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Abstract: This work concerns the numerical generation of stable solitary waves by using a piston-
type wave maker and the propagation characteristics of a solitary wave in a step-type flume. The
numerical generation of solitary waves was performed by solving N-S (Navier–Stokes) equations
on the open source CFD (computational fluid dynamics) platform OpenFOAM. To this end, a new
module of dynamic boundary conditions was programmed and can be applied to prescribe the
horizontal linear motion of a paddle. Two kinds of paddle motions, based on both the first-order and
ninth-order solutions of solitary waves, were first determined. The time history of paddle motion
was restored in a file, which was then used as an input for the virtual wave maker. The solitary wave
in water with a constant depth was generated by both numerical simulation and experiment in the
wave flume installed with a piston wave maker. The results show that the amplitudes of trailing
waves based on the first-order solution are larger than those based on the ninth-order solution and
that wave height based on the first-order solution decays more quickly. The numerical wave profiles
are in good agreement with the experimental ones. The propagation characteristics of a solitary wave
in a step-type flume was numerically investigated as well. It was found that a part of the solitary
wave is reflected when the solitary wave passes the step due to blockage effects, and the forward
main wave collapses quickly when it enters shallow water. This work presents a very successful
numerical study of stable solitary wave generation and reveals the phenomena when a solitary wave
propagates in a step-type flume.

Keywords: solitary wave; piston wave maker; N-S equations; a step-type flume

1. Introduction

A tsunami wave could lead to significant adverse damage to our coastal community.
It normally propagates from a deep-sea area to a nearshore area, consequently leading to a
strong destruction of coastal and offshore structures. Thus, its propagation characteristics
have always be a focused topic. After traveling a long distance, a tsunami wave evolves
into N-waves or successive solitary waves [1,2]. As a result, we usually study solitary
waves instead of tsunami waves. One of main efforts regarding this topic is how to generate
a solitary wave and to reveal its propagation characteristics.

Extensive studies on the generation of solitary waves, as well as their propagation and
evolution, have been reported in history. [3], who derived the Boussinesq equations based
on the Euler equations, contributed a lot in theory. The Boussinesq equations are a set of
first-order equations which can be employed to describe a solitary wave. Soon after, the
other first-order solution, by Rayleigh [4], was also derived. Since then, several approximate
higher-order theories have been promoted to describe a solitary wave more accurately,
e.g., the third-order solution by Grimshaw [5] and the ninth-order solution by Fenton [6].
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These theories offer a great foundation for the generation of a solitary wave in a laboratory.
Goring [7] derived the relationship between the horizontal movement of a piston-type wave
maker and the solitary wave profile on the basis of Boussinesq’s solitary wave solution.
Based on this method, Katell and Eric [8] developed a new experimental procedure, which
was derived from Rayleigh’s [4] solitary wave solution, to generate solitary waves in a
flume by using a piston-type wave maker. Their new procedure resulted in less loss of
amplitude in the initial stage of the propagation of the solitary waves compared with
that by Goring’s [7] procedure. Malek-Mohammadi and Testik [9] recommended a new
methodology for the laboratory generation of solitary waves by using piston-type wave
makers. The new methodology considered the evolving nature of the wave differently than
Goring’s [7] method in which the wave form was assumed to be permanent during the
generation process. The new methodology was demonstrated to have the capability of
generating more accurate solitary waves with less attenuation.

With the development of the computer, numerical simulation has become an important
means for the study of solitary waves. Wu et al. [10] numerically studied the generation
and propagation of Boussinesq’s [3], Rayleigh’s [4], Grimshaw’s [5], and Fenton’s [6]
solitary waves based on Goring’s method. A mesh-free potential flow model was used.
They concluded that the solitary wave based on Fenton’s solution displayed the best
performance in obtaining a purer wave shape. Later on, Wu et al. [11] validated the
numerical method used in the work of Wu et al. [10] by means of physical experiments,
and they confirmed that Fenton’s solution gave the most stable solitary waves. Moreover,
the work by Wu et al., [11] also found that the imperfect fitness of the wave paddle to the
flume could affect the stability of the solitary wave by a great amount.

Farhadi et al., [12] studied the accurate generation of solitary waves by using an
incompressible smoothed particle hydrodynamics (ISPH) method. The influences of the
different solitary wave solutions discussed in the works by Katell and Eric [8] and Wu
et al. [10] on the resulting wave profile were compared. It was concluded that the ninth-
order solution for solitary waves provided more stable waves.

Wu and Hsiao [13] investigated the propagation of solitary waves in water with a
constant depth by the numerical models based on various solitary wave theories. The
Dirichlet boundary condition and an internal mass source were utilized. One of their
conclusions was that the approach of internal wave makers required a higher-order solitary
wave solution to generate accurate and stable solitary waves.

Francis et al. [14] used two solitary wave generation methodologies, i.e., Goring’s [7]
method and the method by Malek-Mohammadi and Testik [9], to generate solitary waves ex-
perimentally and numerically. The four solitary wave solutions, as discussed by Wu et al., [10],
were also adopted in their study. The results indicated that Rayleigh’s solitary wave
solution displayed more accurate profiles in both experiments and numerical simula-
tions. With respect to wave generation methodology, the latter method gave the best
results in experiments, whereas the former method described the targeted wave better in
numerical simulations.

Huang and Dong [15] studied the interaction between a solitary wave and a submerged
dike by solving the N-S (Navier–Stokes) equations. The accuracy of the numerical scheme
was verified by comparing the analytical solutions for the case of a flatbed wave tank.
The study suggested that the primary vortex generated at the lee side of the dike and the
secondary vortex at the right toe of the dike might scour the bottom and cause a severe
problem for the dike. In practice, the propagation and evolution characteristics of solitary
waves in such real water areas are more interesting, e.g., the characteristics of such waves in
water of variable depth or the interactions between solitary waves and offshore/nearshore
structures. In this regard, more and more publications have reported relevant works in
recent years. For example, Xuan et al., [16] conducted experiments to investigate the run-up
of two solitary waves on plane beaches. Ghafari et al., [17] presented an experimental
and numerical investigation of solitary wave interactions with two submerged rectangular
obstacles. Goral et al. [18] experimentally studied the dynamic responds of solid spheres in
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solitary waves. Wu et al. [19] performed a study on the problem of the run-up of breaking
solitary waves on uniform slopes.

The present work concerns the generation of stable solitary waves by using a piston-
type wave maker and the propagation characteristics of a solitary wave in a step-type
flume. For the purpose of generating solitary waves, the open source CFD (computational
fluid dynamics) tool OpenFOAM was employed to solve the N-S equations. The VOF
(volume of fluid) method was used to model the water–air flow. The mesh deformation
approach was used to simulate the linear motion of the paddle. Great efforts contributed to
the programming of a new dynamic wall boundary condition in OpenFOAM. Specifically,
a detailed study was performed for the dependency analyses of grid density and time
step for the resulting wave profile, which was not performed in the most of previous
works. In order to check the effectives of the present numerical method, experiments in
the wave flume at the Wuhan University of Technology were conducted. The qualities of
the generated waves based on the first-order and ninth-order solutions of solitary wave
were compared. The propagation process of a solitary wave in a step-type flume is was
analyzed and discussed as well. This work presents a very successful numerical method for
the generation of solitary waves and reveals the phenomena when a solitary wave enters
from deep water into shallow water.

2. Generation of a Solitary Wave by Piston-Type Wave Maker

The schematic diagram of wave generation in a two-dimensional flume by using a
piston-type wave maker is illustrated in Figure 1. A Cartesian coordinate is defined to
describe the motion of the paddle and the resulting wave profile. The origin locates on
the water surface in the still water with a depth of h, the x-axis towards right side, and the
z-axis vertically upwards. The paddle can perform a linear motion along the horizontal axis.
At beginning, i.e., zero time, it is assumed that the paddle locates on the z-axis. According
to the theory of wave generation, if the paddle moves in a certain manner, e.g., the time
history of the paddle displacement ξ(t) is prescribed, a targeted wave will be produced in
the flume. When generating linear waves, ξ is a sine or cosine function of time.
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For the generation of a solitary wave, according to the work by Goring [7], the rela-
tionship between the linear motion of the paddle and the resulting profile of solitary wave
can be formulated by

dξ

dt
= U =

cη|x=ξ

h + η|x=ξ

(1)

where U is the depth-averaged horizontal water particle velocity near the paddle or the
paddle linear velocity, η is the wave evaluation, c is the wave phase speed, and t is the time.
The water surface evaluation is expressed by

η = Hs2 (2)

where H is the wave height. The expressions of s, k, and c are as follows.

s = sech[k(ξ − ct)] (3)



J. Mar. Sci. Eng. 2023, 11, 35 4 of 15

k =

√
3H
4h3 (4)

c =
√

g(h + H) (5)

where k is the effective wave number.
Integrating Equation (1), the exact solution of first-order paddle displacement can

be obtained.
ξ(t) =

H
kh

tanh[k(ct− ξ)] (6)

The asymptotic solution of motion stroke S is then as follows.

S = ξ(+∞)− ξ(−∞) =

√
16H
3h

h (7)

Note that the solitary wave solution used by Goring [7] is of the first order. Based on
the ninth-order solution of the solitary wave by Fenton [6], the water surface evaluation is
expressed by

η = h
9

∑
i=1

ηi

(
H
h

)i

, (8)

The corresponding ninth-order k and c are then

k =

√
3H
4h3

8

∑
i=0

ki

(
H
h

)i

, (9)

c =

√√√√gh

(
1 +

9

∑
i=1

ci

(
H
h

)i
)

(10)

where the formulas or values of ηi, ki, and ci are listed in Table 1.

Table 1. The formulas or coefficients for the ninth-order solitary wave solution.

i ηi ki ci

0 — 1.000000 —
1 s2 1.000000 1.000000
2 −0.75s2 + 0.75s4 −0.625000 −0.050000
3 0.625s2 − 1.8875s4 + 1.625s6 0.554688 −0.042857
4 −1.36817s2 + 3.88033s4 − 4.68304s6 + 2.17088s8 −0.561535 −0.034286
5 1.86057s2 − 7.45136s4 + 12.7637s6 − 11.4199s8 + 4.24687s10 0.567095 −0.031520

6 −2.57413s2 + 13.2856s4 − 31.1191s6 + 40.1068s8

−28.4272s10 + 8.728s12 −0.602969 −0.029278

7 3.4572s2 − 22.782s4 + 68.258s6 − 116.974s8 + 120.49s10

−71.057s12 + 18.608s14 0.624914 −0.026845

8 −4.6849s2 + 37.67s4 − 139.28s6 + 301.442s8 − 411.416s10

+355.069s12 − 180.212s14 + 41.412s16 −0.670850 −0.030263

9 6.191s2 − 60.57s4 + 269.84s6 − 712.125s8 + 1217.98s10

−1384.37s121023.07s14 − 450.29s16 + 90.279s18 0.700371 −0.021935

If the water depth and wave height are known, substituting Equation (2) or Equation (8)
into Equation (1) and solving Equation (1), the time history of the paddle displacement can
be determined. Here a numerical method is applied to solve Equation (1). The explicit Euler
scheme is used to discretize the time term in Equation (1). Figure 2 presents the resulting
time histories of the paddle displacement based on both the first-order and ninth-order
solutions of solitary waves for the case of constant water depth 0.3 m and wave height
0.15 m, i.e., the relative wave height is 0.5. The maximum paddle displacement based on the
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ninth-order solution is around 0.5371 m. However, it is 0.4899 m for the first-order solution,
which is identical with the asymptotic solution of the stroke calculated by Equation (7). For
the ninth-order solution, the paddle pushes forward more water.
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Figure 2. Time histories of paddle displacement based on both the first-order and ninth-order
solutions of solitary waves.

In the present study, solitary waves are numerically generated by solving N-S equa-
tions in water with a depth of 0.3 m. The targeted wave height is 0.15 m. In order to validate
the numerical results, experiments were carried out at the Wuhan University of Technology.
The wave flume is 18 m in length, 0.6 m in width, and 0.8 m in depth. The flume walls are
made of glass. Figure 3 shows the wave generation system. Two wave gauges are installed
to record water surface evaluation. The probes are located on the center line of the flume.
During the experiments, the paddle motion is controlled by a computer. Once the wave
height and water depth are pre-set, the control software first solves Equation (1) so as to
determine the time history of the paddle displacement, which is as an input for the wave
generation system. The paddle, which is driven by a motor, then moves according to the
time history of the linear motion.
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3. Numerical Method
3.1. Governing Equations

The N-S equations, together with the continuity equation, are solved by a finite
volume method to generate solitary waves. The open source CFD tool OpenFOAM was
employed for this purpose, as mentioned. Under the assumption of incompressible fluid,
the continuity equation and N-S equations, which are expressed in the coordinate system
as shown in Figure 1, can be written as

∂u
∂x

+
∂w
∂z

= 0, (11)

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂z2

)
, (12)

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

= −g− 1
ρ

∂p
∂z

+ ν

(
∂2w
∂x2 +

∂2w
∂z2

)
. (13)

where u and w are the components of flow velocity, ν is the viscosity coefficient, p is the
dynamic pressure, ρ is the density, and g is the acceleration due to gravity.

The free surface is captured by using the available VOF method. The governing
equation of volume fraction F is as follows.

∂F
∂t

+
∂(Fu)

∂x
+

∂(Fw)

∂z
= 0, (14)

where if F = 1, the cell is full of water; if F = 0, the cell is full of air; and if 0 < F < 1, the cell
locates at the interface between water and air. The density and viscosity coefficients of the
water–air flow in Equations (12) and (13) are computed by

ρ = Fρw + (1− F)ρe, (15)

ν = Fνw + (1− F)νe, (16)

where ρw, νw are the density and the viscosity coefficients of water, and ρe, νe are the density
and the viscosity coefficients of air.

OpenFOAM supplies a suite of discretization schemes for the terms of time, convection,
and diffusion in N-S equations, respectively, and the solvers for the system of linear
equations. Here a second-order central difference scheme (CDS) is chosen for the diffusive
term. The convective term is discretized by a second-order upwind difference scheme
(UDS). For the time term, the second-order backward scheme is employed. The PIMPLE
algorithm, which merges the PISO (pressure implicit with splitting of operators) and
SIMPLE (semi-implicit method for pressure-linked equations) algorithms, is applied to
couple the mass and momentum equations. The systems of linear equations resulting
from the discretized equations are solved by using iterative solvers, here the Gauss–Seidel
relaxation for velocity and generalized geometric multi-grid (GAMG) for pressure.

3.2. Grid Generation and Boundary Conditions

For the numerical generation of a solitary wave in the water with a constant depth, the
virtual wave flume is limited by a rectangle, which is in the range of 0 < x < 18 m in length
and −0.3 m < z < 0.3 m in height. The computational domain is illustrated in Figure 4. The
cyan part in the figure represents air, and the red part represents water. The available mesh
tool in OpenFOAM was employed to generate structure grids for the simulations. The grid
points are evenly spaced in both the longitudinal direction and vertical direction. Moreover,
the aspect ratio of each cell is one in the present consideration when generating the grid.
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Figure 4. An illustration of the computational domain with a constant water depth.

To generate waves, the boundary on the left side of the computational domain (see
Figure 4) is considered as a dynamic piston-like wall, which is moving along the longitu-
dinal axis during simulations, whereas the boundary on the right side and the boundary
of the water bottom are seen as motionless walls. The non-slip boundary condition, i.e.,
the relative flow velocity is zero, is enforced on these three boundaries. Zero pressure is
imposed on the boundary on the top of the domain, which is absolutely exposed to the
air. It does not need any boundary condition for the volume fraction when using the VOF
method. However, the initial value of the volume fraction at zero time is set, i.e., the still
water with the depth of 0.3 m, or if z < 0, F = 1, and if z > 0, F = 0 at the zero time.

In this study, efforts were devoted to the programming of a new dynamic wall bound-
ary condition in OpenFOAM. When applying this boundary condition on the left side of
the computational domain, the time history of paddle displacement is read from the input
file which is produced during the experiment in the wave flume, as described in Section 2.
The available dynamic mesh technique, i.e., herein the mesh deformation approach, is
employed to simulate the linear motion of the paddle. As a result, the dynamic wall on
the left side (see Figure 4) can move in accordance with the prescribed time history of
the paddle displacement. Although the approach of prescribing flow velocity and wave
evaluation on the domain boundary can be used to generate solitary waves, the present
approach is more effective for reducing wave amplitude decay.

4. Dependency Analyses of Wave Profile to Grid Density and Time Step

The sensitivities of wave profile to grid density and time step were investigated first.
The size of the virtual wave flume is 18 m × 6 m, the water depth is 0.3 m, and the targeted
wave height is 0.15 m, as mentioned. Three grids are generated by systematically doubling
the number of grid points in both horizontal direction and vertical direction. There are
300 × 10, 600 × 20, and 1200 × 40 cells for the three grids.

For the grid dependency analysis, the size of time step is chosen as 0.001 s. The paddle
displacement used for both the grid and time-step dependency analyses are based on the
ninth-order solution of solitary wave. The time traces of water surface evaluation are
recorded at the positions 2, 5, 8, and 11 m during the simulations. The time traces based
on the three grids are compared in Figure 5. The three time traces at x = 2 m seem closer
than that at other positons, especially the leading edge of the wave. As the solitary wave
propagates farther or the distance to the wave maker gets farther, the difference among
the three time traces becomes larger. The maximum water surface evaluation based on the
coarse grid first increases, then decreases. The time trace based on the coarse grid reaches
its peak value more quickly than that based on the medium grid and fine grid, meaning
that the resulting solitary wave based on the coarse grid moves faster. As increasing the
grid resolution, the time trace gradually gets closer at each position, and the amplitudes of
the trailing waves become smaller. When using the fine grid, the maximum water surface
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evaluation has been very close to the targeted one, i.e., 0.15 m, although a very slight decay
of wave height is still observed at the position 11 m. The RMSE (root mean-square-error) of
the grid dependency analysis is listed in Table 2.
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Figure 5. Grid dependency analysis. (a) x = 2 m; (b) x = 5 m; (c) x = 8 m; (d) x = 11 m.

Table 2. RMSE of the grid dependency analysis.

Grid x = 2 m x = 5 m x = 8 m x = 11 m

coarse 0.0030 0.0082 0.0119 0.0137

medium 0.0013 0.0021 0.0029 0.0040

fine - - - -

The effects of time step on the wave profile are also investigated. The fine grid is used
for the investigation. Three sizes of time step, i.e., 0.001 s, 0.002 s, and 0.004 s, are taken
into account. The time traces based on these time steps are compared at the positions 2, 5,
8, and 11 m as well, as shown in Figure 6. It is seen that the time step mainly affects the
decay of the wave height. The wave height based on the time step size 0.004 s decreases
significantly as the solitary wave propagates. However, the time traces based on the three
sizes of time step at each position reach their own peak values almost at the same point in
time. The time step does not influence the moving speed of the solitary wave. The RMSE
of the time step dependency analysis is listed in Table 3.
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Figure 6. Time step dependency analysis. (a) x = 2 m; (b) x = 5 m; (c) x = 8 m; (d) x = 11 m.

Table 3. RMSE of the time step dependency analysis.

Time-Step Size x = 2 m x = 5 m x = 8 m x = 11 m

0.004 s 0.0006 0.0011 0.0015 0.0019

0.002 s 0.0003 0.0006 0.0008 0.0011

0.001 s - - - -

Based on the dependency analyses of grid density and time step, we can see that the
grid density and time-step size affect considerably the wave profile. The fine grid with
1200 × 40 cells and the time-step size 0.001 s seems to be of acceptable accuracy. Thus, this
fine grid and time-step size are used for the simulations below.

5. Compare the Wave Profiles Based on the First-Order and Ninth-Order Solutions

The simulated time traces of water surface evaluation based on the first-order and
ninth-order solutions of solitary wave are presented in Figure 7. The targeted wave
height remains 0.15 m in the water with a constant depth of 0.3 m. The time traces at the
aforementioned four positions are compared. The wave height based on the first-order
solution reduces gradually as the solitary wave propagates, whereas, the loss of the wave
height based on the ninth-order solution is not noticeable. As the solitary wave propagates
farther, the peak value of the time trace based on the ninth-order solution gradually occurs
earlier than that based on the first-order solution. This means the solitary wave based on
the ninth-order solution moves faster. In addition, the amplitudes of the tailing waves
based on the ninth-order solution are slightly smaller than that based on the first-order
solution, which confirms the better performance of the ninth-order solution, as reported in
many other publications.



J. Mar. Sci. Eng. 2023, 11, 35 10 of 15

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 15 
 

 

1200 × 40 cells and the time-step size 0.001 s seems to be of acceptable accuracy. Thus, this 

fine grid and time-step size are used for the simulations below. 

5. Compare the Wave Profiles Based on the First-Order and Ninth-Order Solutions 

The simulated time traces of water surface evaluation based on the first-order and 

ninth-order solutions of solitary wave are presented in Figure 7. The targeted wave height 

remains 0.15 m in the water with a constant depth of 0.3 m. The time traces at the afore-

mentioned four positions are compared. The wave height based on the first-order solution 

reduces gradually as the solitary wave propagates, whereas, the loss of the wave height 

based on the ninth-order solution is not noticeable. As the solitary wave propagates far-

ther, the peak value of the time trace based on the ninth-order solution gradually occurs 

earlier than that based on the first-order solution. This means the solitary wave based on 

the ninth-order solution moves faster. In addition, the amplitudes of the tailing waves 

based on the ninth-order solution are slightly smaller than that based on the first-order 

solution, which confirms the better performance of the ninth-order solution, as reported 

in many other publications. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Compare the time traces of water surface evaluation based on the first-order and ninth-

order solutions at different positions. (a) x = 2 m; (b) x = 5 m; (c) x = 8 m; (d) x = 11 m. 

6. Validation of the Numerical Results 

As mentioned previously, experiments were carried out at the Wuhan University of 

Technology to validate the present numerical method. During the experiments, the water 

depth was 0.3 m, and the targeted wave height was set as 0.15 m. The input paddle dis-

placements were determined by both the first-order and ninth-order solutions of solitary 

waves. Two wave gauges were fixed at x = 1.55 m and x = 3.95 m to record the time histo-

ries of wave surface evaluation. 

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

first order

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

first order

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

first order

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

first order

Figure 7. Compare the time traces of water surface evaluation based on the first-order and ninth-order
solutions at different positions. (a) x = 2 m; (b) x = 5 m; (c) x = 8 m; (d) x = 11 m.

6. Validation of the Numerical Results

As mentioned previously, experiments were carried out at the Wuhan University
of Technology to validate the present numerical method. During the experiments, the
water depth was 0.3 m, and the targeted wave height was set as 0.15 m. The input paddle
displacements were determined by both the first-order and ninth-order solutions of solitary
waves. Two wave gauges were fixed at x = 1.55 m and x = 3.95 m to record the time histories
of wave surface evaluation.

The simulated results based on the ninth-order solution are compared with the ex-
perimental data in Figure 8, while the comparisons for the results based on the first-order
solution are presented in Figure 9. At first glance, all measured maximum water surface
evaluations are far from the targeted one and smaller than the simulated ones. The loss of
wave height in experiments is around 0.02 m at x = 1.55 m, and there is a little bit larger
loss at x = 3.95 m. One of the most possible reasons for this may be due to the small gaps
between the paddle and flume walls. The overflow of the water through a side gap can
be clearly observed when the paddle is moving forward, as shown in Figure 10. The gap
between the paddle and water bottom is even bigger. However, these gaps are assumed to
be closed during the numerical simulations. The simulated and measured maximum wave
evaluations occur nearly at the same point in time at either x = 1.55 m or x = 3.95 m.
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Figure 8. Validation of the water surface evaluation based on the ninth-order solution. (a) x = 1.55 m;
(b) x = 3.95 m.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 15 
 

 

The simulated results based on the ninth-order solution are compared with the ex-

perimental data in Figure 8, while the comparisons for the results based on the first-order 

solution are presented in Figure 9. At first glance, all measured maximum water surface 

evaluations are far from the targeted one and smaller than the simulated ones. The loss of 

wave height in experiments is around 0.02 m at x = 1.55 m, and there is a little bit larger 

loss at x = 3.95 m. One of the most possible reasons for this may be due to the small gaps 

between the paddle and flume walls. The overflow of the water through a side gap can be 

clearly observed when the paddle is moving forward, as shown in Figure 10. The gap 

between the paddle and water bottom is even bigger. However, these gaps are assumed 

to be closed during the numerical simulations. The simulated and measured maximum 

wave evaluations occur nearly at the same point in time at either x = 1.55 m or x = 3.95 m. 

The measured data from Figure 8a show that after the maximum evaluation of soli-

tary wave passes the position x = 1.55 m, the depression of the water surface at this posi-

tion occurs, and afterwards the water surface elevation persistently oscillates, i.e., the trail-

ing waves. The depression of water surface at x = 3.95 m diminishes obviously, but the 

oscillation of water surface elevation becomes even stronger (see Figure 8b). These phe-

nomena are also found for the measured data based on the first-order solution of solitary 

waves, as shown in Figure 9; nevertheless, the depression and oscillation are a little bit 

more prominent. The simulated results in Figures 8 and 9 display the tendencies as the 

same as the experimental data at either x = 1.55 m or x = 3.95 m, although the depression 

and oscillation are much weaker. The amplitudes of the simulated tailing waves are less 

than 3% of the main pulse. However, they are around 10% for the measured data. 

 
(a) 

 
(b) 

Figure 8. Validation of the water surface evaluation based on the ninth-order solution. (a) x = 1.55 

m; (b) x = 3.95 m. 

 
(a) 

 
(b) 

Figure 9. Validation of the water surface evaluation based on the first-order solution. (a) x = 1.55 

m; (b) x = 3.95 m. 

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

exp.

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
ninth order

exp.

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
first order

exp.

time [sec]


[m

]

0 1 2 3 4 5 6 7 8 9 10
0

0.15
first order

exp.

Figure 9. Validation of the water surface evaluation based on the first-order solution. (a) x = 1.55 m;
(b) x = 3.95 m.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

 

Figure 10. The overflow of the water through the gap between the paddle and a side wall of the 

wave flume. 

7. Propagation Characteristics in a Step-Type Flume 

This is investigated by means of numerical simulation. Unfortunately, to conduct 

such an experiment is not yet possible. The solitary wave with the targeted wave height 

of 0.15 m is considered. The solitary wave is generated in the water with the depth of 0.3 

m, and then propagates into the water region with the depth of 0.15 m. Figure 11 illustrates 

the computational domain. The domain length is 18 m long as well. However, a step with 

the height of 0.15 m locates in the middle of the flume. Actually, the computational do-

main with the step results from subtracting the small rectangle with a size of 0.15 m × 9 m 

from the domain (0.6 m × 18 m) for the case of the constant water depth, as shown in 

Figure 4. The small rectangle is one-eighth of that domain. 

The computational grid used is very similar to the ones for the case of the constant 

water depth, as described in Section 3.2. There are totally 42,000 cells, i.e., 1200 × 40–600 × 

10 cells, corresponding to the fine grid with 1200 × 40 cells in the Section 4. During the 

simulation, the size of the time step remains 0.001 s according to the analysis of time-step 

dependency. The time history of paddle displacement is determined by the ninth-order 

solitary wave solution, which is shown in Figure 2. Other numerical settings are identical 

to that for the case of the constant water depth. 

 

Figure 11. An illustration of the computational domain with a step. 

The snapshots of wave profiles at a few interesting time points are presented in Fig-

ure 12. At t = 6 s, the wave is close to but has not yet passed the step. Soon after, the wave 

runs past the step at t = 6.8 s, and the wave tends to split right there at the position of the 

step, i.e., at x = 9 m. The wave height decreases slightly at this moment. After 0.2 s, i.e., at 

t = 7 s, the wave completely splits into two waves. The separation point is clearly seen at 

still water level

atmosphere

dynamic wall (paddle)

wall

0.3 m

0.3 m

9 m 9 m

bottom wall
0.15 m

Figure 10. The overflow of the water through the gap between the paddle and a side wall of the
wave flume.

The measured data from Figure 8a show that after the maximum evaluation of solitary
wave passes the position x = 1.55 m, the depression of the water surface at this position
occurs, and afterwards the water surface elevation persistently oscillates, i.e., the trailing
waves. The depression of water surface at x = 3.95 m diminishes obviously, but the oscilla-
tion of water surface elevation becomes even stronger (see Figure 8b). These phenomena
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are also found for the measured data based on the first-order solution of solitary waves,
as shown in Figure 9; nevertheless, the depression and oscillation are a little bit more
prominent. The simulated results in Figures 8 and 9 display the tendencies as the same
as the experimental data at either x = 1.55 m or x = 3.95 m, although the depression and
oscillation are much weaker. The amplitudes of the simulated tailing waves are less than
3% of the main pulse. However, they are around 10% for the measured data.

7. Propagation Characteristics in a Step-Type Flume

This is investigated by means of numerical simulation. Unfortunately, to conduct
such an experiment is not yet possible. The solitary wave with the targeted wave height of
0.15 m is considered. The solitary wave is generated in the water with the depth of 0.3 m,
and then propagates into the water region with the depth of 0.15 m. Figure 11 illustrates
the computational domain. The domain length is 18 m long as well. However, a step with
the height of 0.15 m locates in the middle of the flume. Actually, the computational domain
with the step results from subtracting the small rectangle with a size of 0.15 m × 9 m from
the domain (0.6 m × 18 m) for the case of the constant water depth, as shown in Figure 4.
The small rectangle is one-eighth of that domain.
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Figure 11. An illustration of the computational domain with a step.

The computational grid used is very similar to the ones for the case of the constant water
depth, as described in Section 3.2. There are totally 42,000 cells, i.e., 1200 × 40–600 × 10 cells,
corresponding to the fine grid with 1200 × 40 cells in the Section 4. During the simulation,
the size of the time step remains 0.001 s according to the analysis of time-step dependency.
The time history of paddle displacement is determined by the ninth-order solitary wave
solution, which is shown in Figure 2. Other numerical settings are identical to that for the
case of the constant water depth.

The snapshots of wave profiles at a few interesting time points are presented in
Figure 12. At t = 6 s, the wave is close to but has not yet passed the step. Soon after, the
wave runs past the step at t = 6.8 s, and the wave tends to split right there at the position of
the step, i.e., at x = 9 m. The wave height decreases slightly at this moment. After 0.2 s, i.e.,
at t = 7 s, the wave completely splits into two waves. The separation point is clearly seen at
the position of the step. The main wave, which enters into the shallow water and continues
to move forward, becomes slimmer and its profile peak exceeds the targeted one. The other
wave is due to the reflection of the step and in turn moves backward. The reflected one
is much smaller than the main one. These can be observed more clearly at t = 7.2 s. As
time goes on, the reflected wave keeps on moving backward. However, the main wave
gradually collapses. At t = 8 s, the shape of the main wave has become indistinct. The
Observations are quite similar to those reported by Gao et al. [20].
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Figure 12. The snapshots of the solitary wave propagating from the deep water into the shallow
water. (a) t = 6 s; (b) t = 6.8 s; (c) t = 7 s; (d) t = 7.2 s; (e) t = 7.4 s; (f) t = 7.6 s; (g) t = 7.8 s; (h) t = 8 s.

When the solitary wave propagates from the deep water into the shallow water, a part
of the solitary wave is reflected because the blockage effects make the road narrower. After
the main wave enters the shallow water, the moving speed of its crest looks faster than that
of its trough if observing the wave profiles from t = 6.8 s to t = 7.2 s. This means that the
crest loses the support of the trough so that the crest at t = 7.4 s and t = 7.6 s tends to fall
down due to gravity. This leads to the collapse of the main wave.

The wave profiles for the waters of constant depth and variable depth at t = 7.2 s are
compared in Figure 13. As is seen, the trough of the wave in the step-type flume moves
slightly slower than the trough in the water of constant depth, whereas the crest in the
step-type flume moves faster. Note that the speed of the whole solitary wave (both the crest
and trough) in the water with the constant depth is always consistent.J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 15 

 

 

 

 

Figure 13. Compare the snapshots of wave profiles at t = 7.2 s. 

8. Concluding Remarks 

This work presents a study on the generation of solitary waves by using a piston-

type wave maker and the propagation characteristics of a solitary wave in a step-type 

flume. On the aspect of numerical simulation, one of the contributions may lie in the de-

velopment of a new dynamic wall boundary condition on the platform OpenFOAM. 

When using this new boundary condition, the time history of the paddle displacement 

can be read from an input file and then used to simulate the linear motion of the paddle. 

In theory, it can be employed to generate any type of waves as long as the corresponding 

law of paddle motion is determined in advance. Experiments were also conducted for the 

case of water with a constant depth in order to validate the numerical results. Reasonable 

agreements are found between the numerical wave profiles and experimental ones. 

The simulated profile of solitary waves depends greatly on the grid resolution and 

time-step size. Appropriate grid resolution and time step size can reduce the decay of 

wave height and ensure a more stable solitary wave. The better performance of ninth-

order solution is confirmed when determining the paddle displacement as different than 

the first-order solution, e.g., the problem of wave height decay is improved. 

Furthermore, the present numerical method could be expanded to generate waves in 

a three-dimensional wave tank. The hydrodynamic analyses of solid structures in solitary 

waves, especially in a more realistic water area topography, could be performed in the 

future. This might promote the understanding of the destructive effects of solitary waves 

offshore or nearshore structures. 

Author Contributions: Conceptualization, J.Y. and X.S.; methodology, J.Y.; software, J.Y. and X.S.; 

validation, W.L.; formal analysis, Y.S. and F.X.; investigation, X.S.; resources, X.S.; data curation, 

X.S.; writing—original draft preparation, X.S.; writing—review and editing, X.S.; supervision, J.Y.. 

All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China grant 

number No. 52101371, No. 52071243, No. 51720105011, No. 51809203 and No. 51609188 and National 

Defense Basic Research Program of China (No. JCKY2020206B037). 

x [m]


[m

]

0 3 6 9 12 15 18
-0.3

-0.15

0

0.15

0.3

x [m]


[m

]

0 3 6 9 12 15 18
-0.3

-0.15

0

0.15

0.3

Figure 13. Compare the snapshots of wave profiles at t = 7.2 s.



J. Mar. Sci. Eng. 2023, 11, 35 14 of 15

8. Concluding Remarks

This work presents a study on the generation of solitary waves by using a piston-type
wave maker and the propagation characteristics of a solitary wave in a step-type flume. On
the aspect of numerical simulation, one of the contributions may lie in the development of
a new dynamic wall boundary condition on the platform OpenFOAM. When using this
new boundary condition, the time history of the paddle displacement can be read from
an input file and then used to simulate the linear motion of the paddle. In theory, it can
be employed to generate any type of waves as long as the corresponding law of paddle
motion is determined in advance. Experiments were also conducted for the case of water
with a constant depth in order to validate the numerical results. Reasonable agreements
are found between the numerical wave profiles and experimental ones.

The simulated profile of solitary waves depends greatly on the grid resolution and
time-step size. Appropriate grid resolution and time step size can reduce the decay of
wave height and ensure a more stable solitary wave. The better performance of ninth-order
solution is confirmed when determining the paddle displacement as different than the
first-order solution, e.g., the problem of wave height decay is improved.

Furthermore, the present numerical method could be expanded to generate waves in
a three-dimensional wave tank. The hydrodynamic analyses of solid structures in solitary
waves, especially in a more realistic water area topography, could be performed in the
future. This might promote the understanding of the destructive effects of solitary waves
offshore or nearshore structures.
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