
Citation: Han, X.; Zhang, X.; Zhang,

H. Trajectory Planning of USV:

On-Line Computation of the Double

S Trajectory Based on Multi-Scale A*

Algorithm with Reeds–Shepp Curves.

J. Mar. Sci. Eng. 2023, 11, 153.

https://doi.org/10.3390/

jmse11010153

Academic Editor: Sergei Chernyi

Received: 28 November 2022

Revised: 25 December 2022

Accepted: 5 January 2023

Published: 8 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Trajectory Planning of USV: On-Line Computation of the
Double S Trajectory Based on Multi-Scale A* Algorithm with
Reeds–Shepp Curves
Xu Han , Xianku Zhang * and Hugan Zhang

Laboratory of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China
* Correspondence: zhangxk@dlmu.edu.cn

Abstract: Trajectory planning aims to provide a time-related control target that contains the concerned
states. For an underactuated surface vehicle (USV), planning challenges include limitations on
curvature, speed, acceleration, and jerk. These challenges are relevant for the precise control of USVs.
To solve these problems, an on-line double S method and multi-scale A* trajectory planning algorithm
is proposed by integrating Reeds–Shepp curves (RSC), where a quad-tree-based graph is used for
path planning and collision detection. Simulations illustrate that the proposed method has a better
performance than the smooth rapid-exploration random tree (smooth-RRT) method and jump point
search (JPS) method, and that path length and the state limitations are satisfied.

Keywords: trajectory planning; kinodynamic path; Reeds–Shepp curve; multi-scale A* algorithm;
double S trajectory; USV

1. Introduction

The planning of suitable trajectories is a key process in order to avoid undesired effects
such as vibrations or even damage to the mechanical structure of USVs. This paper deals
with problems related to global trajectories for the actuation system of USVs.

Commonly used planning methods are the line-of-sight (LOS) method [1], dynamic
virtual ship (DVS) method [2,3], and coordinate transformation method [4,5]. They deal
with local planning to avoid collisions and provide motion guidance. Generally, local
planning is based on a pre-designed global path, derived using methods such as A*, RRT*,
and ant colony algorithms. Besides finding a path, the satisfaction of constraints including
smoothness and other limitations are also important for path or trajectory planning. In [6],
an improved A* algorithm was proposed for USVs to solve map resolution constraints and
increase the path smoothness. Reference [7] increased the number of neighboring nodes
in an A* algorithm so that smoothness was improved. These research papers explored
the configuration of the A* algorithm, but their computational load was relatively heavy.
More commonly adopted methods are other variants of the A* algorithm such as the Theta*
algorithm [8] or JPS algorithm [9]. Their searching speed is much faster. Reference [10]
proposes a hybrid A* algorithm, which allows a continuous state association between grids
and guarantees the feasibility of path tracking. In [11] and [12], a smooth-RRT* and an
ant colony algorithm were used. The two methods introduced random searching in the
scheme, which were efficient for general situations, but unsuitable for areas with narrow
connections, such as dumbbell-shaped areas.

There are two main factors of concern in global planning: motion constraints and
searching speed. Motion constraints of a USV consist mainly of kinodynamic constraints
and non-holonomic constraints. In [13], an admissible velocity propagation method was
proposed, that enabled path-velocity decomposition to discover truly dynamic motions.
In [14], a framework was presented to extend a RRT algorithm to plan the motion of a
wheeled robot under kinodynamic constraints. In [15], the double S trajectory planning
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method was proposed, which guaranteed a smooth change of speed and acceleration. For
non-holonomic constraints, Reeds–Shepp curves [16] or Dubins curves [17] are commonly
used. By setting a maximum curvature, the whole path meets the holonomic constraints.

As the demand for precision is different in different positions and environments, multi-
scale algorithms are widely applied for searching speed improvements. Reference [18]
clarified how to build a quad-tree-based multi-scale map. References [19,20] used multi-
scale methods to build maps for unmanned aerial vehicles (UAVs) and wheeled robots,
respectively. Reference [21] used a multi-scale Theta* algorithm to plan a path across the
Singapore Strait for a USV. They all achieved good planning results.

Based on the methods and analysis above, the main contributions of this research
are given as follows: (1) a multi-scale planning graph is established through a quad-tree
method, resulting in fast searching. (2) Trajectories can be planned with only initial and final
states; curvature constraints are satisfied by Reeds–Sheep curves (RSC), and kinodynamic
constraints are satisfied by an on-line double S planning method.

2. Establishment of Multi-Scale Graph

In this research, a quad-tree method is applied to build a graph with finite rectangular
regions. The basic idea of the quad-tree is to recursively divide geographic space into
different levels of the tree structure. It divides the space of the known range into four
equal subspaces, and recurses until the tree reaches a certain depth or does not contain any
obstacles. The structure of the quad-tree is simple, and has a high efficiency for spatial data
insertion and query. The structure of a regular quad-tree is shown in Figure 1. Geospatial
objects are stored on leaf nodes, while internal nodes do not store geospatial objects.
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Figure 1. Structure of quad-tree with maximum layer depth 3. 

There are several functions that can be achieved through quad-tree. For example, to 
find which region a point belongs to, the search moves down the tree until it reaches a leaf 
node, or the lowest level of the tree. This node defines the smallest region in the graph 
that contains the point. All other points that fall within this region have the same 
representation in the tree. To find the nodes of neighboring regions of a region on a multi-
scale map, a grid of points around the search point can be constructed. After removal of 
duplicates, the quad-tree regions that contain these points are the neighbors of the initial 
region. To test for obstacles through the LOS method, sight lines are replaced by a series 
of points on the line or lines. In practice, generally discretization with small steps on the 
sight line is enough (Figure 2a). If one needs an assured detection in spite of the possibility 
of obtaining a longer path, the parallel lines as in Figure 2b should be tested as well. Figure 

Figure 1. Structure of quad-tree with maximum layer depth 3.

There are several functions that can be achieved through quad-tree. For example, to
find which region a point belongs to, the search moves down the tree until it reaches a leaf
node, or the lowest level of the tree. This node defines the smallest region in the graph that
contains the point. All other points that fall within this region have the same representation
in the tree. To find the nodes of neighboring regions of a region on a multi-scale map, a
grid of points around the search point can be constructed. After removal of duplicates,
the quad-tree regions that contain these points are the neighbors of the initial region. To
test for obstacles through the LOS method, sight lines are replaced by a series of points on
the line or lines. In practice, generally discretization with small steps on the sight line is
enough (Figure 2a). If one needs an assured detection in spite of the possibility of obtaining
a longer path, the parallel lines as in Figure 2b should be tested as well. Figure 2 illustrates
how the two LOS detection schemes work. If a test point belongs to an obstacle node, this
sight line is seen as blocked.
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Figure 2. Two sight line discretization scheme. (a) Simple sight line discretization (sometimes
obstacle node cannot be detected). (b) Safe sight line discretization (obstacle node is guaranteed to
be detected).

In this research, a part of Long Beach Harbor is taken as the planning environment.
The land and obstacles are transferred into points by image processing, so that the quad-tree
decomposition can be carried out. Figure 3 is the original navigation chart; Figure 4 is the
corresponding multi-scale graph. The nodes containing the colored points are defined as
obstacle nodes. Others are traversable nodes. Note, however, that the nodes surrounded by
obstacle nodes are untraversable. For this reason, points inside the seashore are not defined
as obstacles, to avoid unnecessary calculations.
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3. Path Planning Based on Multi-Scale A* Algorithm and RSC

With the established multi-scale graph and neighboring region-searching method, the
A* algorithm can be used directly. The implementation of the A* algorithm is given as
Algorithm 1, where N is a node, F(N) is the cost of the node, which consists of g(N), the
moving cost from start point to node N, and h(N) the heuristic cost.

F(N) = g(N) + h(N) (1)

Algorithm 1 A* algorithm

1 OPEN //the set of nodes to be evaluated
2 CLOSED //the set of nodes already evaluated
3 add the start node to OPEN
4 loop
5 current=node in OPEN with the lowest cost F(N)
6 remove current from OPEN
7 add current to CLOSED
8 if current is the target node //path has been found
9 return
10 foreach neighbor of the current node
11 if neighbor is not traversable or neighbor is in CLOSED
12 skip to the next neighbor
13 if new path to neighbor has smaller f_cost or neighbor is not in OPEN
14 set f_cost of neighbor
15 set parent of neighbor to current
16 if neighbor is not in OPEN
17 add neighbor to OPEN

By the direct use of the multi-scale A* algorithm, the node connections and path
planning result are shown as Figure 5.
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From Figure 5, it can be concluded that the pure A* algorithm causes unnecessary
zig-zag paths. This problem may be not that serious in a normal grid-based A* algorithm
because it has more nodes than a multi-scale A* algorithm, and the path it produces can
easily be corrected with a smoothing algorithm. However, in the multi-scale scheme, some
nodes are large in size, meaning that the zig-zags in the path cannot be smoothed easily.
To resolve this problem, at each step before checking whether the neighbor of a node is
traversable or not by the LOS method in the quad-tree, the parent to the neighbor is checked
first. If it is traversable, the parent node of the current node is set as the parent of this
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neighbor, and corresponding operations are made thereafter. Modifications can be inserted
between line 9 and line 10 as:

1
2
3
4
5
6
7
8

foreach neighbor of the current node
if neighbor is not traversable from its parent or neighbor is in CLOSED
skip to the next neighbor
if new path to neighbor has smaller f_cost or neighbor is not in OPEN
set f_cost of neighbor
set parent of neighbor to parent
if neighbor is not in OPEN
add neighbor to OPEN

The effect of this modification is shown in Figure 6. Unnecessary zig-zags are avoided
after modification.
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The path under this modified A* algorithm has a much better performance in path
length and turnings. Then, the path is smoothed by the G2CBS path-smoothing algo-
rithm [22], as shown in Figure 7. By now, this path can be seen as a satisfactory one for
vehicles without non-holonomic constraints. However, for a USV, because the initial and
end states are not arbitrary, this path is still not suitable.
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RSC [23] refers to the shortest path with, at most, two cusps or reversals, where
the direction of the starting point and the end point and the maximum curvature of the
path are specified. As long as there is a collision-free path between two nodes, there will
be a collision-free RSC between the two nodes. In [10], this method is used to plan the
arrival part of the path for a hybrid A* algorithm with impressive results. In light of their
thinking, this research applied RSC at the beginning and end parts of the path to facilitate
the berthing process. When using this method, penalties should be adjusted from pure
distance to weighted distance, so that long backward motions are avoided.

With these methods, and setting the maximum curvature as 0.005, initial pose as
[x0, y0, Ψ0] = [4138, 417, 0], and final pose as [x1, y1, Ψ1] = [2548, 3777, 0], the path-planning
result is shown in Figure 8. The hollow circles denote nodes that are added once into the
open set, and crosses correspond to the closed set. The benefits of the multi-scale method
are visible, in that the number of opened nodes is small in spite of the large covered region.
Solid circles denote zero-speed points, which are used to denote points where the direction
of motion changes in a complex route.
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Smooth-RRT and JPS are widely used path-planning methods. Figures 9 and 10
illustrate the plans they generate for the same problem; evaluation metrics are summarized
in Table 1 for comparison. The three algorithms were executed using the same devices, so
the comparison reflected their complexity. It can be concluded that the proposed method is
much faster than smooth-RRT and is close to the speed of JPS (grid size 10 m). JPS is the
fastest method, but the constraints are not satisfied. Notably, JPS can only find paths on
regular grid maps, and the nodes or edges on the map cannot be weighted. As a result,
the path is next to the seashore and increases the risk of collision. Compared to JPS, the
route obtained by the proposed method is a bit longer, but it is completely within the safety
margin. Expansions are the nodes checked during path planning, and the amount of them
directly effects the speed of path planning. Multi-scale A* only uses 12.4% of the nodes
used in smooth-RRT. JPS uses 3.8% of the nodes of smooth-RRT, but the constraints are
not satisfied.
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Table 1. Comparison to common planning algorithms.

Algorithms Path Length
(m)

Time Used
(s) Nodes Expanded Are Constraints Met

Proposed method 4962.7 3.3 68 Yes
Smooth-RRT 5617.6 74.0 549 Yes

JPS 4655.4 1.7 21 No

4. On-Line Computation of the Double S Trajectory

On-line computation of double S trajectories is suitable for paths that include several
double S segments, and it is defined in discrete time. At each step the parameters are
calculated based on current states, so this trajectory calculation is called on-line. Let

q(t = kTs) = qk
.
q(t = kTs) =

.
qk

..
q(t = kTs) =

..
qk...

q (t = kTs) =
...
q k

(2)

denote the values of position, velocity, acceleration, and jerk at the k-th time instant,
respectively, and let Ts denote the sampling period. The structure of the trajectory planner
is shown in Figure 11. Given the initial and final values of position, velocity, and acceleration
and their constraints (vmax, vmin, amax, amin, jmax, jmin), recursion to the next time step is
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computed as Equation (3). During the planning process, jerk is only selected from three
values, jmax, jmin, and 0, to approach all the desired constraints and values.

..
qk =

..
qk−1 +

Ts
2 (

...
q k−1 +

...
q k)

.
qk =

.
qk−1 +

Ts
2
( ..
qk−1 +

..
qk
)

qk = qk−1 +
Ts
2
( .
qk−1 +

.
qk
) (3)
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Figure 11. Block diagram of the trajectory planner.

The computation of the trajectory is composed of two phases [15]; Figure 12 is an
intuitive illustration of the process.
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Figure 12. Typical profiles for position, velocity, acceleration, and jerk for the double S trajectory.

Phase 1: Acceleration and constant velocity phase
An acceleration profile is computed with the classical trapezoidal acceleration, possibly

followed by a constant maximum velocity phase. The jerk is calculated as

...
q k =



jmax, if
.
qk −

..
q2

k
2jmin

< vmax and
..
qk < amax

0, if
.
qk −

..
q2

k
2jmin

< vmax and
..
qk ≥ amax

jmin, if
.
qk −

..
q2

k
2jmin

≥ vmax and
..
qk > 0

0, if
.
qk −

..
q2

k
2jmin

≥ vmax and
..
qk ≤ 0

(4)

Phase 2: Deceleration phase
During the motion, at each time instant kTs it is checked to determine whether decel-

eration from the current velocity
.
qk to the final one v1 is possible with the constraints on
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..
qk and

...
q k, and with the goal to reach exactly q1. To verify this, the position displacement

produced by the acceleration and velocity profiles is obtained as

hk =
1
2

..
qkT2

d +
1
6

(
jminTj2a

(
3T2

d − 3TdTj2a + T2
j2a

)
+ jmaxT3

j2b

)
+ Td

.
qk (5)

where corresponding parameters are calculated by Equation (6) or Equation (7) as follows:
If minimum acceleration amin is reached, one obtains

Tj2a =
amin−

..
qk

jmin

Tj2b = a0−amin
jmax

Td =
v1−

.
qk

amin
+ Tj2a

amin−
..
qk

2amin
+ Tj2b

amin−a1
2amin

(6)

Otherwise,

Tj2a = −
..
qk

jmin
+

√
(jmax−jmin)

(..
q2

k jmax−jmin(a2
1+2jmax(

.
qk−v1))

)
jmin(jmin−jmax)

Tj2b = a1
jmax

+

√
(jmax−jmin)

(..
q2

k jmax−jmin(a2
1+2jmax(

.
qk−v1))

)
jmax(jmax−jmin)

Td = Tj2a + Tj2b

(7)

The position displacement hk is checked to determine whether hk < q1 − qk. If this con-
dition holds, the trajectory computation is carried out according to the renewed parameters
in each step, otherwise the deceleration phase must start and the jerk is computed as

...
q k =



jmin , if (k− k) ∈
[
0,

Tj2a
Ts

]
0, if (k− k) ∈

[ Tj2a
Ts

,
Td−Tj2b

Ts

]
jmax , if (k− k) ∈

[ Td−Tj2b
Ts

, Td
Ts

] (8)

where k is the time instant in which Phase 2 starts.
For the path derived by the multi-scale A* algorithm with RSC in Figure 8, the trajec-

tory is planned as Figure 13 and the position, velocity, acceleration, and jerk profiles
are given in Figure 14, with constraints vmax = 7, vmin = −5, amax = amin = 0.1,
jmax = jmin = 0.1, and time interval Ts = 0.1. The planned trajectory is smooth and
satisfies the constraints.
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The proposed scheme not only satisfies the requirement of forward navigation, but
is also applicable for the navigation with forward and backward motions. When the final
course orients outside of the port, the planned path may have segments with backward
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose
[x0, y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding
motion configuration is given in Figure 16. The planned trajectory meets the constraints
and realizes backward motion planning.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 13. Planned trajectory with proposed scheme. 

 
Figure 14. Planned profiles for position, velocity, acceleration, and jerk. 

The proposed scheme not only satisfies the requirement of forward navigation, but 
is also applicable for the navigation with forward and backward motions. When the final 
course orients outside of the port, the planned path may have segments with backward 
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose [x0, 
y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding motion 
configuration is given in Figure 16. The planned trajectory meets the constraints and 
realizes backward motion planning. 

Opened
Closed

0 speed point
Planned path

 
Figure 15. Path planned with backward motion. 

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2
a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 15. Path planned with backward motion.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 16. Planned profiles for position, velocity, acceleration, and jerk including backward 
motion. 

5. Discussions 
The time-related trajectory is available as per the given steps. To summarize and 

make the structure clearer, Figure 17 illustrates the information flow of the whole process. 

Current and 
final states

Obstacle 
information

Depth of 
quad-tree

Multi-scale 
A* algorithm

Improvement 
on connetions Path obtainedWithin RSC 

test distance?
Is RSC 

available?

Online double S 
trajectory 
planning

Trajectory 
obtained

ConstraintsRSC test 
distance

NoNo

G2CBS 
smoothing 
algorthm

 
Figure 17. Information flow of proposed trajectory planning method. 

As shown in Figure 17, the proposed method is quite straightforward and easily 
understood. The strengths and weaknesses (potential enhancement) of this method can 
be summarized as follows: 
(1) Strengths: high efficiency, constraints applicable (kinodynamic and nonholonomic 

constraints), easy to understand, suitable for motion planning including backward 
motions; 

(2) Weaknesses or potential enhancements: dynamic map is not suitable, no adaptive 
change of quad-tree structure, additional costs on environmental situation such as 
wind and wave are not considered. 

6. Conclusions 
In this research, a trajectory-planning scheme is proposed that combines multi-scale 

A*, RSC, and online double S trajectory planning. Only the initial and final states are 
needed to derive a feasible trajectory. Berthing at Long Beach Harbor is taken as an 
example. Both alongside and astern berthing satisfy the constraints. The length of the path 
is reasonable, and the safety of the path is guaranteed by the minimum grid size, which is 
decided by the quad-tree depth. Compared to the grid-based A* algorithm, the proposed 
method is fast and is able to produce paths that stay well clear of obstacles. The trajectory 
can be used in the control process directly to facilitate various control algorithms, by 
providing time-related references such as position, course, speed, and acceleration. This 

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2

a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 16. Planned profiles for position, velocity, acceleration, and jerk including backward motion.



J. Mar. Sci. Eng. 2023, 11, 153 11 of 12

5. Discussions

The time-related trajectory is available as per the given steps. To summarize and make
the structure clearer, Figure 17 illustrates the information flow of the whole process.
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As shown in Figure 17, the proposed method is quite straightforward and easily
understood. The strengths and weaknesses (potential enhancement) of this method can be
summarized as follows:

(1) Strengths: high efficiency, constraints applicable (kinodynamic and nonholonomic con-
straints), easy to understand, suitable for motion planning including backward motions;

(2) Weaknesses or potential enhancements: dynamic map is not suitable, no adaptive
change of quad-tree structure, additional costs on environmental situation such as
wind and wave are not considered.

6. Conclusions

In this research, a trajectory-planning scheme is proposed that combines multi-scale
A*, RSC, and online double S trajectory planning. Only the initial and final states are needed
to derive a feasible trajectory. Berthing at Long Beach Harbor is taken as an example. Both
alongside and astern berthing satisfy the constraints. The length of the path is reasonable,
and the safety of the path is guaranteed by the minimum grid size, which is decided by
the quad-tree depth. Compared to the grid-based A* algorithm, the proposed method is
fast and is able to produce paths that stay well clear of obstacles. The trajectory can be
used in the control process directly to facilitate various control algorithms, by providing
time-related references such as position, course, speed, and acceleration. This application
is quite common in the field of vehicle motion control and manipulator systems. One can
also use it to define the trajectories of actuators to avoid vibration.
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