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Abstract: The Makassar Strait (MS) is characterized by water mass from the Pacific Ocean and is one 

of the ITF (Indonesia Throughflow) branches. It carries warm water masses from the Pacific Ocean 

to the Indian Ocean. This research aims to analyze the relationship between CPUE of Eastern Little 

Tuna (Euthynnus affinis) and oceanographic variables, likewise predict the fishing area using the 

Generalized Additive Model (GAM). The research method used is spatial and temporal analysis. 

The data was used from 2015 to 2020. The data processed were sea surface temperature, chlorophyll-

a, salinity, currents, sea level as predictor variables, and Eastern Little Tuna production as a re-

sponse. Eastern Little Tuna catch data were normalized into Catch per Unit Effort, while the ocean-

ographic data were extracted using ArcGIS. Based on the results of the GAM model, it was found 

that the model with five variables is the most suitable predictive model, with 16.4% CDE. Salinity is 

the most influential parameter on the catch of Eastern Little Tuna with a significance value of <2.00 

x 10-16 ***. The optimum value for SST is 30–31 °C, chlorophyll-a is 1–2 mg/m3, salinity is 29–30 ppt, 

current velocity is 0.3–0.5 m/s and sea level is between 0.6–0.7 m. Based on the GAM prediction 

results, a high CPUE value will be obtained in the southwest monsoon (March to May). Fishing 

activity carried out in the best season will implement the adoption of harvest control measures. 

Keywords: catch per unit effort; optimum value; predictors; response; significance value 

 

1. Introduction 

Indonesia has Fisheries Management Area (FMA) that is intended for controlling the 

fisheries management activities [1], which include supporting fish resource management 

policies [2]. The Makassar Strait (MS) is part of FMA 713, contributing to Indonesia’s sec-

ond-largest fish production [3]. The Indonesian Statistical Data Agency stated that in 2019, 

558,000 tons of fisheries production were obtained from FMA-RI 713. 

The MS is connected to the Pacific Ocean (PO) in the north, the Java Sea, and the 

Flores Sea in the south [4]. MS is also known as one of the branches of ocean thermohaline 

circulation, which carries warm water masses from the PO to the Indian Ocean (IO). These 

conditions make the water mass stratification in MS identifiable [5]. Warm water masses 

from the PO to the IO will affect the temperature in the MS [6]. The productivity of the 

MS waters occurs throughout the year, both in the west and east monsoonal seasons [7]. 

The MS has the potential for fish resources, especially groups of pelagic fish [8,9]. 
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One of the major commodities in the MS waters is Eastern Little Tuna, which has 

become the main export commodity [3]. The Indonesian statistical data agency reported 

that for the 2020 period, this category produced around 91,405,337 kg. Based on data from 

the Directorate General of Capture Fisheries (DGCF), Eastern Little Tuna (Euthynnus af-

finis) is included in the Fishery Management Plan (RPP). However, the status of the utili-

zation level of Eastern Little Tuna in FMA 713 for 2020 is unknown (Ministry of Maritime 

Affairs and Fisheries of the Republic of Indonesia, 2020). To regulate the number of 

catches per monsoon, it is necessary to optimize catches based on temporal and spatial 

data.  

The mapping of the Eastern Little Tuna fishing area was carried out using General-

ized Additive Model (GAM). The GAM was used to determine the most suitable Eastern 

Little Tuna habitat by selecting the best predictor variables. It consists of a collection of 

non-parametric and semi-parametric regression techniques to explore the relationship be-

tween response variables and predictors [10]. Several parameters affect fish distribution, 

including sea surface temperature and chlorophyll-a [11], salinity [12], and ocean currents 

[13]. Studies using GAM have been carried out on various migratory species distribution 

and catch prediction, such as Eastern Little Tuna in west Java, where it was found that 

chlorophyll-a was the most influential parameter on CPUE [14], albacore tuna [15], catfish 

and squid [10], yellowfin tuna [16,17]. Syamsuddin et al. (2013) used GAM to determine 

the effect of El Nino-Southern Oscillation events on catches of Bigeye Tuna [18]. Swathi et 

al. (2019) used GAM to assess fish abundance spatial occupancy in the northeast Bay of 

Bengal [19]. 

In principle, the estimation of fishing grounds is to look for the relationship between 

oceanographic parameters and schools of fish. The predictor approach is used to deter-

mine the relationship between fish resources and environmental factors that are not linear 

[20]. This study aims to analyze the relationship between the CPUE of Eastern Little Tuna 

(Euthynnus affinis) and oceanographic variables to develop preferences for Eastern Little 

Tuna habitat models using the GAM. The purpose of this study was to analyze the rela-

tionship between oceanographic parameters and the catches of the Eastern Little Tuna in 

the Makassar Strait. This study also aims to predict the CPUE of Eastern Little Tuna based 

on its habitat through the statistical approach Generalized Additive Model (GAM) in the 

Makassar Strait. 

2. Materials and Methods 

2.1. Study Area 

The study area was located in the MS area with coordinates 1 N-5 S and 115–121 E. 

The area was selected based on oceanographic dynamics and the potential of the Makassar 

Strait in capturing fisheries based on Fisheries Management Area (FMA) 713 as shown in 

Figure 1. 



J. Mar. Sci. Eng. 2023, 11, 165 3 of 21 
 

 

 

Figure 1. A Map showing the study area in the Makassar Strait. MS is flanked by Borneo Island in 

the west and Sulawesi on the east side (gray colors). 

In the 0˚ latitude area including the MS, several parameters such as monsoon, sea-

level differences, and local wind affect its water characteristics [21]. The MS, as the main 

entrance of ITF, has a depth of around 1500 m that separates Borneo and Sulawesi [22]. 

The Makassar Strait is one of the most important and unique waters in Indonesia. The 

waters’ condition is influenced by both Kalimantan Island in the west and Sulawesi Island 

in the east. The MS is also known as one of the branches of the ITF that carries warm water 

masses from the Pacific Ocean to the Indian Ocean. It makes the character of the MS water 

very complex. Makassar Strait has a strong ocean current velocity with a dominant direc-

tion towards the south. The sea surface temperature of the northern part of the MS is 

warmer than the southern part and the sea level due to the confluence of two water masses 

[3]. 

2.2. Data 

The data processing has a time span of 6 years, from 2015–2020. The data used are 

monthly spatial data. According to the study area, the Oceanographic data were cropped 

and processed using spatial software (Table 1). 

Table 1. Summary of specification of oceanographic parameter data and Eastern Little Tuna. 

No. Parameter Sensor Unit 
Resolution 

Sources 
Temporal Spatial 

1. 
Sea Surface Tem-

perature 
AquaMODIS °C Monthly 4 km × 4 km 

https://oceancolor.gsfc.nasa.gov 

(access on 8 August 2022) 

2. Chlorophyll-a AquaMODIS mg/m3 Monthly 4 km × 4 km https://oceancolor.gsfc.nasa.gov 
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(access on 8 August 2022) 

3. 
Sea Surface Salin-

ity 
SMAP ppt Monthly 40 km 

https://marinecopernicus.eu 

(access on 8 August 2022) 

4. 
Current 

Velocity 
CMES m/s Monthly 8 km 

https://marinecopernicus.eu 

(access on 8 August 2022) 

5. 
Sea Surface 

Height 
CMES cm Monthly 8 km 

https://marinecopernicus.eu 

(access on 8 August 2022) 

Fishery Data 

No. Parameter Fishing Gear Gross Toned (GT) Sources 

1. 
Eastern Little 

Tuna 

Purse Seine 

Gill Net 
6–99 

- 

Ministry of Marine Affairs and Fisheries, Marine 

and Fisheries Department of West Sulawesi 

Image data from the Marine Copernicus website were downloaded after adjusting 

the coordinates. Meanwhile, image data from Ocean Color were downloaded directly. For 

the analysis, all the oceanographic data were composed into monthly data and resampled 

into 9 km spatial resolution. The image dataset was then cropped depending on the study 

area using ArcGIS. A cropping image dataset is a technique used to determine exactly 

which part of the image contains the object area to be processed [23]. 

2.2.1. Oceanographic Parameter Data Processing 

The method used in this research is the remote sensing approach. The processed 

oceanographic parameter image data starts from January 1, 2015, to December 31, 2020. 

The data are processed temporally and spatially. Then spatial data processing is carried 

out by visualizing the data and functioning to extract oceanographic parameter values, 

which will then be processed by R language to develop GAM models used to predict fish-

ing areas. 

2.2.2. Eastern Little Tuna Data Processing 

Catch data are expressed in CPUE (catch per unit effort). CPUE is a method to find 

out the ups and downs of fishery production, which are averaged annually and deter-

mined by the amount of spatial production. The calculation of CPUE using the equation: 

CPUEi =  
Catchi�

Effort�
 

where: 

CPUEi = catch per fishing effort (kg/trip) 

Catchi = catch in year t (kg) 

Efforti = fishing effort in year t (trip) 

Before calculating the CPUE, standardization of fishing gear is first carried out if 

more than one type of fishing gear is used. The Eastern Little Tuna (Euthynnus affinis) 

resources in the Makassar Strait are caught using gill nets and purse seines (PS = 1. GN = 

0.63). The standardization of fishing gear is performed by calculating the average CPUE 

per fishing gear and the FPI (fishing power index) value. 

FPI =  
CPUE�

CPUE�
 

where: 

FPI = Catching effort factor on the type of fishing gear 

CPUEi = Catch per annual fishing effort of other fishing gear (kg/trip) 
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CPUEs = Catch per annual effort of standard gear (kg/trip) 

These CPUE data are used to determine the yield of fishery production from water 

and develop a statistical approach to GAM using R software, which is then used to predict 

fishing areas. 

2.2.3. Fishing Prediction Area Processing 

GAM was made from the mgcv package using R software, with catch data as the 

response variable and SST, chlorophyll-a, salinity, current velocity, and SSHA as predictor 

variables. The equation used is: 

�(��) = � + �1(�1�) + �2(�2�) + �3(�3�)+. . . ��(���) 

where: 

g = link function 

i = response variable 

b = constant model 

xn = developed parameter 

sn = spline function smooth factor 

Model selection was based on significance of model term, reduction in Akaike’s In-

formation Criterion (AIC), and increase in Cumulative Deviance Explain (CDE). The def-

inition of AIC is a measure of goodness-of-fit as well as penalty on the number of model 

parameters. AIC can be calculated for each possible combination of explanatory variables, 

and the model with the lowest AIC is selected as the most optimal model [24]. The Cumu-

lative Deviance Explained percentage measured how well the models fit the data [25]. 

A histogram represents the frequencies of values of variables bucketed into ranges. 

Each bar in histogram represents the height of the number of values present in that range. 

A histogram is made to determine the optimal parameter values in the tuna fishing area 

by looking at the relationship between the highest CPUE value and the range of oceano-

graphic parameter values. They may be executed in an R session with the command: 

hist(formula, xlab = , ylab = , main = , col = ) 

where: 

formula = a formula refers to the oceanographic parameters 

xlab = a character label for the x-axis 

ylab = a character label for the y-axis 

col = a string that indicates the color for the bars on the histogram 

The function “predict.gam()” will add predicted values to the existing dataset. The 

command for predict function is: 

predict. gam�object, NewData, type = ‘response’� 

where: 

object = a fitted ‘gam’ object as produced by ‘gam()’ 

NewData = a data frame containing the values of the model covariates at which predic-

tions are required 

type ‘response’ = to return predicted values on the same scale of the response you need to 

set 

3. Results and Discussion 

3.1. Sea Surface Temperature Variability 

The seasonal pattern of the average sea surface temperature is shown in Figure 2. 

During 2015–2020, the average sea surface temperature ranges from 29–31 °C. The average 

value of the highest sea surface temperature occurs in April, with a temperature of 30.88 
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°C. Meanwhile, the lowest average sea surface temperature occurred in August, with a 

temperature of 29.13 °C. 

 

Figure 2. The Spatial Distribution Map of Average Sea Surface Temperature 2015–2020 in the Ma-

kassar Strait. 

During the northeast monsoon period, the distribution of sea surface temperature in 

the MS waters was high. It increased again specifically in April, especially in the western 

part of the MS. The temperature distribution ranged from 31–32 °C, with the highest peak 

in April. From June until September, the sea surface temperature decreases, and there is a 

difference between the northern and southern parts of the MS. The north part of the MS 

has a higher temperature than the south part. Then, in October, the distribution of sea 

surface temperatures increased again until December. The highest average sea surface 

temperature distribution occurs in April, while August has the lowest sea surface temper-

ature distribution. The weakening of the seasonal wind speed in April makes solar radia-

tion more effective, causing high sea surface temperatures in that month [26]. 

As a poikilometric biota, sea surface temperature can influence the geographic range 

of the Eastern Little Tuna involving related behavioral mechanisms, such as feeding ac-

tivity [15]. Eastern Little Tuna prefer to live in warmer water, specifically 29–30 °C. 
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3.2. Chlorophyll-a Concentration Variability 

The seasonal pattern of the average chlorophyll-a is shown in Figure 3. During 2015–

2020, the average chlorophyll-a ranges from 0–3 mg/m3. The average value of the highest 

chlorophyll-a occurred in January at 0.65 mg/m3, and the lowest average chlorophyll-a oc-

curred in October with a concentration of 0.44 mg/m3. 

 

Figure 3. The Spatial Distribution Map of Average Chlorophyll-a 2015–2020 in the Makassar Strait. 

The distribution of chlorophyll-a moves to the eastern part of the MS in the southeast 

monsoon with lower concentrations. Then, at the end of the northeast monsoon, the chlo-

rophyll-a concentration again decreased with more even distribution throughout the wa-

ters. This means that this period has the lowest chlorophyll-a concentration. Meanwhile, 

the distribution of the highest concentration of chlorophyll-a occurred in December. Chlo-

rophyll-a, which tends to increase from March to June, is caused by high rainfall, esti-

mated to bring many nutrients from the mainland or the surrounding islands [27,28]. 

Chlorophyll-a concentration is an indicator of the biological productivity of water, 

and chlorophyll-a represents phytoplankton biomass [29]. The distribution state of chlo-

rophyll-a concentration may be correlated with Eastern Little Tuna production; in other 

words, it can represent the productivity level of the coverage area. However, the number 
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of fish in the water is not directly affected by the concentration of chlorophyll-a. The con-

centration of chlorophyll-a takes time before it is first consumed by herbivorous organ-

isms such as zooplankton and then becomes a consumer for the producers of the trophic 

level above it [30]. 

3.3. Sea Surface Salinity Variability 

The seasonal pattern of the average salinity is shown in Figure 4. The average value 

of the highest salinity occurred in September with 33.64 ppt, and the lowest average oc-

curred in March with a concentration of 32.28 ppt. 

 

Figure 4. The Spatial Distribution Map of Average Salinity 2015–2020 in the Makassar Strait. 

Based on the spatial distribution map of the average salinity in (Figure 4) in general, 

the salinity value in the MS waters in 2015–2020 has a pattern based on seasons. In the 

middle of the northeast monsoon in December, the average salinity value is high. Then 

from January until the beginning of the southwest monsoon (May), the average salinity 

value has lower value in the southern part than in the northern part of the MS. When the 

water mass with high salinity enters from the north of the MS, it prevents the lower-salin-

ity water mass from the Java Sea from reaching the eastern part of the MS [31]. 
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The wind carries low salinity surface waters of the Java Sea in southern Makassar 

Strait, creating a pressure gradient to the north in the surface layer of the strait. This 

“freshwater plug” inhibits the warm surface waters of the Pacific Ocean from flowing 

southward into the Indian Ocean, leading to a colder surface of the Indian Ocean [32]. In 

fish, salinity acts as a gas-liquid exchange system within the fish, affecting its metabolic 

system [33], and influencing migration patterns through which to find suitable salinity 

[34]. 

3.4. Ocean Current Direction and Velocity Variability 

During 2015–2020, the average current velocity ranges from 0–1 m/s. The seasonal 

pattern of the average current direction and velocity is shown in Figure 5. 

 

Figure 5. The Spatial Distribution Map of Average Current Direction and Velocity 2015–2020 in the 

Makassar Strait. 

During the southwest monsoon, the average current velocity tended to be higher, 

with a range of 0.14–0.18 m/s. This value then decreased from December until February 

with a range of 0.12–0.17 m/s. Then, from June to August, the average current velocity 

increased at 0.14–0.18 m/s. At the beginning of the northeast monsoon (October to 
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December), the average value of the current velocity was at 0.13–0.16 m/s, which is a de-

crease compared to the previous season. 

Based on the map of the spatial distribution of the current direction and speed, the 

current velocity has the same pattern throughout the year. Ocean currents with a stronger 

velocity are from the northern part of the MS, originating from the Pacific Ocean. The 

pattern of current velocity formed is marked with a dark blue color, representing the MS 

as one of the ITF branches. Ocean currents drive the distribution of nutrients and chloro-

phyll-a in response to water mass movements [35]. As a result, the presence of fish, in-

cluding Eastern Little Tuna (Euthynnus affinis) is affected by the current direction. 

3.5. Sea Surface Height Variability 

During 2015–2020, the average SSH ranges from 0.4–0.6 m. The seasonal pattern of 

the average SSH is shown in Figure 6. The average value of the highest SSH occurred in 

January at 0.68 m, and the lowest average occurred in August at 0.52 m. 

 

Figure 6. The Spatial Distribution Map of Average Sea Surface Height 2015–2020 in the Makassar 

Strait. 

In January, the red gradient means the sea level anomaly is at a high number of 0.7 

m. From February until May, the sea level anomaly decreased. The sea level anomaly is 
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low in the east monsoon, with differences in sea level in the north and south of the MS. 

The same thing happened until the middle of transitional season II. Then, the sea level 

anomaly increased in November with an average distribution of 0.56 m. The sea level 

anomaly increased again in December, with a figure of 0.64 m. The difference in sea level 

in the waters of the MS is caused by the difference in pressure between the two water 

masses originating from the Pacific Ocean and the Indian Ocean. The difference in sea 

level is at its maximum point during the east monsoon period until the beginning of the 

transition season (May to September) when the southeast monsoon occurs [36]. 

 

Figure 7. Little tuna (Euthynnus affinis) monthly CPUE chart in 2020. Error bars indicate standard 

deviation. 

In general, the highest CPUE value occurred from March until May as shown in Fig-

ure 7. Meanwhile, the southwest monsoon was the seasonal period with the lowest CPUE 

value. The highest CPUE value was obtained in the end of the northeast monsoon, with 

an average CPUE value of 11.9–67.4 kg/trip. The lowest CPUE value was obtained at the 

southwest monsoon, with numbers ranging from 2.6–10.5 kg/trip. The relation between 

the catch CPUE of Eastern Little Tuna and oceanographic parameters is shown in Figure 

8. 
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Figure 8. Histogram showing the frequency of CPUE and oceanographic parameters. Here, the fish 

catch in kg/trip, SST in °C, Chl-a in mg/m3, SSS in ppt, Current velocity in m/s, and SSH in m. 

The relationship between the CPUE value of Eastern Little Tuna (Euthynnus affinis) 

and oceanographic parameters during 2015–2020 is presented in the form of a histogram 

(Figure 8). The histogram was formed to determine the optimal oceanographic parameter 

values in the Eastern Little Tuna fishing area by looking at the relationship between each 

parameter’s highest CPUE value and the range of values. The highest CPUE value was 

obtained at sea surface temperature values of 30–30.5 °C with an accumulated CPUE value 

of 120 kg/trip. The highest CPUE accumulation value of 250 kg/trip was obtained at the 

chlorophyll-a concentration value of 0.1–0.5 mg/m3. The highest CPUE accumulation 

value of 120 kg/trip was obtained at a salinity value of 34–34.5 ppt. The highest CPUE 

value was obtained at the current speed of 0.05–0.1 m/s. Then, the highest CPUE value 

was obtained at sea level at 0.6–0.65 m. 
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The relationship between the catch of Eastern Little Tuna (Euthynnus affinis) and 

oceanographic parameters can be determined using the Generalized Additive Model 

(GAM) statistical modeling analysis. The GAM model is formed with one response varia-

ble followed by a combination of two, three, to five predictor variables. The response var-

iable used is the CPUE value of Eastern Little Tuna (Euthynnus affinis), while the explana-

tory variables used include sea surface temperature, chlorophyll-a, salinity, sea level, and 

current speed. Of the five variables, 26 prediction models were formed as shown in Table 

2. Of all the models developed, the model with the highest potential was determined by 

looking at the results of Akaike’s Information Criterion (AIC) [37] and Cumulative Devi-

ance Explained (CDE). The model with the lowest AIC value and the highest CDE has the 

highest level of accuracy in explaining the response variable [24]. 

Table 2. GAM-derived Deviances and AIC Values. 

Models Variables p-Value AIC CDE (%) 

Sal Salinity  <2.00 × 10-16 *** 4652.5 14.6 

SSH SSH 0.00351 ** 4706.9 3.52 

Arus Current 0.0482 * 4652.5 3.29 

Chl Chl 0.00659 ** 4709.4 2.64 

SST SST 0.00181 ** 4711.07 1.82 

SST +  Sal 
SST 

Salinity 

0.4 

<2.00 × 10-16 *** 
4653.31 16.2 

Chl + Sal 
Chl 

Salinity 

0.721 

<2.00 × 10-16 *** 
4654.17 14.7 

SSH + Sal 
SSH 

Salinity 

0.575 

<2.00 × 10-16 *** 
4654.21 14.6 

Arus + Sal 
Current 

Salinity 

0.686 

<2.00 × 10-16 *** 
4654.39 14.6 

SSH + Arus 
SSH 

Current 

0.0202 * 

0.2082 
4706.13 5.78 

Chl + Arus 
Chl 

Current 

0.00431 ** 

0.0498 * 
4704.3 5.64 

Chl + SST 
Chl 

SST 

0.049 * 

0.215 
4708.14 4.58 

SST + Arus 
SST 

Current 

0.00152 ** 

0.0637 * 
4706.64 4.53 

SST + SSH 
SST 

SSH 

0.2219 

0.0974 * 
4707.4 3.76 

SST +  SSH + Sal 

SST 

SSH 

Salinity 

0.423 

0.711 

<2.00 × 10-16 *** 

4655.14 16.2 

Chl + SST + Sal 

Chl 

SST 

Salinity 

0.828 

0.409 

<2.00 × 10-16 *** 

4655.21 16.2 

SSH + Arus + Sal 

SSH 

Current 

Salinity 

0.577 

0.689 

<2.00 × 10-16 *** 

4656.07 14.7 

Chl + SST + Arus 

Chl 

SST 

Current 

0.0515 * 

0.1637 

0.0555 * 

4703.4 7.31 
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SST + SSH + Arus 

SST 

SSH 

Current 

0.416 

0.284 

0.174 

4707.29 6.39 

SST + CHL + Arus 
+Sal 

SST 

SSH 

Current 

Salinity 

0.347 

0.717 

0.384 

<2.00 × 10-16 *** 

4659 16.3 

SST + SSH + Arus 
+Sal 

SST 

SSH 

Current 

Salinity 

0.372 

0.837 

0.445 

<2.00 × 10-16 *** 

4656.58 16.3 

Chl + SST + SSH 
+Sal 

Chl 

SST 

SSH 

Salinity 

0.821 

0.429 

0.707 

<2.00 × 10-16 *** 

4657.04 16.2 

Chl + SSH + Arus 
+Sal 

Chl 

SST 

SSH 

Salinity 

0.673 

0.583 

0.609 

<2.00 × 10-16 *** 

4657.6 14.8 

Chl + SST +  
SST + Arus 

Chl 

SST 

SSH 

Current 

0.102 

0.457 

0.575 

0.104 

4704.5 7.74 

CHL + SST + CHL 
+Arus + Sal 

CHL 

SST 

SSH 

Current 

Salinity 

0.374 

0.719 

0.839 

0.417 

<2.00 × 10-16 *** 

4658.36 16.4 

The model with a combination of five parameters (chlorophyll-a, sea surface temper-

ature, salinity, sea level, and currents) has the smallest AIC value with the largest CDE. 

This shows that the model is a model with the highest potential to determine fish catches. 

The CDE value obtained from this model is 16.4%. The parameter that positively affects 

the catch of Eastern Little Tuna based on the GAM model form is salinity. This can be seen 

from the significance value <2.00 x 10-16. The salinity significance value obtained is close 

to zero. Meanwhile, the sea level parameter is the parameter with the lowest potential for 

the catch. The significance value obtained by sea level is 0.839. 

A significant relationship between salinity parameters and catch results occurs be-

cause it follows the statement of Potier, 1998 in Amri (2017) that changes strongly influ-

ence the presence of pelagic fish in the spatial distribution of salinity [38]. This is also 

supported by Gunarso’s (1985) statement, which states that tuna is very sensitive to 

changes in salinity. Salinity is an oceanographic parameter that plays a direct role in fish 

movement [39]. 

Salinity greatly affects the process of osmoregulation of marine life, especially fish. 

Eastern Little Tuna (Euthynus affinis) tend to prefer waters with salinity that is more com-

patible with their body’s osmotic pressure. Changes in salinity will stimulate fish to mi-

grate to areas where salinity matches the osmotic pressure of the body [40]. 

The chlorophyll-a parameter became the following parameter that had a significant 

relationship with the catch with a significance value of 0.374. Abundant concentration in 

water causes an increase in plankton productivity, and then fish productivity will be in-

fluenced by the formed food chain [41]. The low significance value occurs because chlo-

rophyll-a takes time or time lag for large fish species. 
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Compared with previous research in different areas [14], the study found that of the 

three parameters used (SST, Chl-a, and SSHA) chlorophyll-a was the parameter that most 

influenced the production of Eastern Little Tuna in West Java waters. The Eastern Little 

Tuna catch peaks during the transition season from southeast to northwest monsoon and 

decreases during southeast monsoon. The GAM results confirmed that chlorophyll-a ap-

peared to be one of the major factors explaining variability in the study area. 

Furthermore, the smoothing curve is the result of the smoothing curve function when 

forming the GAM model as shown in Figure 9. This function aims to model the relation-

ship between the response variable and the predictor or explanatory variables. 

 

Figure 9. GAM-derived effect of the five oceanographic variables on CPUE, from the model 

constructed with: (a) SST, (b) Chlorophyll-a, (c) Current Velocity, (d) SSH, and (e) Salinity. The grey-

shaded area indicates the 95% confidence intervals; the solid line shows the fitted GAM function, 

which describes a predictor variable’s effect on the response variable (CPUE). The rug plot on the 

x-axis shows the relative density of data points. Values of a predictor variable indicating a positive 

effect on CPUE were read as all values for which the fitted GAM function was above the zero axis 

(red line). 

If the GAM function developed is above the red line or the zero axis, the percentage 

value is higher, indicating a strong influence of these parameters. On the other hand, if 

the GAM function is below the zero axis, it demonstrates that the effect of these parame-

ters on Eastern Little Tuna (Euthynnus affinis) is weak. From the GAM plot formed, the 

range of explanatory variable values can have a positive influence on the response 
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variable. The positive effect obtained was used to determine the range of explanatory var-

iables preferred by Eastern Little Tuna (Euthynnus affinis). The positive effect for the salin-

ity parameter is in the range of 29–30 ppt. Then, the positive effect of chlorophyll-a ranged 

from 1–2 mg/m3. 

The prediction carries out the potential fishing zone prediction for the little 

“tuna.gam” function in the R software. The data used as the basis or input in this process 

are monthly data from the same data as the GAM analysis process. The output data from 

this prediction follow the information, namely in the form of possible CPUE values ob-

tained. The prediction map presented is the probability of obtaining the CPUE value in 

each season, overlaid with the actual CPUE value in the same period. This is to determine 

the suitability of the predicted model. 

The average production yield and the highest CPUE value for Eastern Little Tuna 

(Euthynnus affinis) occurred in the southwest during the period of 2015–2020 as shown in 

Figure 10a until 10f. Based on predictions, catches will be at their maximum value if car-

ried out in the southwest with fishing locations throughout the waters for March and 

April. Meanwhile, for May high CPUE values will be generated from Sulawesi waters. 

The color bar in the image represents the predicted CPUE value for Eastern Little Tuna. 

Based on the prediction results, the possible CPUE value obtained in the transitional sea-

son was around 17.5–25 kg/trip (Figure 10). In the northeast monsoon, the CPUE value 

obtained is in the range of 15–17.5 kg/trip. Furthermore, the east monsoon is the season 

period with the lowest possible CPUE value, between 10 kg/trip and 15 kg/trip. The pos-

sible CPUE values obtained at the end of the southwest monsoon are in the range of 10–

17.5 kg/trip. 

 
(a) (b) 
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(c) (d) 
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(e) (f) 

Figure 10. The potential fishing zone distribution of Eastern Little Tuna (Euthynnus affinis) in the 

Makassar Strait in (a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019, and (f) 2020. 

The five-parameter combination model is the best fitting model based on the AIC and 

CDE values. The model is then used as a formula to predict fishing catch result, which are 

then visualized spatially. The spatial and temporal distribution results of the data show 

the corresponding values; the most suitable season in terms of catch results and oceano-

graphic variability parameters is March to May. Continuing this is supported by histo-

gram fit with visualization of the formed prediction result (Figure 8). Statistical analysis 

showed a very clear relationship between Eastern Little Tuna catches and all oceano-

graphic parameters. Fish resource management is regulated in Permen KP No.22/2021, 

including the estimation of fish resources and the environment of fish resources. One of 

the most important opportunities to improve tuna fishery management is the adoption of 

harvest control measures [42]. One way to achieve this is by knowing and catching fish in 

the best season. Based on this research, the best time for catching Eastern Little Tuna is 

March to May. 

4. Conclusions 

Based on this discussion, it can be concluded that the relationship between optimum 

oceanographic parameters and the catch of Eastern Little Tuna (Euthynnus affinis) based 

on GAM analysis for the sea surface temperature is between 30–31 °C and the chlorophyll-

a is between 1–2 mg/m3. Additionally, the optimum value for the salinity is 29–30 ppt, 

current velocity is 0.3–0.5 m/s, and sea-level is between 0.6–0.7 m. Based on the GAM 

model formed, the model with five variables (SST, chlorophyll-a, salinity, current, and 
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TML) is the most suitable model for the prediction area for Eastern Little Tuna fishing 

with a Cumulative Deviance Explained value of 16.4%. Salinity in the waters of the Ma-

kassar Strait is the predictor variable with the highest influence on Eastern Little Tuna 

catches with a significance value of <2.00 × 16−10. Based on the prediction model and map, 

March to May is the season with the highest predicted CPUE value. In contrast, the south-

west monsoon (June to August) is a seasoning period with the lowest CPUE value. 
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