
Citation: Han, X.; Zhang, X.; Zhang,

H. Trajectory Planning of USV:

On-Line Computation of the Double

S Trajectory Based on Multi-Scale A*

Algorithm with Reeds–Shepp Curves.

J. Mar. Sci. Eng. 2023, 11, 153.

https://doi.org/10.3390/

jmse11010153

Academic Editor: Sergei Chernyi

Received: 28 November 2022

Revised: 25 December 2022

Accepted: 5 January 2023

Published: 8 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Trajectory Planning of USV: On-Line Computation of the
Double S Trajectory Based on Multi-Scale A* Algorithm with
Reeds–Shepp Curves
Xu Han , Xianku Zhang * and Hugan Zhang

Laboratory of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China
* Correspondence: zhangxk@dlmu.edu.cn

Abstract: Trajectory planning aims to provide a time-related control target that contains the concerned
states. For an underactuated surface vehicle (USV), planning challenges include limitations on
curvature, speed, acceleration, and jerk. These challenges are relevant for the precise control of USVs.
To solve these problems, an on-line double S method and multi-scale A* trajectory planning algorithm
is proposed by integrating Reeds–Shepp curves (RSC), where a quad-tree-based graph is used for
path planning and collision detection. Simulations illustrate that the proposed method has a better
performance than the smooth rapid-exploration random tree (smooth-RRT) method and jump point
search (JPS) method, and that path length and the state limitations are satisfied.

Keywords: trajectory planning; kinodynamic path; Reeds–Shepp curve; multi-scale A* algorithm;
double S trajectory; USV

1. Introduction

The planning of suitable trajectories is a key process in order to avoid undesired effects
such as vibrations or even damage to the mechanical structure of USVs. This paper deals
with problems related to global trajectories for the actuation system of USVs.

Commonly used planning methods are the line-of-sight (LOS) method [1], dynamic
virtual ship (DVS) method [2,3], and coordinate transformation method [4,5]. They deal
with local planning to avoid collisions and provide motion guidance. Generally, local
planning is based on a pre-designed global path, derived using methods such as A*, RRT*,
and ant colony algorithms. Besides finding a path, the satisfaction of constraints including
smoothness and other limitations are also important for path or trajectory planning. In [6],
an improved A* algorithm was proposed for USVs to solve map resolution constraints and
increase the path smoothness. Reference [7] increased the number of neighboring nodes
in an A* algorithm so that smoothness was improved. These research papers explored
the configuration of the A* algorithm, but their computational load was relatively heavy.
More commonly adopted methods are other variants of the A* algorithm such as the Theta*
algorithm [8] or JPS algorithm [9]. Their searching speed is much faster. Reference [10]
proposes a hybrid A* algorithm, which allows a continuous state association between grids
and guarantees the feasibility of path tracking. In [11] and [12], a smooth-RRT* and an
ant colony algorithm were used. The two methods introduced random searching in the
scheme, which were efficient for general situations, but unsuitable for areas with narrow
connections, such as dumbbell-shaped areas.

There are two main factors of concern in global planning: motion constraints and
searching speed. Motion constraints of a USV consist mainly of kinodynamic constraints
and non-holonomic constraints. In [13], an admissible velocity propagation method was
proposed, that enabled path-velocity decomposition to discover truly dynamic motions.
In [14], a framework was presented to extend a RRT algorithm to plan the motion of a
wheeled robot under kinodynamic constraints. In [15], the double S trajectory planning

J. Mar. Sci. Eng. 2023, 11, 153. https://doi.org/10.3390/jmse11010153 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11010153
https://doi.org/10.3390/jmse11010153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-8723-7040
https://orcid.org/0000-0002-1577-571X
https://doi.org/10.3390/jmse11010153
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11010153?type=check_update&version=2

J. Mar. Sci. Eng. 2023, 11, 153 2 of 12

method was proposed, which guaranteed a smooth change of speed and acceleration. For
non-holonomic constraints, Reeds–Shepp curves [16] or Dubins curves [17] are commonly
used. By setting a maximum curvature, the whole path meets the holonomic constraints.

As the demand for precision is different in different positions and environments, multi-
scale algorithms are widely applied for searching speed improvements. Reference [18]
clarified how to build a quad-tree-based multi-scale map. References [19,20] used multi-
scale methods to build maps for unmanned aerial vehicles (UAVs) and wheeled robots,
respectively. Reference [21] used a multi-scale Theta* algorithm to plan a path across the
Singapore Strait for a USV. They all achieved good planning results.

Based on the methods and analysis above, the main contributions of this research
are given as follows: (1) a multi-scale planning graph is established through a quad-tree
method, resulting in fast searching. (2) Trajectories can be planned with only initial and final
states; curvature constraints are satisfied by Reeds–Sheep curves (RSC), and kinodynamic
constraints are satisfied by an on-line double S planning method.

2. Establishment of Multi-Scale Graph

In this research, a quad-tree method is applied to build a graph with finite rectangular
regions. The basic idea of the quad-tree is to recursively divide geographic space into
different levels of the tree structure. It divides the space of the known range into four
equal subspaces, and recurses until the tree reaches a certain depth or does not contain any
obstacles. The structure of the quad-tree is simple, and has a high efficiency for spatial data
insertion and query. The structure of a regular quad-tree is shown in Figure 1. Geospatial
objects are stored on leaf nodes, while internal nodes do not store geospatial objects.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 2 of 13

proposed, that enabled path-velocity decomposition to discover truly dynamic motions.
In [14], a framework was presented to extend a RRT algorithm to plan the motion of a
wheeled robot under kinodynamic constraints. In [15], the double S trajectory planning
method was proposed, which guaranteed a smooth change of speed and acceleration. For
non-holonomic constraints, Reeds–Shepp curves [16] or Dubins curves [17] are commonly
used. By setting a maximum curvature, the whole path meets the holonomic constraints.

As the demand for precision is different in different positions and environments,
multi-scale algorithms are widely applied for searching speed improvements. Reference
[18] clarified how to build a quad-tree-based multi-scale map. References [19,20] used
multi-scale methods to build maps for unmanned aerial vehicles (UAVs) and wheeled
robots, respectively. Reference [21] used a multi-scale Theta* algorithm to plan a path
across the Singapore Strait for a USV. They all achieved good planning results.

Based on the methods and analysis above, the main contributions of this research are
given as follows: (1) a multi-scale planning graph is established through a quad-tree
method, resulting in fast searching. (2) Trajectories can be planned with only initial and
final states; curvature constraints are satisfied by Reeds–Sheep curves (RSC), and
kinodynamic constraints are satisfied by an on-line double S planning method.

2. Establishment of Multi-Scale Graph
In this research, a quad-tree method is applied to build a graph with finite

rectangular regions. The basic idea of the quad-tree is to recursively divide geographic
space into different levels of the tree structure. It divides the space of the known range
into four equal subspaces, and recurses until the tree reaches a certain depth or does not
contain any obstacles. The structure of the quad-tree is simple, and has a high efficiency
for spatial data insertion and query. The structure of a regular quad-tree is shown in
Figure 1. Geospatial objects are stored on leaf nodes, while internal nodes do not store
geospatial objects.

First layer

Second layer

Third layer

01

00 10

11

1101 1111

1100 1110

110101 110111

110100 110110

111101 111111

111100 111110

110001 110011

110000 110010

111001 111011

111000 111010

XX: internal nodes
XX: leaf nodes

Figure 1. Structure of quad-tree with maximum layer depth 3.

There are several functions that can be achieved through quad-tree. For example, to
find which region a point belongs to, the search moves down the tree until it reaches a leaf
node, or the lowest level of the tree. This node defines the smallest region in the graph
that contains the point. All other points that fall within this region have the same
representation in the tree. To find the nodes of neighboring regions of a region on a multi-
scale map, a grid of points around the search point can be constructed. After removal of
duplicates, the quad-tree regions that contain these points are the neighbors of the initial
region. To test for obstacles through the LOS method, sight lines are replaced by a series
of points on the line or lines. In practice, generally discretization with small steps on the
sight line is enough (Figure 2a). If one needs an assured detection in spite of the possibility
of obtaining a longer path, the parallel lines as in Figure 2b should be tested as well. Figure

Figure 1. Structure of quad-tree with maximum layer depth 3.

There are several functions that can be achieved through quad-tree. For example, to
find which region a point belongs to, the search moves down the tree until it reaches a leaf
node, or the lowest level of the tree. This node defines the smallest region in the graph that
contains the point. All other points that fall within this region have the same representation
in the tree. To find the nodes of neighboring regions of a region on a multi-scale map, a
grid of points around the search point can be constructed. After removal of duplicates,
the quad-tree regions that contain these points are the neighbors of the initial region. To
test for obstacles through the LOS method, sight lines are replaced by a series of points on
the line or lines. In practice, generally discretization with small steps on the sight line is
enough (Figure 2a). If one needs an assured detection in spite of the possibility of obtaining
a longer path, the parallel lines as in Figure 2b should be tested as well. Figure 2 illustrates
how the two LOS detection schemes work. If a test point belongs to an obstacle node, this
sight line is seen as blocked.

J. Mar. Sci. Eng. 2023, 11, 153 3 of 12

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 13

2 illustrates how the two LOS detection schemes work. If a test point belongs to an obstacle

node, this sight line is seen as blocked.

Start

Goal

Start

Goal

L

0.5L

(a) (b)

Figure 2. Two sight line discretization scheme.

In this research, a part of Long Beach Harbor is taken as the planning environment.

The land and obstacles are transferred into points by image processing, so that the quad-

tree decomposition can be carried out. Figure 3 is the original navigation chart; Figure 4

is the corresponding multi-scale graph. The nodes containing the colored points are

defined as obstacle nodes. Others are traversable nodes. Note, however, that the nodes

surrounded by obstacle nodes are untraversable. For this reason, points inside the

seashore are not defined as obstacles, to avoid unnecessary calculations.

Figure 3. A part of Long Beach Harbor.

Figure 4. Multi-scale graph with maximum layer depth 7.

Figure 2. Two sight line discretization scheme. (a) Simple sight line discretization (sometimes
obstacle node cannot be detected). (b) Safe sight line discretization (obstacle node is guaranteed to
be detected).

In this research, a part of Long Beach Harbor is taken as the planning environment.
The land and obstacles are transferred into points by image processing, so that the quad-tree
decomposition can be carried out. Figure 3 is the original navigation chart; Figure 4 is the
corresponding multi-scale graph. The nodes containing the colored points are defined as
obstacle nodes. Others are traversable nodes. Note, however, that the nodes surrounded by
obstacle nodes are untraversable. For this reason, points inside the seashore are not defined
as obstacles, to avoid unnecessary calculations.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 13

2 illustrates how the two LOS detection schemes work. If a test point belongs to an obstacle
node, this sight line is seen as blocked.

Start

Goal

Start

Goal

L

0.5L

(a) Simple sight line discretization

(sometimes obstacle node cannot be detected)
(b) Safe sight line discretization

(obstacle node is guaranteed to be detected)

Figure 2. Two sight line discretization scheme.

In this research, a part of Long Beach Harbor is taken as the planning environment.
The land and obstacles are transferred into points by image processing, so that the quad-
tree decomposition can be carried out. Figure 3 is the original navigation chart; Figure 4
is the corresponding multi-scale graph. The nodes containing the colored points are
defined as obstacle nodes. Others are traversable nodes. Note, however, that the nodes
surrounded by obstacle nodes are untraversable. For this reason, points inside the
seashore are not defined as obstacles, to avoid unnecessary calculations.

Figure 3. A part of Long Beach Harbor.

Figure 4. Multi-scale graph with maximum layer depth 7.

Figure 3. A part of Long Beach Harbor.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 13

2 illustrates how the two LOS detection schemes work. If a test point belongs to an obstacle
node, this sight line is seen as blocked.

Start

Goal

Start

Goal

L

0.5L

(a) Simple sight line discretization

(sometimes obstacle node cannot be detected)
(b) Safe sight line discretization

(obstacle node is guaranteed to be detected)

Figure 2. Two sight line discretization scheme.

In this research, a part of Long Beach Harbor is taken as the planning environment.
The land and obstacles are transferred into points by image processing, so that the quad-
tree decomposition can be carried out. Figure 3 is the original navigation chart; Figure 4
is the corresponding multi-scale graph. The nodes containing the colored points are
defined as obstacle nodes. Others are traversable nodes. Note, however, that the nodes
surrounded by obstacle nodes are untraversable. For this reason, points inside the
seashore are not defined as obstacles, to avoid unnecessary calculations.

Figure 3. A part of Long Beach Harbor.

Figure 4. Multi-scale graph with maximum layer depth 7. Figure 4. Multi-scale graph with maximum layer depth 7.

J. Mar. Sci. Eng. 2023, 11, 153 4 of 12

3. Path Planning Based on Multi-Scale A* Algorithm and RSC

With the established multi-scale graph and neighboring region-searching method, the
A* algorithm can be used directly. The implementation of the A* algorithm is given as
Algorithm 1, where N is a node, F(N) is the cost of the node, which consists of g(N), the
moving cost from start point to node N, and h(N) the heuristic cost.

F(N) = g(N) + h(N) (1)

Algorithm 1 A* algorithm

1 OPEN //the set of nodes to be evaluated
2 CLOSED //the set of nodes already evaluated
3 add the start node to OPEN
4 loop
5 current=node in OPEN with the lowest cost F(N)
6 remove current from OPEN
7 add current to CLOSED
8 if current is the target node //path has been found
9 return
10 foreach neighbor of the current node
11 if neighbor is not traversable or neighbor is in CLOSED
12 skip to the next neighbor
13 if new path to neighbor has smaller f_cost or neighbor is not in OPEN
14 set f_cost of neighbor
15 set parent of neighbor to current
16 if neighbor is not in OPEN
17 add neighbor to OPEN

By the direct use of the multi-scale A* algorithm, the node connections and path
planning result are shown as Figure 5.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 13

3. Path Planning Based on Multi-Scale A* Algorithm and RSC
With the established multi-scale graph and neighboring region-searching method,

the A* algorithm can be used directly. The implementation of the A* algorithm is given as
Algorithm 1, where N is a node, F(N) is the cost of the node, which consists of g(N), the
moving cost from start point to node N, and h(N) the heuristic cost.

() () ()F N g N h N= + (1)

Algorithm 1 A* algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

OPEN //the set of nodes to be evaluated
CLOSED //the set of nodes already evaluated
add the start node to OPEN
loop

current=node in OPEN with the lowest cost F(N)
remove current from OPEN
add current to CLOSED
if current is the target node //path has been found

return
foreach neighbor of the current node

if neighbor is not traversable or neighbor is in CLOSED
skip to the next neighbor

if new path to neighbor has smaller f_cost or neighbor is not in OPEN
set f_cost of neighbor
set parent of neighbor to current
if neighbor is not in OPEN
add neighbor to OPEN

By the direct use of the multi-scale A* algorithm, the node connections and path
planning result are shown as Figure 5.

Opened
Closed

Planned Route
Connections

Figure 5. Path planned by multi-scale A* algorithm.

From Figure 5, it can be concluded that the pure A* algorithm causes unnecessary
zig-zag paths. This problem may be not that serious in a normal grid-based A* algorithm
because it has more nodes than a multi-scale A* algorithm, and the path it produces can
easily be corrected with a smoothing algorithm. However, in the multi-scale scheme, some
nodes are large in size, meaning that the zig-zags in the path cannot be smoothed easily.
To resolve this problem, at each step before checking whether the neighbor of a node is
traversable or not by the LOS method in the quad-tree, the parent to the neighbor is
checked first. If it is traversable, the parent node of the current node is set as the parent of

Figure 5. Path planned by multi-scale A* algorithm.

From Figure 5, it can be concluded that the pure A* algorithm causes unnecessary
zig-zag paths. This problem may be not that serious in a normal grid-based A* algorithm
because it has more nodes than a multi-scale A* algorithm, and the path it produces can
easily be corrected with a smoothing algorithm. However, in the multi-scale scheme, some
nodes are large in size, meaning that the zig-zags in the path cannot be smoothed easily.
To resolve this problem, at each step before checking whether the neighbor of a node is
traversable or not by the LOS method in the quad-tree, the parent to the neighbor is checked
first. If it is traversable, the parent node of the current node is set as the parent of this

J. Mar. Sci. Eng. 2023, 11, 153 5 of 12

neighbor, and corresponding operations are made thereafter. Modifications can be inserted
between line 9 and line 10 as:

1
2
3
4
5
6
7
8

foreach neighbor of the current node
if neighbor is not traversable from its parent or neighbor is in CLOSED
skip to the next neighbor
if new path to neighbor has smaller f_cost or neighbor is not in OPEN
set f_cost of neighbor
set parent of neighbor to parent
if neighbor is not in OPEN
add neighbor to OPEN

The effect of this modification is shown in Figure 6. Unnecessary zig-zags are avoided
after modification.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 13

this neighbor, and corresponding operations are made thereafter. Modifications can be
inserted between line 9 and line 10 as:

1
2
3
4
5
6
7
8

foreach neighbor of the current node
if neighbor is not traversable from its parent or neighbor is in CLOSED
skip to the next neighbor
if new path to neighbor has smaller f_cost or neighbor is not in OPEN
set f_cost of neighbor
set parent of neighbor to parent
if neighbor is not in OPEN
add neighbor to OPEN

The effect of this modification is shown in Figure 6. Unnecessary zig-zags are avoided
after modification.

Opened
Closed

Planned Route
Connections

Figure 6. Path planned by modified multi-scale A* algorithm.

The path under this modified A* algorithm has a much better performance in path
length and turnings. Then, the path is smoothed by the G2CBS path-smoothing algorithm
[22], as shown in Figure 7. By now, this path can be seen as a satisfactory one for vehicles
without non-holonomic constraints. However, for a USV, because the initial and end
states are not arbitrary, this path is still not suitable.

Figure 7. The effect of G2CBS path-smoothing algorithm.

RSC [23] refers to the shortest path with, at most, two cusps or reversals, where the
direction of the starting point and the end point and the maximum curvature of the path
are specified. As long as there is a collision-free path between two nodes, there will be a

Figure 6. Path planned by modified multi-scale A* algorithm.

The path under this modified A* algorithm has a much better performance in path
length and turnings. Then, the path is smoothed by the G2CBS path-smoothing algo-
rithm [22], as shown in Figure 7. By now, this path can be seen as a satisfactory one for
vehicles without non-holonomic constraints. However, for a USV, because the initial and
end states are not arbitrary, this path is still not suitable.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 13

this neighbor, and corresponding operations are made thereafter. Modifications can be
inserted between line 9 and line 10 as:

1
2
3
4
5
6
7
8

foreach neighbor of the current node
if neighbor is not traversable from its parent or neighbor is in CLOSED
skip to the next neighbor
if new path to neighbor has smaller f_cost or neighbor is not in OPEN
set f_cost of neighbor
set parent of neighbor to parent
if neighbor is not in OPEN
add neighbor to OPEN

The effect of this modification is shown in Figure 6. Unnecessary zig-zags are avoided
after modification.

Opened
Closed

Planned Route
Connections

Figure 6. Path planned by modified multi-scale A* algorithm.

The path under this modified A* algorithm has a much better performance in path
length and turnings. Then, the path is smoothed by the G2CBS path-smoothing algorithm
[22], as shown in Figure 7. By now, this path can be seen as a satisfactory one for vehicles
without non-holonomic constraints. However, for a USV, because the initial and end
states are not arbitrary, this path is still not suitable.

Figure 7. The effect of G2CBS path-smoothing algorithm.

RSC [23] refers to the shortest path with, at most, two cusps or reversals, where the
direction of the starting point and the end point and the maximum curvature of the path
are specified. As long as there is a collision-free path between two nodes, there will be a

Figure 7. The effect of G2CBS path-smoothing algorithm.

J. Mar. Sci. Eng. 2023, 11, 153 6 of 12

RSC [23] refers to the shortest path with, at most, two cusps or reversals, where
the direction of the starting point and the end point and the maximum curvature of the
path are specified. As long as there is a collision-free path between two nodes, there will
be a collision-free RSC between the two nodes. In [10], this method is used to plan the
arrival part of the path for a hybrid A* algorithm with impressive results. In light of their
thinking, this research applied RSC at the beginning and end parts of the path to facilitate
the berthing process. When using this method, penalties should be adjusted from pure
distance to weighted distance, so that long backward motions are avoided.

With these methods, and setting the maximum curvature as 0.005, initial pose as
[x0, y0, Ψ0] = [4138, 417, 0], and final pose as [x1, y1, Ψ1] = [2548, 3777, 0], the path-planning
result is shown in Figure 8. The hollow circles denote nodes that are added once into the
open set, and crosses correspond to the closed set. The benefits of the multi-scale method
are visible, in that the number of opened nodes is small in spite of the large covered region.
Solid circles denote zero-speed points, which are used to denote points where the direction
of motion changes in a complex route.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 13

collision-free RSC between the two nodes. In [10], this method is used to plan the arrival
part of the path for a hybrid A* algorithm with impressive results. In light of their
thinking, this research applied RSC at the beginning and end parts of the path to facilitate
the berthing process. When using this method, penalties should be adjusted from pure
distance to weighted distance, so that long backward motions are avoided.

With these methods, and setting the maximum curvature as 0.005, initial pose as [x0,
y0, Ψ0] = [4138, 417, 0], and final pose as [x1, y1, Ψ1] = [2548, 3777, 0], the path-planning result
is shown in Figure 8. The hollow circles denote nodes that are added once into the open
set, and crosses correspond to the closed set. The benefits of the multi-scale method are
visible, in that the number of opened nodes is small in spite of the large covered region.
Solid circles denote zero-speed points, which are used to denote points where the
direction of motion changes in a complex route.

Opened
Closed

0 speed point
Planned path

Figure 8. Path planned through multi-scale A* algorithm with RSC.

Smooth-RRT and JPS are widely used path-planning methods. Figures 9 and 10
illustrate the plans they generate for the same problem; evaluation metrics are
summarized in Table 1 for comparison. The three algorithms were executed using the
same devices, so the comparison reflected their complexity. It can be concluded that the
proposed method is much faster than smooth-RRT and is close to the speed of JPS (grid
size 10 m). JPS is the fastest method, but the constraints are not satisfied. Notably, JPS can
only find paths on regular grid maps, and the nodes or edges on the map cannot be
weighted. As a result, the path is next to the seashore and increases the risk of collision.
Compared to JPS, the route obtained by the proposed method is a bit longer, but it is
completely within the safety margin. Expansions are the nodes checked during path
planning, and the amount of them directly effects the speed of path planning. Multi-scale
A* only uses 12.4% of the nodes used in smooth-RRT. JPS uses 3.8% of the nodes of
smooth-RRT, but the constraints are not satisfied.

Figure 8. Path planned through multi-scale A* algorithm with RSC.

Smooth-RRT and JPS are widely used path-planning methods. Figures 9 and 10
illustrate the plans they generate for the same problem; evaluation metrics are summarized
in Table 1 for comparison. The three algorithms were executed using the same devices, so
the comparison reflected their complexity. It can be concluded that the proposed method is
much faster than smooth-RRT and is close to the speed of JPS (grid size 10 m). JPS is the
fastest method, but the constraints are not satisfied. Notably, JPS can only find paths on
regular grid maps, and the nodes or edges on the map cannot be weighted. As a result,
the path is next to the seashore and increases the risk of collision. Compared to JPS, the
route obtained by the proposed method is a bit longer, but it is completely within the safety
margin. Expansions are the nodes checked during path planning, and the amount of them
directly effects the speed of path planning. Multi-scale A* only uses 12.4% of the nodes
used in smooth-RRT. JPS uses 3.8% of the nodes of smooth-RRT, but the constraints are
not satisfied.

J. Mar. Sci. Eng. 2023, 11, 153 7 of 12J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 13

Opened
Closed

0 speed point
Planned path

Figure 9. Path planned through smooth-RRT method.

Figure 10. Path planned using JPS with a grid cell size of 10 m.

Table 1. Comparison to common planning algorithms.

Algorithms Path Length
(m)

Time Used
(s)

Nodes Expanded Are Constraints Met

Proposed method 4962.7 3.3 68 Yes
Smooth-RRT 5617.6 74.0 549 Yes

JPS 4655.4 1.7 21 No

4. On-Line Computation of the Double S Trajectory
On-line computation of double S trajectories is suitable for paths that include several

double S segments, and it is defined in discrete time. At each step the parameters are
calculated based on current states, so this trajectory calculation is called on-line. Let

()
()
()
()

s k

s k

s k

s k

q t kT q
q t kT q
q t kT q
q t kT q

 = =
 = =
 = =
 = =

 
 
 

 (2)

denote the values of position, velocity, acceleration, and jerk at the k-th time instant,
respectively, and let Ts denote the sampling period. The structure of the trajectory planner
is shown in Figure 11. Given the initial and final values of position, velocity, and
acceleration and their constraints (vmax, vmin, amax, amin, jmax, jmin), recursion to the next time

Figure 9. Path planned through smooth-RRT method.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 13

Opened
Closed

0 speed point
Planned path

Figure 9. Path planned through smooth-RRT method.

Figure 10. Path planned using JPS with a grid cell size of 10 m.

Table 1. Comparison to common planning algorithms.

Algorithms Path Length
(m)

Time Used
(s)

Nodes Expanded Are Constraints Met

Proposed method 4962.7 3.3 68 Yes
Smooth-RRT 5617.6 74.0 549 Yes

JPS 4655.4 1.7 21 No

4. On-Line Computation of the Double S Trajectory
On-line computation of double S trajectories is suitable for paths that include several

double S segments, and it is defined in discrete time. At each step the parameters are
calculated based on current states, so this trajectory calculation is called on-line. Let

()
()
()
()

s k

s k

s k

s k

q t kT q
q t kT q
q t kT q
q t kT q

 = =
 = =
 = =
 = =

 
 
 

 (2)

denote the values of position, velocity, acceleration, and jerk at the k-th time instant,
respectively, and let Ts denote the sampling period. The structure of the trajectory planner
is shown in Figure 11. Given the initial and final values of position, velocity, and
acceleration and their constraints (vmax, vmin, amax, amin, jmax, jmin), recursion to the next time

Figure 10. Path planned using JPS with a grid cell size of 10 m.

Table 1. Comparison to common planning algorithms.

Algorithms Path Length
(m)

Time Used
(s) Nodes Expanded Are Constraints Met

Proposed method 4962.7 3.3 68 Yes
Smooth-RRT 5617.6 74.0 549 Yes

JPS 4655.4 1.7 21 No

4. On-Line Computation of the Double S Trajectory

On-line computation of double S trajectories is suitable for paths that include several
double S segments, and it is defined in discrete time. At each step the parameters are
calculated based on current states, so this trajectory calculation is called on-line. Let

q(t = kTs) = qk
.
q(t = kTs) =

.
qk

..
q(t = kTs) =

..
qk...

q (t = kTs) =
...
q k

(2)

denote the values of position, velocity, acceleration, and jerk at the k-th time instant,
respectively, and let Ts denote the sampling period. The structure of the trajectory planner
is shown in Figure 11. Given the initial and final values of position, velocity, and acceleration
and their constraints (vmax, vmin, amax, amin, jmax, jmin), recursion to the next time step is

J. Mar. Sci. Eng. 2023, 11, 153 8 of 12

computed as Equation (3). During the planning process, jerk is only selected from three
values, jmax, jmin, and 0, to approach all the desired constraints and values.

..
qk =

..
qk−1 +

Ts
2 (

...
q k−1 +

...
q k)

.
qk =

.
qk−1 +

Ts
2
(..
qk−1 +

..
qk
)

qk = qk−1 +
Ts
2
(.
qk−1 +

.
qk
) (3)

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 13

step is computed as Eq.(3). During the planning process, jerk is only selected from three
values, jmax, jmin, and 0, to approach all the desired constraints and values.

Jerk
Generator

1

1
1

2 1
sT z

z

−

−

+
−

1

1
1

2 1
sT z

z

−

−

+
−

1

1
1

2 1
sT z

z

−

−

+
−

kq kq kq kq

vmax, vmin,
amax, amin,
jmax, jmin

q0, q1,
v0, v1,
a0, a1

Figure 11. Block diagram of the trajectory planner.

()

()

()

1 1

1 1

1 1

2

2

2

s
k k k k

s
k k k k

s
k k k k

T
q q q q

T
q q q q

T
q q q q

− −

− −

− −

= + +

= + +

= + +

   

   

 

 (3)

The computation of the trajectory is composed of two phases [15]; Figure 12 is an
intuitive illustration of the process.

Tj1a Ta Tj1b Tv Tj2a Td Tj2b

phase 2phase 1

Figure 12. Typical profiles for position, velocity, acceleration, and jerk for the double S trajectory.

Phase 1: Acceleration and constant velocity phase
An acceleration profile is computed with the classical trapezoidal acceleration,

possibly followed by a constant maximum velocity phase. The jerk is calculated as

2

max max max
min

2

max max
min

2

min max
min

2

max
min

, if and
2

, if and
2

, if and
2

0, if and
2

0

0

0

k
k k

k
k k

k
k k

k
k k

k

q
j q v q a

j
q

q v q a
j
q

j q v q
q

j
q

q v q
j





 ≥
= 
 >



≤

− < <

− <

− ≥


− ≥

 

 

 











 (4)

Figure 11. Block diagram of the trajectory planner.

The computation of the trajectory is composed of two phases [15]; Figure 12 is an
intuitive illustration of the process.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 13

step is computed as Eq.(3). During the planning process, jerk is only selected from three
values, jmax, jmin, and 0, to approach all the desired constraints and values.

Jerk
Generator

1

1
1

2 1
sT z

z

−

−

+
−

1

1
1

2 1
sT z

z

−

−

+
−

1

1
1

2 1
sT z

z

−

−

+
−

kq kq kq kq

vmax, vmin,
amax, amin,
jmax, jmin

q0, q1,
v0, v1,
a0, a1

Figure 11. Block diagram of the trajectory planner.

()

()

()

1 1

1 1

1 1

2

2

2

s
k k k k

s
k k k k

s
k k k k

T
q q q q

T
q q q q

T
q q q q

− −

− −

− −

= + +

= + +

= + +

   

   

 

 (3)

The computation of the trajectory is composed of two phases [15]; Figure 12 is an
intuitive illustration of the process.

Tj1a Ta Tj1b Tv Tj2a Td Tj2b

phase 2phase 1

Figure 12. Typical profiles for position, velocity, acceleration, and jerk for the double S trajectory.

Phase 1: Acceleration and constant velocity phase
An acceleration profile is computed with the classical trapezoidal acceleration,

possibly followed by a constant maximum velocity phase. The jerk is calculated as

2

max max max
min

2

max max
min

2

min max
min

2

max
min

, if and
2

, if and
2

, if and
2

0, if and
2

0

0

0

k
k k

k
k k

k
k k

k
k k

k

q
j q v q a

j
q

q v q a
j
q

j q v q
q

j
q

q v q
j





 ≥
= 
 >



≤

− < <

− <

− ≥


− ≥

 

 

 











 (4)

Figure 12. Typical profiles for position, velocity, acceleration, and jerk for the double S trajectory.

Phase 1: Acceleration and constant velocity phase
An acceleration profile is computed with the classical trapezoidal acceleration, possibly

followed by a constant maximum velocity phase. The jerk is calculated as

...
q k =



jmax, if
.
qk −

..
q2

k
2jmin

< vmax and
..
qk < amax

0, if
.
qk −

..
q2

k
2jmin

< vmax and
..
qk ≥ amax

jmin, if
.
qk −

..
q2

k
2jmin

≥ vmax and
..
qk > 0

0, if
.
qk −

..
q2

k
2jmin

≥ vmax and
..
qk ≤ 0

(4)

Phase 2: Deceleration phase
During the motion, at each time instant kTs it is checked to determine whether decel-

eration from the current velocity
.
qk to the final one v1 is possible with the constraints on

J. Mar. Sci. Eng. 2023, 11, 153 9 of 12

..
qk and

...
q k, and with the goal to reach exactly q1. To verify this, the position displacement

produced by the acceleration and velocity profiles is obtained as

hk =
1
2

..
qkT2

d +
1
6

(
jminTj2a

(
3T2

d − 3TdTj2a + T2
j2a

)
+ jmaxT3

j2b

)
+ Td

.
qk (5)

where corresponding parameters are calculated by Equation (6) or Equation (7) as follows:
If minimum acceleration amin is reached, one obtains

Tj2a =
amin−

..
qk

jmin

Tj2b = a0−amin
jmax

Td =
v1−

.
qk

amin
+ Tj2a

amin−
..
qk

2amin
+ Tj2b

amin−a1
2amin

(6)

Otherwise,

Tj2a = −
..
qk

jmin
+

√
(jmax−jmin)

(..
q2

k jmax−jmin(a2
1+2jmax(

.
qk−v1))

)
jmin(jmin−jmax)

Tj2b = a1
jmax

+

√
(jmax−jmin)

(..
q2

k jmax−jmin(a2
1+2jmax(

.
qk−v1))

)
jmax(jmax−jmin)

Td = Tj2a + Tj2b

(7)

The position displacement hk is checked to determine whether hk < q1 − qk. If this con-
dition holds, the trajectory computation is carried out according to the renewed parameters
in each step, otherwise the deceleration phase must start and the jerk is computed as

...
q k =



jmin , if (k− k) ∈
[
0,

Tj2a
Ts

]
0, if (k− k) ∈

[Tj2a
Ts

,
Td−Tj2b

Ts

]
jmax , if (k− k) ∈

[Td−Tj2b
Ts

, Td
Ts

] (8)

where k is the time instant in which Phase 2 starts.
For the path derived by the multi-scale A* algorithm with RSC in Figure 8, the trajec-

tory is planned as Figure 13 and the position, velocity, acceleration, and jerk profiles
are given in Figure 14, with constraints vmax = 7, vmin = −5, amax = amin = 0.1,
jmax = jmin = 0.1, and time interval Ts = 0.1. The planned trajectory is smooth and
satisfies the constraints.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 13

Figure 13. Planned trajectory with proposed scheme.

Figure 14. Planned profiles for position, velocity, acceleration, and jerk.

The proposed scheme not only satisfies the requirement of forward navigation, but
is also applicable for the navigation with forward and backward motions. When the final
course orients outside of the port, the planned path may have segments with backward
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose [x0,
y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding motion
configuration is given in Figure 16. The planned trajectory meets the constraints and
realizes backward motion planning.

Opened
Closed

0 speed point
Planned path

Figure 15. Path planned with backward motion.

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2

a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 13. Planned trajectory with proposed scheme.

J. Mar. Sci. Eng. 2023, 11, 153 10 of 12

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 13

Figure 13. Planned trajectory with proposed scheme.

Figure 14. Planned profiles for position, velocity, acceleration, and jerk.

The proposed scheme not only satisfies the requirement of forward navigation, but
is also applicable for the navigation with forward and backward motions. When the final
course orients outside of the port, the planned path may have segments with backward
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose [x0,
y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding motion
configuration is given in Figure 16. The planned trajectory meets the constraints and
realizes backward motion planning.

Opened
Closed

0 speed point
Planned path

Figure 15. Path planned with backward motion.

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2
a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 14. Planned profiles for position, velocity, acceleration, and jerk.

The proposed scheme not only satisfies the requirement of forward navigation, but
is also applicable for the navigation with forward and backward motions. When the final
course orients outside of the port, the planned path may have segments with backward
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose
[x0, y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding
motion configuration is given in Figure 16. The planned trajectory meets the constraints
and realizes backward motion planning.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 13

Figure 13. Planned trajectory with proposed scheme.

Figure 14. Planned profiles for position, velocity, acceleration, and jerk.

The proposed scheme not only satisfies the requirement of forward navigation, but
is also applicable for the navigation with forward and backward motions. When the final
course orients outside of the port, the planned path may have segments with backward
motion, as Figure 15 illustrates, where maximum curvature is set as 0.005, initial pose [x0,
y0, Ψ0] = [4138, 417, 0], and final pose [x2, y2, Ψ2] = [3500, 3330, 0]. The corresponding motion
configuration is given in Figure 16. The planned trajectory meets the constraints and
realizes backward motion planning.

Opened
Closed

0 speed point
Planned path

Figure 15. Path planned with backward motion.

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2
a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 15. Path planned with backward motion.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 13

Figure 16. Planned profiles for position, velocity, acceleration, and jerk including backward
motion.

5. Discussions
The time-related trajectory is available as per the given steps. To summarize and

make the structure clearer, Figure 17 illustrates the information flow of the whole process.

Current and
final states

Obstacle
information

Depth of
quad-tree

Multi-scale
A* algorithm

Improvement
on connetions Path obtainedWithin RSC

test distance?
Is RSC

available?

Online double S
trajectory
planning

Trajectory
obtained

ConstraintsRSC test
distance

NoNo

G2CBS
smoothing
algorthm

Figure 17. Information flow of proposed trajectory planning method.

As shown in Figure 17, the proposed method is quite straightforward and easily
understood. The strengths and weaknesses (potential enhancement) of this method can
be summarized as follows:
(1) Strengths: high efficiency, constraints applicable (kinodynamic and nonholonomic

constraints), easy to understand, suitable for motion planning including backward
motions;

(2) Weaknesses or potential enhancements: dynamic map is not suitable, no adaptive
change of quad-tree structure, additional costs on environmental situation such as
wind and wave are not considered.

6. Conclusions
In this research, a trajectory-planning scheme is proposed that combines multi-scale

A*, RSC, and online double S trajectory planning. Only the initial and final states are
needed to derive a feasible trajectory. Berthing at Long Beach Harbor is taken as an
example. Both alongside and astern berthing satisfy the constraints. The length of the path
is reasonable, and the safety of the path is guaranteed by the minimum grid size, which is
decided by the quad-tree depth. Compared to the grid-based A* algorithm, the proposed
method is fast and is able to produce paths that stay well clear of obstacles. The trajectory
can be used in the control process directly to facilitate various control algorithms, by
providing time-related references such as position, course, speed, and acceleration. This

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2

a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 16. Planned profiles for position, velocity, acceleration, and jerk including backward motion.

J. Mar. Sci. Eng. 2023, 11, 153 11 of 12

5. Discussions

The time-related trajectory is available as per the given steps. To summarize and make
the structure clearer, Figure 17 illustrates the information flow of the whole process.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 13

Figure 16. Planned profiles for position, velocity, acceleration, and jerk including backward
motion.

5. Discussions
The time-related trajectory is available as per the given steps. To summarize and

make the structure clearer, Figure 17 illustrates the information flow of the whole process.

Current and
final states

Obstacle
information

Depth of
quad-tree

Multi-scale
A* algorithm

Improvement
on connetions Path obtainedWithin RSC

test distance?
Is RSC

available?

Online double S
trajectory
planning

Trajectory
obtained

ConstraintsRSC test
distance

NoNo

G2CBS
smoothing
algorthm

Figure 17. Information flow of proposed trajectory planning method.

As shown in Figure 17, the proposed method is quite straightforward and easily
understood. The strengths and weaknesses (potential enhancement) of this method can
be summarized as follows:
(1) Strengths: high efficiency, constraints applicable (kinodynamic and nonholonomic

constraints), easy to understand, suitable for motion planning including backward
motions;

(2) Weaknesses or potential enhancements: dynamic map is not suitable, no adaptive
change of quad-tree structure, additional costs on environmental situation such as
wind and wave are not considered.

6. Conclusions
In this research, a trajectory-planning scheme is proposed that combines multi-scale

A*, RSC, and online double S trajectory planning. Only the initial and final states are
needed to derive a feasible trajectory. Berthing at Long Beach Harbor is taken as an
example. Both alongside and astern berthing satisfy the constraints. The length of the path
is reasonable, and the safety of the path is guaranteed by the minimum grid size, which is
decided by the quad-tree depth. Compared to the grid-based A* algorithm, the proposed
method is fast and is able to produce paths that stay well clear of obstacles. The trajectory
can be used in the control process directly to facilitate various control algorithms, by
providing time-related references such as position, course, speed, and acceleration. This

0 2000 4000 6000 8000
0

2000
4000
6000

q/
m

0 2000 4000 6000 8000
-10
0
10

v/
(m

·s
−1
)

0 2000 4000 6000 8000
-0.2
0

0.2

a/
(m

·s
−2
)

0 2000 4000 6000 8000
t/s

-0.1
0

0.1

j/(
m
·s
−3
)

Figure 17. Information flow of proposed trajectory planning method.

As shown in Figure 17, the proposed method is quite straightforward and easily
understood. The strengths and weaknesses (potential enhancement) of this method can be
summarized as follows:

(1) Strengths: high efficiency, constraints applicable (kinodynamic and nonholonomic con-
straints), easy to understand, suitable for motion planning including backward motions;

(2) Weaknesses or potential enhancements: dynamic map is not suitable, no adaptive
change of quad-tree structure, additional costs on environmental situation such as
wind and wave are not considered.

6. Conclusions

In this research, a trajectory-planning scheme is proposed that combines multi-scale
A*, RSC, and online double S trajectory planning. Only the initial and final states are needed
to derive a feasible trajectory. Berthing at Long Beach Harbor is taken as an example. Both
alongside and astern berthing satisfy the constraints. The length of the path is reasonable,
and the safety of the path is guaranteed by the minimum grid size, which is decided by
the quad-tree depth. Compared to the grid-based A* algorithm, the proposed method is
fast and is able to produce paths that stay well clear of obstacles. The trajectory can be
used in the control process directly to facilitate various control algorithms, by providing
time-related references such as position, course, speed, and acceleration. This application
is quite common in the field of vehicle motion control and manipulator systems. One can
also use it to define the trajectories of actuators to avoid vibration.

Author Contributions: Conceptualization, X.H.; methodology, X.H.; validation, X.Z. and H.Z.;
writing—original draft preparation, X.H.; writing—review and editing, X.H. and X.Z.; visualization,
X.H. and H.Z.; supervision, X.Z.; project administration, X.Z.; funding acquisition, X.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (grant
no. 51679024 and 51779029), and Cultivation Program for the Excellent Doctoral Dissertation of
Dalian Maritime University (2022YBPY001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank anonymous reviewers for their valuable com-
ments to improve the quality of this article.

Conflicts of Interest: The authors declare no conflict of interest.

J. Mar. Sci. Eng. 2023, 11, 153 12 of 12

References
1. Mou, J.; He, Y.; Zhang, B.; Li, S.; Xiong, Y. Path Following of a Water-Jetted USV Based on Maneuverability Tests. J. Mar. Sci. Eng.

2020, 8, 354. [CrossRef]
2. Zhang, G.; Han, J.; Li, J.; Zhang, X. APF-Based Intelligent Navigation Approach for USV in Presence of Mixed Potential Directions:

Guidance and Control Design. Ocean Eng. 2022, 260, 111972. [CrossRef]
3. Zhang, G.; Deng, Y.; Zhang, W. Robust Neural Path-Following Control for Underactuated Ships with the DVS Obstacles Avoidance

Guidance. Ocean Eng. 2017, 143, 198–208. [CrossRef]
4. Han, X.; Zhang, X. Tracking Control of Ship at Sea Based on MPC with Virtual Ship Bunch under Frenet Frame. Ocean Eng. 2022,

247, 110737. [CrossRef]
5. Werling, M.; Kammel, S.; Ziegler, J.; Groell, L. Optimal Trajectories for Time-Critical Street Scenarios Using Discretized Terminal

Manifolds. Int. J. Robot. Res. 2012, 31, 346–359. [CrossRef]
6. Song, R.; Liu, Y.; Bucknall, R. Smoothed A* Algorithm for Practical Unmanned Surface Vehicle Path Planning. Appl. Ocean Res.

2019, 83, 9–20. [CrossRef]
7. Xie, L.; Xue, S.; Zhang, J.; Zhang, M.; Tian, W.; Haugen, S. A Path Planning Approach Based on Multi-Direction A* Algorithm for

Ships Navigating within Wind Farm Waters. Ocean Eng. 2019, 184, 311–322. [CrossRef]
8. Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-Angle Path Planning on Grids. J. Artif. Intell. Res. 2010,

39, 533–579. [CrossRef]
9. Hu, Y.; Harabor, D.; Qin, L.; Yin, Q. Regarding Goal Bounding and Jump Point Search. J. Artif. Intell. Res. 2021,

70, 631–681. [CrossRef]
10. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical Search Techniques in Path Planning for Autonomous Driving; American

Association for Artificial Intelligence: Menlo Park, CA, USA, 2008.
11. Yu, L.; Wei, Z.; Wang, Z.; Hu, Y.; Wang, H. Path Optimization of AUV Based on Smooth-RRT Algorithm. In Proceedings of the

IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1498–1502.
12. Liang, C.; Zhang, X.; Han, X. Route Planning and Track Keeping Control for Ships Based on the Leader-Vertex Ant Colony and

Nonlinear Feedback Algorithms. Appl. Ocean Res. 2020, 101, 102239. [CrossRef]
13. Pham, Q.; Caron, S.; Lertkultanon, P.; Nakamura, Y. Admissible Velocity Propagation: Beyond Quasi-Static Path Planning for

High-Dimensional Robots. Int. J. Robot. Res. 2017, 36, 44–67. [CrossRef]
14. Hu, B.; Cao, Z.; Zhou, M. An Efficient RRT-Based Framework for Planning Short and Smooth Wheeled Robot Motion Under

Kinodynamic Constraints. IEEE Trans. Ind. Electron. 2021, 68, 3292–3302. [CrossRef]
15. Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer: Berlin/Heidelberg, Germany, 2008;

ISBN 978-3-540-85628-3.
16. Kim, J.; Lim, K.; Kim, J. Auto Parking Path Planning System Using Modified Reeds-Shepp Curve Algorithm. In Proceedings of

the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Kuala Lumpur, Malaysia, 12–15
November 2014; pp. 311–315.

17. Vautier, U.; Viel, C.; Wan, J.; Jaulin, L.; Hone, R.; Dai, M. Restricted Orientation Dubins Path with Application to Sailboats. IEEE
Robot. Autom. Lett. 2019, 4, 4515–4522. [CrossRef]

18. Zhou, Y.; Xi, J.; Luo, C. A Fast Bi-Directional A* Algorithm Based on Quad-Tree Decomposition and Hierarchical Map. IEEE
Access 2021, 9, 102877–102885. [CrossRef]

19. Philipp, K.; Marco, S.; Stefan, M.; Andreas, N. Traversability Analysis for Wheeled Robots Using Point-Region-Quad-Tree Based
Elevation Maps. In Proceedings of the 2022 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), Santa Maria de Feira, Portugal, 29–30 April 2022; pp. 192–197.

20. Xue, M.; Wei, M. Small Unmanned Aerial Vehicle Flight Planning in Urban Environments. J. Aerosp. Inf. Syst. 2021,
18, 702–710. [CrossRef]

21. Han, X.; Zhang, X. Multi-Scale Theta* Algorithm for the Path Planning of Unmanned Surface Vehicle. Proc. Inst. Mech. Eng. Part
M J. Eng. Marit. Environ. 2021, 236, 427–435. [CrossRef]

22. Yang, K.; Sukkarieh, S. An Analytical Continuous-Curvature Path-Smoothing Algorithm. IEEE Trans. Robot. 2010,
26, 561–568. [CrossRef]

23. Reeds, J.A.; Shepp, L.A. Optimal Paths for a Car That Goes Both Forwards and Backwards. Pac. J. Math. 1990,
145, 367–393. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/jmse8050354
http://doi.org/10.1016/j.oceaneng.2022.111972
http://doi.org/10.1016/j.oceaneng.2017.08.011
http://doi.org/10.1016/j.oceaneng.2022.110737
http://doi.org/10.1177/0278364911423042
http://doi.org/10.1016/j.apor.2018.12.001
http://doi.org/10.1016/j.oceaneng.2019.04.055
http://doi.org/10.1613/jair.2994
http://doi.org/10.1613/jair.1.12255
http://doi.org/10.1016/j.apor.2020.102239
http://doi.org/10.1177/0278364916675419
http://doi.org/10.1109/TIE.2020.2978701
http://doi.org/10.1109/LRA.2019.2930424
http://doi.org/10.1109/ACCESS.2021.3094854
http://doi.org/10.2514/1.I010939
http://doi.org/10.1177/14750902211039650
http://doi.org/10.1109/TRO.2010.2042990
http://doi.org/10.2140/pjm.1990.145.367

	Introduction
	Establishment of Multi-Scale Graph
	Path Planning Based on Multi-Scale A* Algorithm and RSC
	On-Line Computation of the Double S Trajectory
	Discussions
	Conclusions
	References

