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Abstract: Bottom formations known as pockmarks basically arise due to extensive gas emission.
Active pockmarks are characterized by exceptionally high gas saturation and substantially reduced
sound speed. The latter circumstance leads to strong attenuation of sound waves contacting with
a pockmark. In the present paper, we study low-frequency sound propagation in a 10-km long
waveguide crossing a giant pockmark. A new method of acoustic waveguide scanning based
on measurement of the wavefield propagator is represented. This method allows one to explore
attenuation anomalies associated with the presence of the gas-saturated bottom region. In particular,
one can find out which beams fall into a pockmark area and therefore experience strong losses.
Identifying such beams, as well as beams which avoid pockmark-assisted losses, one can estimate
probable locations of the pockmark segment in the waveguide, provided information about the
background medium is sufficient.

Keywords: ocean acoustics; pockmark; low-frequency sound; gas-saturated sediment; wavefield
propagator

1. Introduction

Modern seismotectonic and magmatic activization in numerous seafloor areas causes
enhanced natural gas emission in the ocean. This requires development of new methods
for geomapping of gas emission over wide areas. Identification of gas accumulations in
marine sediments is important issue for exploration of marine oil and gas deposits, as
well for estimates of greenhouse gas emission. Some of such concentrations give rise to
pockmarks that are crater-shaped bottom formations resulting from extensive subaqua
fluid outflows of hydrocarbon gases [1,2]. In the horizontal plane they commonly have
circular or oval form that can be deformed due to the landslide of sediments or the impact
of bottom currents [1,3]. Horizontal sizes of the pockmark vary from several meters to
several hundreds meters, the latter case corresponds to the so-called giant pockmarks [2,4].
Active gassy pockmarks are characterized by anomalously high contrast of gas concen-
tration as compared to background area. Pockmarks are associated with the most active
focused methane flows forming jet outflows of gas bubbles coming from bottom sediments
into the water column, carbonate mineralization, and foci of benthic species of organisms.
They can be used as indicators of oil and gas bearing systems and gas hydrate accumula-
tions. Pockmarks are widespread in the continent–ocean transition zones. They are most
often found in the marginal seas of active continental margins. In the seas of Eastern Russia,
pockmarks were been found in the Japan, Okhotsk, Bering, Chukchi, East Siberian Seas
and the Laptev Sea [5–8].

Typically, the search for gas fields is carried out using seismic surveys based on the
analysis of backscattered acoustic pulses [9]. In general, the presence of gas concentrations
leads to decreasing of sound speed in the sediment and thus can enhance sound absorption.
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It should be mentioned that measurements of sound speed in the sediment can be used to
determine gas concentration [10,11], the corresponding theory was developed in [12–14].
Sound absorption, in the case of random volumetric sediment inhomogeneities, is con-
sidered in [15]. Low-frequency sound attenuation without gas concentrations is usually
much weaker. Marked contrast of gas-saturated bottom sediments in sound attenuation
opens up opportunities for remote identification of sediment gas concentrations using the
ideas of long-range hydroacoustical tomography. In particular, one can take into account
differences in geometry of acoustic beams launched from various depths and/or with
various angles. Then, one can find out the acoustic beams experiencing anomalously high
absorption caused by the contact with the gas-saturated bottom area. Such approach allows
exploration of gas accumulations using a source and a receiver located at a distance of
several tens kilometers from each other. In this paper, an acoustic scanning scheme for the
identification of giant gassy pockmarks is presented. The scheme is based on the measure-
ment of the wavefield propagator and subsequent analysis of its properties. This scheme is
used for exploration of an isolated giant pockmark using low-frequency acoustic signals.

The paper is organized as follows. In the next section, the concept of the acoustic
scanning based on measurement of the wavefield propagator is described. The model
of an underwater acoustic waveguide considered in the paper is described in Section 3.
Procedure of waveguide scanning is demonstrated using numerical simulation in Section 4.
In the Discussions section, we discuss ways to further develop the proposed method. The
main results of the paper are summarized in the Conclusions section.

2. Wavefield Propagator

Hydroacoustic tomography of some localized medium inhomogeneity involves scan-
ning the ocean environment using a sequence of probe acoustic signals. Using a vertical
emitting array, one can control spatial configuration of a probe signal and find the optimal
probe signal for ensonification of the inhomogeneity. However, if inhomogeneity location
is not known apriori, number of probe signals needed could be excessively large. On the
other hand, it is necessary to take into account harmfulness of high-power low-frequency
sound for fish and marine mammals [16–19]. Therefore, it is reasonable to reduce number
of probe signals. To achieve such reduction, one can utilize a novel approach based on
direct measurement of the wavefield propagator. Propagator is an operator that governs
transformation of any wavepacket in course of propagation. Knowing the propagator
is equivalent to knowing the Green function of the corresponding waveguide segment.
Concept of the propagator was introduced to acoustics in [20,21]. A mathematically equiva-
lent approach was also used in [22]. Also one can mention studies of propagator properties
in a randomly inhomogeneous waveguide [23–26].

Definition of a wavefield propagator can be presented in the following way.
Let us consider a 2-D underwater acoustic waveguide, where the transversal coordinate z
is ocean depth, and the longitudinal coordinate r is range. Assumption of 2-D propagation
is valid if impact of horizontal refraction is negligible. However, it should be noted that
this assumption requires sufficiently flat bottom [27,28].

One-way sound propagation in a shallow sea can be fairly described by the wide-angle
parabolic equation

∂Ψ
∂r

= ik0
(
Q̂− 1

)
Ψ, (1)

where Ψ is a complex-valued acoustic field, r is the horizontal coordinate, k0 = 2π f /c0 is
the reference wavenumber, c0 is the reference value of sound speed c, and f is the signal
frequency. The operator Q̂ is given by the expression

Q̂ =

√
n2(r, z) +

1
k2

0
ρ(r, z)

∂

∂z

[
ρ

∂

∂z

]
, (2)
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where z is the vertical coordinate, n(r, z) = c0/c(r, z) is refractive index of sound waves,
and ρ(r, z) is density. The wavefield propagator is defined as the operator Ĝ that governs
transformation of an arbitrary acoustic wavefield Ψ(r, z) in course of propagation from
location r = r′ to location r = r′′,

Ψ(r′′, z) = Ĝ(r′′, r′)Ψ(r′, z). (3)

As long as propagator does not depend on wavefield Ψ(r, z), it has to involve almost
all information about acoustic properties of the medium.

A proper presentation of the propagator can be obtained using the basis of waveguide
normal modes. Normal modes are solutions of the Sturm–Liouville problem

k2
0Q̂2Ψm = k2

rmΨm, (4)

where krm is the eigenvalue corresponding to the mth mode Ψm(z), m = 1, 2, . . . , M, M is
number of modes belonging to discrete spectrum. Any wavefield in the waveguide can be
represented as an expansion over normal modes:

Ψ(r, z) = ∑
m

am(r)Ψm(z), (5)

where summation is carried over all modes belonging to the discrete spectrum.
Amplitude of the mth mode is determined as

am(r) =
h∫

z=0

Ψ∗m(z)Ψ(r, z)
ρ(z)

dz. (6)

Using some orthonormal basis the propagator can be represented as a matrix.
In particular, one can use the basis of waveguide normal modes. Then, the entries of
the propagator matrix are expressed as

Gmn(r′′, r′, f ) =
∫ Ψ∗m(z, f )Ĝ(r′′, r′, f )Ψn(z, f )

ρ(r, z)
dz, (7)

where Ĝ(r′′, r′, f )Ψn is solution of (1) at r = r′′ for initial condition Ψ(r = r′, z, f ) = Ψn(z, f ).
Modal amplitudes (6) can be combined into a vector

a(r) ≡ (a1(r), a2(r), a3(r), ..., aM(r))T , (8)

where the superscript T denotes transposition, and M is the number of modes taken into
account. Now, the propagator can be determined as a matrix G describing variations of a
in range,

a(r′′) = G(r′′, r′)a(r′). (9)

As it follows from (7), the propagator can be measured by means of sequential excita-
tion of individual modes. Selective excitation of individual modes can be realized using
the techniques described in [29]. Then, a wavefield created on the receiving array by each
individual mode can be expanded over modes, and coefficients of the expansion are matrix
elements of the propagator.

If a waveguide under consideration consists of two or more segments, then the result-
ing propagator can be represented as a matrix product of intermediate segment propagators

G(r′′, r′) =
J

∏
j=1

GJ−j+1(rJ−j+1, rJ−j)SJ−j+1, (10)
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where Gj is the propagator for jth segment, Sj is a matrix describing transformation of
modes between j− 1 and j segments. Entries of the latter matrix are given by formula

Sj,mn =

L∫
z=0

Ψ(j)∗
m Ψ(j−1)

m dz, (11)

where Ψ(j)
m (z) is the mth mode of the jth segment. The matrix S1 is a matrix describing

transformation from reference modes used for expansion of an initial wavepacket to modes
of the first segment. If these modes coincide, then S1 is the identity matrix.

Provided the wavefield propagator is known, we can easily compute a wavefield at
the receiver location for an arbitrary emitted wave beam. It allows us to avoid exsessive
emissions of probe signals and conduct virtual scanning of the waveguide by means of
numerical simulation. For example, we can consider directed Gaussian wave beams

Ψ(r = 0, z; p, z0) = Ψmax exp
[
− (z− z0)

2

4∆2
z

+ ik0 p(z− z0)

]
, (12)

where ∆z is depth width of the initial beam, z0 is its center depth, and the parameter p
determines launching angle φ in the vertical plane. In the small-angle approximation the
link between φ and p is given by formula

p = tan φ, (13)

where φ is positive downwards. Gaussian wave beams (12) are characterized by relatively
weak spatial divergence, and geometry of their propagation is close to a trajectory of a ray
emitted from the depth z = z0 with angle φ [30]. Therefore, they are good candidates for
acoustic sensing of some spatially localized inhomogeneities.

3. Model of a Waveguide

In the present paper, we consider a model of the shallow-water acoustic waveguide
consisting of two horizontal layers: the upper water layer and the sediment. The corre-
sponding boundary conditions are

Ψ(0) = 0,
dΨ
dz

∣∣∣∣
z=L

= 0, (14)

where L is the sediment-to-basement boundary. There are the continuity conditions at the
water-to-sediment interface:

Ψ|z=h−0 = Ψ|z=h+0,

1
ρwat

dΨ
dz

∣∣∣∣
z=h−0

=
1

ρsed

dΨ
dz

∣∣∣∣
z=h+0

,
(15)

where ρwat = 1 g/cm3 and ρsed are densities of water and sediment, respectively.
The model waveguide includes a pockmark segment with bottom anomalies associated

with high gas content. This segment is located between two background segments where
the bottom does not have such anomalies. For simplicity, the water part of the waveguide
is assumed to be range-independent. The sound-speed profile is described by formula

c(z) =

c0 −
∆c

2

[
1 + tanh

(
z− zc

lz

)]
, 0 ≤ z < h,

cb, h ≤ z ≤ L,
(16)

where c0 = 1500 m/s is sound speed at the ocean surface, ∆c = 25 m/s, zc = 50 m, lz = 10
m, L = 300 m. The bottom is assumed to be flat, h = const = 100 m. It particularly
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means that we neglect bottom deformation due to the pockmark, assuming them weak
compared to h. Indeed, small bottom distortions should be irrelevant for low-frequency
sound propagation. The upper part of the sound-speed profile is presented in Figure 1.

 0

 50

 100

 1480  1500

z
, 

m

c, m/s
Figure 1. Sound-speed profile in the water layer .

Refractive index n(z) is given by formula

n(z) =
c0

c(z)
+ 2iα( f )Θ(z− h), (17)

where Θ(z − h) is the Heaviside function, α = 0.42 × 10−6 f 2 dB/m. The imaginary
term describes sound attenuation in the sediment. The density profile is given by the
step function

ρ(z) =

{
ρwat, 0 ≤ z ≤ h,

ρsed, h ≤ z ≤ L.
(18)

In the background segments one has cb = 1600 m/s and ρsed = 1.6 g/cm3. It is
assumed that the presence of gas in the pockmark area reduces sediment sound speed to
1400 m/s and sediment density to 1.44 g/cm3.

For the model considered, the Formula (10) looks as

G(R, 0) = Gb(R, r2)STGp(r2, r1)SGb(r1, 0), (19)

where Gb and Gp are the propagator matrices for the background waveguide and the
pockmark segment, respectively, S is the matrix of the transformation from modes of
the background waveguide to modes of the pockmark segment. As long all waveguide
segments are assumed range-independent, individual segment propagators are described
by diagonal matrices with entries

[Gb]mn(r′′, r′) = δmneikrm(r′′−r′), [Gp]mn(r′′, r′) = δmneik̃rm(r′′−r′), (20)

where k̃rm are the eigenvalues of the Sturm–Liouville problem for the pockmark segment.
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4. Results

This section represents results of numerical simulation of the propagator measurement
and subsequent Gaussian scanning of the waveguide. As it was mentioned in Section 2,
the propagator can be measured by means of sequential excitation of waveguide modes.
However, it has to be taken into account that any modal transmission should be affected by
impact of ambient noise,

Ψ(R, z) = Ĝ(R, 0)Ψm(z) + η(R, z). (21)

The noise term η(R, z) can be evaluated in the spirit of the Kuperman–Ingenito
theory [31] as a surface generated stochastic wavefield,

η(z) = ∑
m

ηmΨm(z), (22)

where ηm are uncorrelated complex Gaussian variables being modal amplitudes of noise.
Their normalization is determined by the following equation

〈η∗mηn〉 = σ2 Awm

W
δmn, (23)

where δmn is the Kronecker symbol, parameter σ is the noise strength with respect to the
norm of the initial scanning beam A,

A = ∑
m
|am(r = 0)|2. (24)

The propagator measurement procedure implies the sequence of transmissions, when
only one mode is excited for each transmission. Assuming that all modes are excited with
the same power, A does not depend on m and can be written as

A = |am(r = 0)|2 = const. (25)

Quantities wm and W are expressed as

wm =
|Ψm(zs)|2

αmkm
, W = ∑

m
wm, (26)

where km = <krm, αm = =krm, krm is the mth eigenvalue of the Sturm–Liouville
problem (4) for the background waveguide, and zs = 0.1 m can be thought of as the
effective depth of noise sources. After sequential excitation of individual waveguide
modes, one obtains a realization of the measured propagator. In numerical simulation, the
result of a measurement in the modal representation can be expressed as

Gmeas(R, 0) = Gb(R, r2)STGp(r2, r1)SGb(r1, 0)I + Ω, (27)

where Ω is a random matrix whose columns are uncorrelated vectors of modal noise
contributions ηm and I is the identity matrix. Here, it is assumed that the time interval
between successive mode transmissions is longer than the coherence time of the surface
generated noise, implying statistical independence of transmissions.

After a realization of the propagator Gmeas(R, 0) is obtained, one can model propaga-
tion of the scanning Gaussian wavepackets (12),

ascan(r = R; tan φ, z0) = Gmeas(R, 0)ascan(r = 0; tan φ, z0), (28)
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where ascan(r = 0; tan φ, z0) is a vector composed of modal amplitudes

ascan
m (r = 0; tan φ, z0) = anorm

h∫
z=0

Ψ∗m(z)
ρ(z)

exp
[
− (z− z0)

2

4∆2
z

+ ik0(z− z0) tan φ

]
dz, (29)

and anorm is a properly chosen normalization constant. The parameter ∆z determines
intrinsic uncertainty of a wavepacket in the depth–angle space according to the wave
analogue of the Heisenberg relation [30,32,33],

∆z∆p =
1

2k0
(30)

Throughout this paper we set ∆z = 10 m. Let us define the transmission coefficient as

T(tan φ, z0) =
∑m |ascan

m (r = R; tan φ, z0)|2

∑m |ascan
m (r = 0; tan φ, z0)|2

. (31)

Here, it is reasonable to remind that we consider 2-D propagation, and the horizontal
sound divergence is not taken into account. In the case of the cylindrically expanding
wavepacket, we can link the 3-D and 2-D estimates via the approximate formula

a3D
m (R) ' 1√

k0R
am(R). (32)

Indeed, the cylindrical spreading should strongly affect values of the transmission
coefficient. However, it is reasonable to anticipate that the overall form of the dependence
on z0 and tan φ should be almost the same. On the other hand, in the 2-D geometry, loss of
the acoustic energy can be caused only by the bottom absorption.

In the present paper, we consider wavefields with frequencies from 100 to 300 Hz.
This frequency range corresponds to relatively weak bottom losses and therefore is more
suitable for remote sensing of gas-saturated areas. The propagation distance R is 10 km.
Figure 2 demonstrates the colour diagram of the transmission coefficient for the waveguide
without pockmarks for f = 100 Hz. In the absence of ambient noise, one can see the
symmetric pattern that is typical for range-independent waveguides, as it is shown in
the panel (a). Noise destroys the symmetry, with marked prevalence of the downgoing
(tan φ > 0) component of the acoustic energy flux.

The presence of a large pockmark leads to cardinal changes in the diagram pattern.
Figure 3 illustrates data for the pockmark occupying the waveguide segment between
r1 = 2000 m and r2 = 2300 m. As it was mentioned in the Introduction, pockmarks
with such sizes can be referred to as giant pockmarks. As it follows from Figure 3a, only
beams with initial conditions near z0 = 55 m and tan φ = 0.08 are weakly affected by the
pockmark. Apparently trajectories of these beams “jump over” the pockmark. Other beams
are strongly attenuated as compared to the data without the pockmark. To highlight the
changes, we also plot the difference

δT(tan φ, z0) = Tref(tan φ, z0)− Tpockmark(tan φ, z0), (33)

where Tref corresponds to the reference waveguide without the pockmark, and Tpockmark
is calculated with the pockmark. Peaks of this function allows one to pick out the most
attenuated wave beams. The difference δT(tan φ, z0) is demonstrated in Figure 3b,c.



J. Mar. Sci. Eng. 2023, 11, 211 8 of 16

0
.2

0
.2

0
.3

0
.3

0
.4

0.4

0
.5

0
.6

0
.7

0
.8

0
.9

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

tan

0

20

40

60

80

100

z
0
, 

m

(a)

0
.3

0
.3

0
.3

0
.4

0
.4

0
.4

0
.5

0
.5

0
.6

0
.7

0
.8

0
.9

1

1.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

tan

0

20

40

60

80

100

z
0
, 

m

(b)

Figure 2. Color diagram depicting dependence of the transmission coefficient on tangent of the
launching angle and the initial depth z0 of a directed Gaussian wave beam. Data are obtained by
means of the numerical waveguide scanning relied on the propagator data, the case of the waveguide
without pockmarks. The panel (a) corresponds to the noiseless propagator data, the panel (b) shows
data averaged over 100 realizations of noise with the amplitude σ =

√
0.05.

In the absence of noise (see Figure 3b) one can see two well resolved peaks: one near
z = 20 m, and another one near z = 80 m. Noise with σ =

√
0.05 doesn’t blur these

peaks (see Figure 3c). Influence of the pockmark on the beam emitted with z0 = 80 m and
tan φ = −0.1 is illustrated in Figure 4: the pockmark opens the channel for acoustic energy
flux into the bottom and thereby strongly reduces intensity as compared to the case without
the pockmark. Nevertheless, one can see that the beam is not absorbed by the pockmark
completely, and the remaining part has the form of the aforementioned “jump-over” mode.
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Figure 3. Scanning of the waveguide crossing the pockmark between r1 = 2000 m and r2 = 2300 m.
Panel (a) shows dependence of the transmission coefficient on tangent of the launching angle and
the initial depth z0 of a directed Gaussian wave beam, the noise amplitude σ =

√
0.05. Panels (b,c)

illustrate the difference δT in the same coordinates as in the panel (a). The panel (b) corresponds to
data obtained with the propagator without impact of noise, and the panel (c) shows data averaged
over 100 realizations of ambient noise with the amplitude σ =

√
0.05.
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Figure 4. Color plot of the transmission loss (horizontal cylindrical spreading is not taken into
account) for the beam emitted with z0 = 80 m and tan φ = −0.1. The panel (a) corresponds to
the waveguide without pockmarks; the panel (b) depicts data for the waveguide with pockmark
intersecting the waveguide between r1 = 2000 m and r2 = 2300 m.

Provided the background hydrology and bathymetry are known, the presence of
separate peaks of the function δT(tan φ, z0) gives an opportunity to estimate probable
location of the pockmark relying upon the data of scanning. It is reasonable to assume
that simultaneous attenuation of these beams implies their contact with the pockmark
at nearly the same regions. It anticipates that their intersections in the close vicinity
of the bottom could be considered as possible locations of the pockmark.
Unfortunately, ray tracing cannot give accurate estimates for such low signal frequen-
cies. Therefore, one needs full-wave analysis for finding beam intersections. Basically,
peaks of the function δT(tan φ, z0) depend on frequency; therefore, one can trace out simul-
taneous near-bottom intersections of large number of absorbed beams corresponding to
various frequencies: they all should intersect in the vicinity of the pockmark. Then, the
most probable locations of the pockmark can be found as peaks of the following overlap
function:

Υ(r) =
h∫

h−δh

N

∏
n=1
|Ψ(n)(z, r, fn)|2 dz, (34)

where N is the number of absorbed beams taken into account, Ψ(n)(r, z, fn) the nth absorbed
beam, δh = 15 m. Now, let us simulate an experiment and assume that background
characteristics (sound speed and salinity fields, background sediment density etc.) of the
waveguide are known, but apriori information about location of the pockmark is lacking.
Then, one can compute the beam wavefields for the background waveguide, i.e., without
the pockmark, and find the peaks of the overlap function (34). It was found that number
of candidate peaks is reduced with increasing of N. According to Figure 5, there is one
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dominant peak for N = 14, and its location coincides with the actual location of the
pockmark. Fourteen beams used for this calculation correspond to different absorption
spots obtained via the scanning of the transmission coefficient T for frequencies 100, 150,
200, 250, and 300 Hz.

 0

 5x10
-5

 0.0001

 0.00015

 0.0002

 0.00025

 0  2  4  6  8  10

Υ
, 

a
.u

.

r, km

Figure 5. Solid line: overlap function Υ(r) for 14 beams corresponding to absorption spots for
frequencies 100, 150, 200, 250, and 300 Hz. Vertical dot-dashed lines limit the pockmark zone.

Form and position of absorption peaks in the diagrams like those are depicted in
Figure 3 depend on the distance from the pockmark to the arrays. Figure 6 illustrates
results of scanning for the pockmark crossing the waveguide between r1 = 8000 m and
r2 = 8300 m, i.e., placed not far from the receiving array. As it is shown in Figure 6a,
the “jump-over” mode corresponds to the family of beams emitted with small upward
inclination from the depth interval near z = 30 m. In the absence of noise, one can see one
broad absorption peak presented in Figure 6b. This absorption peak splits into a pair as
noise is added (see Figure 6c).

As in the preceding case, one can try to find the pockmark location by calculating the
overlap function for absorbed beams. According to Figure 7, overlap of 16 absorbed beams
allows one to unambiguously determine the pockmark location: we have the dominant
peak of Υ at the pockmark. This gives hope for the successful determination of the position
of the pockmark based on the results of acoustic scanning
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Figure 6. Scanning of the waveguide crossing the pockmark between r1 = 8000 m and r2 = 8300 m.
Panel (a) shows dependence of the transmission coefficient on tangent of the launching angle and
the initial depth z0 of a directed Gaussian wave beam, the noise amplitude σ =

√
0.05. Panels (b,c)

illustrate the difference δT in the same coordinates as in the panel (a). The panel (b) corresponds to
data obtained with the propagator without impact of noise, and the panel (c) shows data averaged
over 100 realizations of ambient noise with the amplitude σ =

√
0.05.
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Figure 7. Solid line: overlap function Υ(r) for 16 beams corresponding to absorption spots for
frequencies 100, 150, 200, 250, and 300 Hz. Vertical dot-dashed lines limit the pockmark zone.

5. Discussion

The subject of the present work is remote identification of gas-saturated sediments by
means of low-frequency acoustic scanning. We develop a new method that can be used in
marine expeditions for studying gassy sediment areas, which are permeable for upward
gas migration through the lythosphere.

Particularly, we consider the case of gassy sediments corresponding to active pock-
marks. It is shown that measurement of the wavefield propagator allows us to identify the
presence of such sediments by means of proper processing of measured data. In fact, we
utilize a kind of wave shouting and identify the most sensitive (i.e., significantly absorbed)
and the most insensitive (the “jump-over” mode) wavepackets. If one has enough infor-
mation about environment and can model the geometry of wavepacket propagation, then
it is possible to find the most probable locations of the pockmark. Of course, the location
results are very sensitive to the accuracy of the information about the background medium.
If such information is lacking, our method can be considered only as an auxiliary tool to
facilitate pockmark location by means of traditional techniques based on direct bottom
ensonification from a vessel, like the continuous seismic profiling. Once the pockmark
presence in a particular direction is established, the vessel can explore the corresponding
propagation path with the continuous seismic profiling and find the pockmark.

The procedure of the propagator measurement by means of two vertical arrays, one
transmitting and another one receiving, is relatively complicated. Therefore, it is reasonable
to develop a simpler method. For example, we can try to use the basis of the so-called
discrete variable representation (DVR) functions, using the ideas formulated in [29,34].
These functions form the orthonormal basis and also can be used for measurement of the
propagator. Each DVR function can be excited by only one monopole, i.e., a single point
source can be enough for measurement.

We consider the case of a giant pockmark spanning over 300-m long segment of a
waveguide. However, the approach presented can be also implemented to smaller zones
of gas emission. In that case, signals with higher frequencies might be better option. It
is worth reminding that the model of a waveguide considered in this paper is idealistic.
First, we do not consider horizontal refraction that could impede robust measurement of
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the propagator. Second, we neglect spatial inhomogeneities in the bottom relief, sound
speed field, and medium density. The acoustical model of a pockmark should be more
complicated. So, it is important to examine the approach presented in this paper with a
realistic model of environment. On the other hand, it is reasonable to expect that usage of
broadband pulses instead of tonal signals should increase amount of information obtained
by means of the acoustic scanning. In this case, dispersive properties of the sediment
could be important. We hope to address these issues in the forthcoming work. Further
development of this approach can lead to a new powerful method for remote mapping of
hydrocarbon provinces.

6. Conclusions

The main result is a novel approach for acoustic remote sensing for bottom anomalies
associated with extensive gas emission. The case of an anomaly caused by a giant pockmark
is taken as an example. The approach is based on measurement of acoustic propagator.
Complementing this measurement with numerical simulation involving virtual acoustic
scanning, one can analyze differences in beam loss and thus estimate the possible location
of the pockmark. Numerical simulation presented in this paper involves scanning of
the waveguide with Gaussian beams, with subsequent analysis of their attenuation. It is
shown that the approach can work fairly in the presence of moderate noise. Usage of such
approach can significantly facilitate search of emission zones.
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