi maximum thrust value
τc control signal generated by the designed control algorithm
M0 nominal mass matrix
D0 nominal linear damping matrix
∆M, ∆D uncertainty terms
m11, m22, m33, d11, ship model parameters
d22, d23, d32, d33
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ζ auxiliary variable
Γ total set disturbance
αo,i, βo,i, X, Γ1 parameter values
ᾱ, β̄ sufficiently small positive constants
κo,i, εo,i matrix gains
Ao,1, Ao,2 Hurwitz matrices
S1, S2, S3 design coordinate transformation
α1, β1 intermediate control function vectors
V1, V2, V BLF
KB a vector of constant value of ship position error constraint
K1, K2, K3 positive definite matrix of the design
δ undesirable errors generated in the design
c∗ normal number
hr robust control term
δ̂ estimate of δ

ρ, γ1, γ2 design parameters
ξ state vector of the auxiliary dynamic system
Kξ1 , Kξ2 positive definite parameter design matrices
Kξ3 positive parameter
ξ0 positive constant
r0 exponential parameter
η̂, ζ̂, Γ̂, υ̂, α̂1, β̂1, ĥr, ξ̂ estimates of η, ζ, Γ, υ, α1, β1, hr, ξ
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