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Abstract: Long-range propagation of sound pulses in the deep ocean is considered. A new method for
the estimation of the pulse angular spectrum is presented. The method is based on the Husimi trans-
form of a wave field and can be realized with a short vertical array of nondirectional hydrophones. As
a result, one obtains a diagram of the arrival pattern in the time–angle plane. The method is applied
to a model of the underwater sound channel in the Sea of Japan. Special attention is paid to sound
scattering on a cold synoptic eddy along the waveguide. It is shown that the synoptic eddy leads
to a splitting of the individual ray’s arrivals into clusters with close angles and times. The random
sound-speed perturbation induced by internal waves blurs these clusters into a fuzzy background
and simultaneously broaden the angular spectrum of pulses. Nevertheless, it is found that the latter
effect is relatively weak for short vertical arrays. In particular, it is shown that increasing the array
length from 10 to 30 m results in the separation of the arrivals with opposite angles.

Keywords: ocean acoustics; Husimi function; low-frequency sound; vertical array; internal waves
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1. Introduction

Sound scattering on internal waves has long ago been recognized as the main source
of signal decoherence for long-range sound propagation in the ocean. Although internal-
wave-induced sound-speed variations are commonly very weak, their accumulated effect
on ranges of a few hundred kilometers is very meaningful. Mechanisms of decoherence
for frequencies above 50 Hz are well-described within the theory of wave chaos [1]. The
term wave chaos is usually understood as manifestations of the Lyapunov instability of ray
trajectories in wave dynamics. The instability comes from the fundamental nonintegrability
of Hamiltonian ray equations in an inhomogeneous waveguide. Lyapunov instability
makes ray trajectories highly irregular and expects disordered interference patterns for
relatively high acoustic frequencies.

The study of wave chaos in ocean acoustics is important from the viewpoint of various
applications. Earlier chaos was considered as the main factor that impeded the recon-
struction of oceanic environments by means of hydroacoustical tomography [2]. Later, it
was argued that chaos could enhance sensitivity to large-scale inhomogeneities [3,4] and
thereby play a positive role in the context of tomography. In particular, the analysis of
chaos-assisted modal pulse elongation may allow one to estimate the depth of a synoptic
eddy that crosses a waveguide. Moreover, it is recognized that chaos-assisted phenomena
are a major consideration in long-range underwater acoustic communication, in which the
scattering on internal waves causes a significant coherence loss [5–8].

The present work is devoted to the influence of the scattering on internal waves onto
the angular structure of acoustic pulses. The analysis of the angular spectrum can be worthy
from the viewpoint of source identification [9,10]. The approach proposed in this paper is a
simplified version of the method developed in [11]. It is based on a phase-space picture of
a wave field and takes into account the fundamental limitations on the measurement of
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arrival angles. Our attention is concentrated on arrival angles in the vertical plane, which
are closely related to the modal spectrum of a wave field. Nevertheless, the same approach
can be readily implemented for horizontal arrays and angles as well.

2. Theory

Considering long-range sound propagation, one can neglect the contribution from
sound waves contacting with the lossy bottom. Therefore, it is possible to utilize the
small-angle approximation that yields the standard parabolic equation for a wave-field
envelope Ψ. Following [11,12], the standard parabolic equation can be expressed in the
operator form

i
k0

∂Ψ
∂r

= ĤΨ, (1)

where r is the range, k0 = 2π f /c0, f is the signal frequency, c0 is the reference sound speed,

Ĥ =
p̂2

2
+ V(z, r) (2)

is the Hamiltonian operator, and

p̂ = − i
k0

∂

∂z
, V(z, r) =

c(z, r)
c0
− 1. (3)

The wave-field envelope is related to the acoustic pressure u by means of the formula

Ψ =

√
πk0r

2
e−i(k0r− π

4 )u. (4)

The operator presentation reveals the mathematical equivalence between the standard
parabolic equation and the Schrödinger equation in quantum mechanics. In this analogy,
range r plays the role of a timelike variable, p̂ acts as the momentum operator, and V is the
potential energy. In the short-wavelength limit being the analogue of the semiclassical limit
in quantum mechanics, the Hamiltonian operator (2) becomes the classical Hamiltonian

Ĥ =
p2

2
+ V(z, r), (5)

where
p = n sin χ ' tan χ (6)

is the so-called ray momentum, and χ is the ray grazing angle. The corresponding ray
equations are

dz
dr

=
∂H
∂p

= p,
dp
dr

= −∂H
∂z

. (7)

Variables z and p act as coordinates in the ray-based phase space. The projection of a
wave field onto this space is provided by the Wigner transform defined as

W(p, z, k0) =
k0

2πA

∫
dζΨ(z− ζ/2, k0)Ψ∗(z + ζ/2, k0)eik0 pζ , (8)

where the constant A is the norm of the wave function

A =
∫
|Ψ(z)|2 dz. (9)

The Wigner function W can be thought of as the quasi-probability density in the space
of ray variables z and p. Taking into account (6), one can consider the dependence of the
Wigner function on p for fixed z and k0 as a kind of local angular wave-field spectrum.
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However, the Wigner function can exhibit fast oscillations due to the interference that
could be inconvenient for its analysis. Therefore, it is reasonable to replace the Wigner
function by its coarse-grained analogue [13,14],

Wsm(p, z, k0) =
1

2π

∫
dz′dp′ exp

[
− (z− z′)2

2∆2
z
− (p− p′)2

2∆2
p

]
W(z′, p′). (10)

Another difficulty arising in the analysis of the angular spectrum by means of the
Wigner transform can be well-understood from the viewpoint of the aforementioned
equivalence between parabolic and Schrödinger equations. It is well-known that quantum
mechanical uncertainties in the simultaneous measurement of the position and momentum
obey the celebrated Heisenberg relation. This relation ensues from the basic properties of
wave fields and therefore can be readily adopted in ocean acoustics. The acoustical version
of the Heisenberg relation reads [3,11]

∆z∆p ≥
1

2k0
, (11)

where ∆p can be referred to as the angular uncertainty. This limitation has a fundamental
origin and is not linked to imperfect conditions of signal reception. The relation (11)
links the angular uncertainty with the array length: the longer the array, the smaller the
uncertainty. Moreover, it puts a constraint onto physically relevant values of smoothing
scales in (10). The case of the minimal uncertainty

∆z∆p =
1

2k0
(12)

corresponds to the so-called Husimi function

WH(p, z, k0) =
1

A∆z
√

2π

∣∣∣∣∫ Ψ∗(z, k0) exp
[

ik0 p(z′ − z)− (z′ − z)2

4∆2
z

]
dz′
∣∣∣∣2. (13)

In the context of sound propagation in the ocean, the Husimi function was utilized
in [3,11,15–18]. Some of its properties could be used for the analysis of chaos manifestations
in a wave-field structure [17,19–21].

Wigner and Husimi functions provide a ray-based interpretation of a continuous wave
field. However, acoustical experiments are commonly conducted with pulsed broadband
signals. A generalization of the Husimi function onto pulse wave fields was obtained in [11].
It was based on the proper time-domain Fourier decomposition of the pulse. Unfortunately,
a practical implementation of this procedure may lead to additional inaccuracy due to the
impact of the noise that affects signal waveforms. Nevertheless, if the signal spectrum
has a peak at some frequency f̄ , one can avoid the time-domain Fourier decomposition by
replacing k0 in (13) by k̄0 = 2π f̄ /c0 and then applying the Husimi transform to the time
front of the received signal

Ψ̃(z, t) =
∫

S( f )Ψ(z, r, f )ei[k0( f )R−2π f t] d f , (14)

where S( f ) is the signal spectrum, and R is the distance between the source and the receiver.
This yields

W̃H(p, z, t) =
1

A∆z
√

2π

∣∣∣∣∫ Ψ̃∗(z, t) exp
[

ik̄0 p(z′ − z)− (z′ − z)2

4∆2
z

]
dz′
∣∣∣∣2. (15)

The estimation of the angular pulse spectrum via Equation (15) is the main approach
used in this paper. This formula is an approximate version of the exact expression presented
in [11].
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If one has an equidistant vertical array of hydrophones at depths z = z1, z2, . . ., zN ,
where zn = z1 + (n− 1)dz, then Formula (15) reads as

W̃H(p, z, t) =
1

Adiscr∆z
√

2π

∣∣∣∣∣∑n
Ψ̃∗(zn, t) exp

[
ik̄0 p(zn − z)− (zn − z)2

4∆2
z

]∣∣∣∣∣
2

, (16)

provided the hydrophone spacing dz is small compared to the smallest vertical wavelength
λ = c0/( f̄ pmax) ≈ 3c0/ f̄ . The constant Adiscr is given by

Adiscr = ∑
n
|Ψ(zn)|2. (17)

Alternatively, one can reconstruct a continuous wave field profile by means of the
techniques proposed in [22] and then apply the transform (15).

Thus, one can specify some depth as a center of a receiving antenna and calculate
the arrival-time-dependent angular spectrum at this point by means of the Husimi trans-
form (16). Taking into account that the Husimi function corresponds to a Gaussian coarse-
graining of the Wigner function (8), it turns out that the Husimi processing of a signal can
be readily produced with an antenna length of 6∆z.

3. Model of a Waveguide

Let us consider a deep-water acoustic waveguide where the function V(z, r) is given
by the sum

V(z, r) = −1 +
cb(z)

c0
+ Veddy + Viw, (18)

where cb(z) is a background range-independent sound-speed profile, Veddy and Viw are
perturbations contributed from the synoptic eddy and internal waves, respectively. In the
numerical simulation, we used a model of the underwater sound channel in the Sea of
Japan. The background sound-speed profile is described by the formula [4,12]

cb(z) ≡ c0 + ∆c(z) =

{
c0 + ∆cup(z), z 6 z0,

c0 + ∆clow(z), z > z0.
(19)

where
∆cup(z) = c1e−z/B,

∆clow(z) = c1e−z0/B + g(z− z0),
(20)

and c0 = 1455 m/s, c1 = 70 m/s, z0 = 200 m was the depth of the waveguide axis,
corresponding to the minimum of the sound speed, B = 30 m was the thermocline depth,
and g = 0.017 s−1. The ocean bottom was assumed to be flat and located at a depth of
3 km. The upper part of the background sound-speed profile is shown in Figure 1a as a
solid line. It should be noted that a similar profile was considered in Ref. [23] devoted to
the propagation of explosion-produced signals in the Sea of Japan.

We considered two factors of horizontal inhomogeneity: a synoptic eddy and internal
waves. The sound-speed perturbation caused by the synoptic eddy is given by the following
formula [1,24,25]:

Veddy =
ce

c0
exp

(
− (r− re)2

∆r2 − (z− ze)2

∆Z(r)2

)
, (21)

where

∆Z(r) = ∆zc − ∆zυ exp
(
− (r− rυ)2

∆r2
υ

)
. (22)

We used the following set of parameter values: ce = −10 m/s, re = 100 km, ∆r =
50 km, ∆zc = 500 m, ∆zυ = 250 m, rυ = 120 km, and ∆rυ = 20 km. The numerical
simulation was carried out for the eddies with core depths ze varying from 600 to 1500 m.
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The respective sound-speed profiles are depicted in Figure 1a. All the curves presented
correspond to r = re, where the eddy-induced distortion of a profile is the strongest.
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Figure 1. (a) Background sound-speed profile and sound-speed profiles including eddy-induced
perturbation. (b) Profile of the Väisäla–Brunt frequency in the upper oceanic layer.

The sound-speed perturbation induced by internal waves is given by the formula [26]

δciw(z, r) = cb(z + ζ(z, r))− cb(z), (23)

where ζ is the vertical displacement of a fluid parcel. We constructed ζ(z, r) as a modal
superposition using the approach presented in [27]. The Väisäla–Brunt (buoyancy) fre-
quency profile was calculated by means of hydrological data for the Sea of Japan [28]. The
method of calculation is described in detail in Ref. [4]. The resulting profile is presented in
Figure 1b. Notably, the buoyancy frequency is very large in the near-surface layer and is
almost zero below it. It turns out that a waveguide for internal waves is too narrow and can
efficiently focus only on a low number of internal-wave modes. This results in weakness
of the vertical oscillations of the corresponding sound-speed perturbation. A statistical
analysis of an internal-wave field confirmed it. As in [4], we utilized the expansion over
empirical orthogonal functions fn(z)

δciw(z, r) =< δciw(z) > +∑
n

bn(r) fn(z). (24)

Functions fn(z) can be found as the eigenvectors of the covariance matrix K̂ with
entries

Kij =
1

lmax

lmax

∑
l=1

[δciw,l(zi)− < δciw(zi) >]× [δciw,l(zj)− < δciw(zj) >], (25)

where the index l enumerates lmax statistically independent realizations of δciw(z), and {zi}
is a discrete set of depth values that is used to represent δciw(z) as a vector. The angular
brackets correspond to averaging over realizations. Taking into account the oscillating form
of δciw, it is reasonable to set < δciw >= 0.

The eigenvalues of K̂ evaluate the contributions of the corresponding eigenvectors in
the sum (24). They rapidly decrease in value as their number increases, and the first two
eigenfunctions accumulate about 90 percent of the overall power. This circumstance reflects
weakness of the high-order modes of internal waves which are mainly responsible for
the vertical oscillations of the sound-speed perturbation. As it was shown in [1,17,29,30],
these vertical oscillations play a primary role in the emergence of strong chaos for al-
most flat near-axial rays. These rays form the last portion of the received pulse (see, for
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example, [31]). Consequently, the underwater sound channel in the Sea of Japan implies
a regular propagation near the waveguide axis. This expectation is well confirmed both
numerically [12] and experimentally [32,33].

4. Results

In the numerical simulation, pulses of the following form were considered:

s(t) = exp
(
−2πi f0t− 2π2∆ f 2t2

)
. (26)

The pulse spectrum was given by

S( f ) =
1√

2π∆ f
exp

[
− ( f − f0)

2

2∆ f 2

]
. (27)

We considered the case of f0 = 300 Hz and ∆ f = 60 Hz. The initial wave packet was
chosen as

Ψ0(z) = exp
[
− (z− zs)2

4σ2
z

]
,

where zs = 200 m and σz = 50 m. The distance between the source and receiver, R, was
taken as 350 km.

The parabolic Equation (1) was solved numerically for a frequency interval from 20
to 500 Hz with a step of 0.2 Hz. Husimi functions were computed via Formula (16) and
averaged over 100 realizations of the internal wave field. The vertical spacing between
hydrophones, dz, was taken as 1 m. Figure 2 represents the plots of the Husimi function
with a coarse-graining scale ∆z = 10 m. The corresponding angular uncertainty ∆p
was 0.039. It was assumed that the receiving array was centered at the waveguide axis,
z = z0 = 200 m. The Husimi plot corresponding to the waveguide without the synoptic
eddy demonstrates arrivals which are well-resolved in time but looked smeared in angle. It
is illustrated in Figure 2a. The angular smearing is a consequence of the limitations posed
by the Heisenberg uncertainty relation (11). It leads to a partial overlapping of the branches
corresponding to positive and negative arrival angles. Nevertheless, individual arrivals
corresponding to both branches are well identified.

The onset of an eddy along the waveguide complexifies the arrival pattern, as is shown
in Figure 2b–d. As long as we consider the case of a cold eddy giving rise to a negative
variation of the sound speed, the Husimi diagram is moved to larger arrival times. In the
absence of scattering on internal waves, individual arrivals were split into weaker ones.
It is demonstrated in Figure 2f–h. The weakest arrivals are unstable in the presence of
the random inhomogeneity, so the statistical averaging blurs them to a fuzzy continuous
background. It should be emphasized that travel times for stronger arrivals sometimes
do not coincide with those in the absence of the random inhomogeneity. This indicates
the importance of incorporating internal waves into the acoustic models of long-range
sound propagation.
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Figure 2. Logarithm of the Husimi function in the plane, where the horizontal coordinate is the arrival
time, and the vertical coordinate is the tangent of the arrival angle. Figures (a–d) correspond to aver-
aging over 100 realizations of internal waves. Figures (e–h) correspond to the model of a waveguide
without internal waves. The vertical coarse-graining scale ∆z is 10 m. Panels (a–e)—waveguide with-
out the eddy, panels (b–f)—the eddy core at ze = 600 m, panels (c–g)—the eddy core at ze = 1000 m,
panels (d–h)—the eddy core at ze = 1500 m.

It has to be noted that the temporal smearing is nonuniform. There is tendency of
decreasing times corresponding to the most smeared segment when increasing the core
depth. It means that a deeper eddy affects steeper rays, causing a local enhancement of ray
chaos. This issue is discussed in detail in [4].

Increasing the smoothing scale ∆z to 30 m should correspond to a triple elongation of
the array. In this case, the angular uncertainty ∆p is reduced to 0.013. The corresponding
angular structure is illustrated in Figure 3. A reduction of the angular uncertainty makes
the branches corresponding to positive and negative arrival angles almost nonoverlapping.
Indeed, decreasing the angular uncertainty does not influence the temporal smearing but
provides a more accurate estimate of the arrival angles corresponding to the smeared
segments, that is, one can accurately identify ray bunches which were the most affected by
scattering on an eddy. This is desirable from the viewpoint of hydroacoustical tomography.
In a more general context, the improvement of angular resolution allows one to identify the
corresponding ray “skeleton” of a wave field that facilitates the solution of various practical
problems. The requirement of a sufficient angular resolution imposes a constraint on the
array length, as the latter one is the main factor determining the maximum possible ∆z.
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Figure 3. The same as in Figure 2, but for the case of ∆z = 30 m. Figures (a–d) correspond to
averaging over 100 realizations of internal waves. Figures (e–h) correspond to the model of a
waveguide without internal waves. Panels (a–e)—waveguide without the eddy, panels (b–f)—the
eddy core at ze = 600 m, panels (c–g)—the eddy core at ze = 1000 m, panels (d–h)—the eddy core at
ze = 1500 m.

5. Discussion

The manuscript addressed the problem of the arrival angle identification in under-
water acoustics. As in [11], we underlined the importance of the fundamental Heisenberg
limitation on angle measurements. This limitation is associated with a finiteness of the
array length and leads to an inherent uncertainty in the angular spectrum. In the case of
long-range sound propagation, the Heisenberg uncertainty is accompanied by a broaden-
ing of the angular spectrum due to the sound scattering on internal waves. Nevertheless,
the results of numerical simulation showed that the broadening of the angular spectrum
was much less significant than the temporal pulse elongation. The latter circumstance
is important from the viewpoint of hydroacoustical tomography. Indeed, signal travel
times are very sensitive to large-scale variability of the ocean. Overall timefront shifts were
caused by the cold synoptic eddies, while individual timefront branches were smeared
due to the scattering on internal waves. The results of Ref. [14] suggest that such smeared
patterns may be more efficiently reproduced by means of ray calculations based on the
incoherent summation of ray bundles. This ensues from the fact that bundles consisting of
a large number of rays are much less affected by ray chaos caused by scattering on internal
waves [1]. Such an elimination of the ray chaos outlines the prospect for the development
of an efficient scheme for hydroacoustical tomography. We hope to address this issue in
forthcoming works.

The angular broadening can be controlled by the depth uncertainty ∆z. As long as ∆z
is linked to the array length, one can conclude that the array elongation can substantially
facilitate a ray-based interpretation of an arrival pattern. On the other hand, we have to
keep in mind that this result was obtained for the Sea of Japan, where sound scattering
on internal waves is relatively weak due to a weak impact of high-order internal wave
modes [12]. It is reasonable to expect that marine environments with a broader vertical
wavenumber spectrum should give rise to more complicated angular patterns. Another
promising issue is the analysis of the angular spectrum of acoustic noise wave fields [34–36].

6. Conclusions

In the present work, we developed a simple method for the analysis of acoustic pulses
by means of a relatively short antenna with nondirectional hydrophones. The method
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involves the analysis of angular and temporal pulse characteristics simultaneously. It is
based on the Husimi transform being a projection of a wave field onto the phase space
of ray equations. Thus, one can obtain a raylike interpretation of arrival patterns without
direct ray calculations.

A model of the underwater sound channel in the Sea of Japan was considered as an
example. Particular attention was paid to the influence of synoptic eddies onto the arrival
pattern. It was shown that sound scattering on an eddy resulted in a splitting of individual
arrivals into groups. Scattering on random internal-wave-induced inhomogeneity blurs
the groups of low-amplitude arrivals. It was pointed out that the temporal interval of
the strongest blurring depended on the depth of the eddy core. Increasing the depth
uncertainty results in a separation of the arrivals with opposite angles, with the onset of a
raylike arrival pattern. This result suggests that a successful identification of propagation
paths in terms of ray trajectories requires a sufficient array length.
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