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Abstract: Adaptive control methods are suitable for offshore steel structures subject to harmful vibra-
tions, as they employ reference models to adapt to coastal and nearshore physics. To decrease the
dependence on the accurate characteristics of the offshore platform, a compensating measure contain-
ing the ocean environment is proposed in the adaptive control scheme. With incomplete states as the
driving input, external loads are approximated using a wavelet neural network frame. Numerical
experiments are conducted on a platform model with varying parameters to test the performance of the
proposed adaptive controller. It is shown that the adaptive weights derived from the chosen Lyapunov
function are qualified both theoretically and practically. The system-output-based adaptive controller
overcomes the disadvantage of state loss. The compensated disturbance environment guarantees the
reliability of the restored reference system based on mismatched physics. The designed estimator
as a part of the adaptive controller compensates for the deviations of the environment between the
reference and the practical, resulting in a desirable reduction in the excessive vibration.

Keywords: model reference adaptive control; environmental compensation; wavelet neural network;
approximation using incomplete states

1. Introduction

The exploration industry in oceans has attracted rapidly growing attention. The service
life of offshore steel foundations in the marine environment is determined by many factors [1].
Both floating and fixed offshore platforms are subject to undesirable vibrations led by
environmental loads, such as ocean waves and sea winds. The excessive vibrations have to
be mitigated to ensure the platform runs in a safe state with a relatively long lifetime [2].

The primary active device to minimize structural vibrations is the active mass damper
(AMD) [3]. Regarding the massive offshore structures and deepwater drilling systems, proper
control laws have been investigated in the literature on optimal control theory [4] and robust
control theory [5,6]. Note that they are essentially model-based with the reliably known
physics as a prior. The onshore and underwater features of the offshore platforms are highly
nonlinear and time-varying, which means the dynamics should be presented in a form with
varying stiffness and damping, such as a moving target [7]. In such a case, the accurate
platform model that underlies the fixed feedback control gain for AMD may not be available.

To realize the vibration control goal in inaccurate models, the adaptive control theory
shows its privilege in online monitoring during the control period [8]. The model-reference
adaptive control (MRAC) method has wide utilization in feedback-linearisable control-
affined systems with an unknown drift vector field [9]. Nowadays, the learning methods
bring about a huge enhancement of the adaptive control performance [10], involving the
machine learning (ML) approach and reinforcement learning (RL) approach. The soft com-
puting methods for adaptive supplementary tools, such as the extreme learning machine
(ELM), are able to replace conventional control strategies in highly nonlinear systems, such
as flexible robotic grippers [11]. The control input nonlinearities for underwater vehicles
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are automatically compensated by the RL method [12]. The adaptive learning control poli-
cies based on perturbations of the input signals have been proved useful for both system
identification and adaptive control of stochastic systems [13]. Specifically, we focus on the
works about onshore and offshore adaptive structure control methods. To control the excess
aerodynamic torque of a wind turbine, the RL-based method improves the adaptability
of the conventional controllers against varying winds [14]. However, little research has
discussed the acquisition of a reliable model with the qualified reference environment
as the baseline. For the coastal environment, limited rules or experimental data sets are
available for estimating ocean waves [15], while the approximation using neural networks
is merely applied to the first step of predicting the wave overtopping rate for now [16]. The
aforementioned data-driven methods skip the modeling part by directly identifying the
time-varying parameters online or offline, while we try at least to leverage the obtained
information about the offshore platform.

The identification or approximation effects using different neural networks are com-
pared in the adaptive learning task. The radial basis function (RBF) neural network model
is capable of approximating the unknown function infinitely, with a complex motion model
established [17]. The approximation models constructed by methods from the RL and RBF
neural networks, Gaussian process (GP), random forest (RF) and support vector regression
(SVR) have the capability to fulfill the same goal about the stochastic assessment of aero-
dynamics and hydrodynamics [18]. We are particularly interested in the learning model
based on wavelet neural networks (WNNs), as the wavelet function and wavelet transform
technique are suitable for wave monitoring [19]. Noticing that the numerical wave model in
the marine environment with different sea states and hydraulic power is constructed on the
interaction between waves and operation systems [20], there exists the potential possibility
of wave restoration using WNNs. Several works have proposed WNN-based models for
wave height forecasting [21] with reliable numerical correction in predicting [22]. On the
output-feedback MRAC layout, we focus on the problem to simultaneously address the state
loss problem in feedback and the ocean wave compensation problem for the reference model.
Motivated by the variable replacement technique complemented with learning methods
to realize offshore platform vibration control [23,24], we put forward a WNN-based wave
estimator to complete the state learning goal using incomplete response data.

In this paper, we design an MRAC algorithm for the offshore platform vibration
controller. The time-varying dynamic model of the offshore platform is first established.
Regarding the ocean environment, the time series of the acting loads is derived through reli-
able spectra and then restored by a WNN-based estimator. Next, the incomplete-state-based
adaptive controller is proposed in the reference model with the compensated environment
features, using the control input from the above reference model and the output vibration
response of the target platform. The adaptive control gains are obtained from the chosen
Lyapunov function. With this restored environment, the selection of the reference model has
more flexibility, as shown in several cases, while the WNN-supplemented reference system
has the privilege of approaching the real working environment. The contributions are listed:

1. The adaptive control method is applied to the offshore platform containing time-
varying features for the purpose of vibration attenuation;

2. The reference model with an environmental compensation scheme provides the
online-adjusting adaptive control force input;

3. The data-driven approximation strategy of the ocean environment is realized through
a wavelet neural network.

The remainder of the paper is organized as follows. In Section 2, we provide a precise
formulation of the vibration control problem for an offshore platform. The data-driven
learning period is defined for marine environment restoration. In Section 3, we introduce
the way to acquire a reliable reference model with the added environmental compensating
neural network. In Section 4, we perform the simulation of a real offshore platform under
the designed controller. An illustrative analysis is conducted on different reference models
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with desired vibration-suppression results provided. In Section 5, we summarize our study
and discuss the potential aspects of optimization.

2. Model Description

The physical features and motion dynamics of the offshore platform and the ocean
environment are introduced in this section.

2.1. Active Mass Damper System of the Offshore Platform

The active mass damper (AMD) is the control device that suppresses structural vi-
bration. It attaches the massive damper to the controlled structure to mitigate its harmful
vibration by employing active forces properly. The steel jacket-type offshore platform with
an AMD is described as a single-degree-of-freedom (SDOF) system, and the dominant
layout for this SDOF system is shown in Figure 1 [24].
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Figure 1. Simplified SDOF model of the platform with AMD on deck (adapted from [24] with
permission from Elsevier, 2022).

To explain the motion, the SDOF system is defined by Newton’s second law in [24,25]
m1(t)ẍ1(t)+c1(t)ẋ1(t) + k1(t)x1(t)− c2(t)(ẋ2(t)− ẋ1(t))− k2(t)(x2(t)− x1(t))

= f (t)− u(t)

m2(t)ẍ2(t) + c2(t)(ẋ2(t)− ẋ1(t)) + k2(t)(x2(t)− x1(t)) = u(t)

(1)

where m1(t), m2(t), x1(t), x2(t), c1(t), c2(t), k1(t) and k2(t) are the mass, displacement
response, stiffness coefficients and damping coefficients of the offshore structure and AMD
device, respectively; f (t) is the disturbance acting on the structure, and u(t) is the control
force provided by the AMD device. The vibration of the platform caused by f (t) should be
stabilized with a properly designed u(t), while perturbing c1(t), c2(t), k1(t) and k2(t) add
uncertainty into the system. Using c1(t) and k1(t) as an example, the time-varying stiffness
and damping are given by [24]

c1(t) = 2m1(t)ξ1(t)ι1(t), k1(t) = m1(t)ι21(t) (2)

where ξ1(t) = ξ1 + ξ̂1∆ξ̃1(t), ξ1 represents the nominal value of the damping ratio; ξ̂1
stands for the maximum perturbation of the damping ratio; ι1(t) represents natural fre-
quency, ι1(t) = ι1 + ι̂1∆ι̃1(t); ι1 represents the nominal value of the damping ratio; and ι̂1
stands for the maximum perturbation of the damping ratio. Here, ξ1(t) and ι1(t) share
the limitations of ∀t ≥ 0, |∆ξ̃1(t)| ≤ 1 and |∆ι̃1(t)| ≤ 1. Additionally, c2(t) and k2(t) share
similar definitions, and we neglect the duplicates.
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Inserting definition (2) into (1) yields

ẍ1(t)+2(ξ1ι1 + ξ1 ι̂1∆ι̃1(t) + ι1ξ̂1∆ξ̃1(t))ẋ1(t) + (ι21 + 2ι1 ι̂1∆ι̃1(t))x1(t)

− 2m2(t)(ξ2ι2 + ξ2 ι̂2∆ι̃2(t) + ι2ξ̂2∆ξ̃2(t))(ẋ2(t)− ẋ1(t))/m1(t) + u(t)/m1(t)

−m2(t)(ι22 + 2ι2 ι̂2∆ι̃2(t))(x2(t)− x1(t))/m1(t) + g1(t)/m1(t)− f (t)/m1(t) = 0

ẍ2(t) + (ι22 + 2ι̂2ι2∆ι̃2(t))(x2(t)− x1(t))− u(t)/m2(t) + g2(t)/m2(t) + 2(ξ2ι2

+ ξ2 ι̂2∆ι̃2(t) + ι2ξ̂2∆ξ̃2(t))(ẋ2(t)− ẋ1(t)) = 0

(3)

with nonlinear parts
g1(t) =2m1(t)ι̂1ξ̂1∆ι̃1(t)∆ξ̃1(t)ẋ1(t)−m2(t)ι̂22∆ι̃22(t)(x2(t)− x1(t))

+ m1(t)ι̂21∆ι̃21(t)x1(t)− 2m2(t)ι̂2ξ̂2∆ι̃2(t)∆ξ̃2(t)(ẋ2(t)− ẋ1(t))

g2(t) =m2(t)ι̂2∆ι̃22(t)(x2(t)− x1(t)) + 2m2(t)ι̂2ξ̂2∆ι̃2(t)∆ξ̃2(t)(ẋ2(t)− ẋ1(t))

(4)

which are then defined as g(t) = [g1(t)/m1(t) g2(t)/m2(t)]T. Noting that the mass vari-
ables m1(t) and m2(t) are big enough, g(t) can be deleted from the motion equation.

The SDOF system (1) has a new form as

ẋ(t) = (A(t) + M(t)F(t)N)x(t) + B(t)u(t) + D(t) f (t) (5)

where x(t) = [x1(t) x2(t) ẋ1(t) ẋ2(t)]T,

A(t) =


0 0 −(ι21 + ι22m2(t)/m1(t)) ι22
0 0 ι22m2(t)/m1(t) −ι22
1 0 −2(ζ1ι1 + ξ2ι2m2(t)/m1(t)) 2ξ2ι2
0 1 2ξ2ι2m2(t)/m1(t) −2ξ2ι2


T

,

M(t) =


0 0 ι̂1 0
0 0 −ι̂2m2(t)/m1(t) ι̂2
0 0 ξ̂1 0
0 0 −ξ̂2m2(t)/m1(t) ξ̂2


T

,

N =


−2ι2 2ι2 0 0

0 −2ι2 0 0
−2ξ1 2ξ2 −2ι1 2ι2

0 −2ξ2 0 −2ι2


T

,

B(t) =
[

0 0 −1/m1(t) 1/m2(t)
]T,

D(t) =
[

0 0 1/m1(t) 0
]T,

F(t) = diag{∆ι̃1(t), ∆ι̃2(t), ∆ξ̃1(t), ∆ξ̃2(t)} satisfying FT(t)F(t) ≤ I, x(t) ∈ Rm, u(t) ∈ Rn,
f (t) ∈ Rp.

2.2. Loads Acting on the Platform

Ocean waves in conjunction with sea winds are the main excitation on the offshore
platform. Wind loads usually account for around 20% of the whole external excitation, or
even less in a calm wind field [24,26]. The statistical analysis of the environmental loads
indicates that wind loads are usually neglected in a calm wind field. The description of
waves is given by [24]

f j(t) =
∫ d

0
pj(z, t)ϕ(z)dz

pj(z, t) = CdρD
√

8/πσvj vj(z, d, t)/2 + CmρπD2v̇j(z, d, t)/4

, φwave(η(t), Cd, Cm, D, ρ)

(6)



J. Mar. Sci. Eng. 2023, 11, 138 5 of 19

where f j(t) is the wave exciting force on the platform, and d is the water depth; pj is
the wave load at the water depth z (zero at the bottom) generated from the Morison
equation [24,25] via the function of water surface height η(t), the diameter of equivalent
pile cylinder D, the drag coefficient Cd, the inertia coefficient Cm and the fluid density ρ.
Specifically, the velocity and acceleration of the water particle are{

vj(z, d, t) = η(t)ωjch(k jz)/sh(k jd)

v̇j(z, d, t) = −η(t)jω2
j ch(k jz)/sh(k jd)

(7)

and σvj is the standard deviation of vj at height z. For (7), k j is the wave number of the jth
wave component in ω2

j = gk j tanh(k jd), g is the gravitational acceleration, j =
√
−1 and

ωj is the wave frequency. The wave height η(t) can be collected from practical experiments
or generated based on wave spectra.

The above descriptions of wave disturbance rely on the basic component of the wave
height η(t). With a reliable wave spectrum, such as JONSWAP [27], we can restore the
essential external force time series. The disturbance item is summarized

f (t) =
∫ d

0
φwave(η(t), Cd, Cm, D, ρ)ϕ(z)dz , φdis(η(t)) (8)

based on (6) and (7), where φdis is a description function to be identified.

2.3. Data-Dependent Approximation of the Loads

Conventional methods for model identification require the determination of proper
order and the recognition of separate weight values or the total matrices. Under the data-
driven concept, we skip the acquisition procedure of the order and accurate real-time
values. The learning input and output have more choices of dimensions and layers as the
remedy for unknown orders and parameters. The disturbance function (8) is restored by a
wavelet neural network [28,29], with the output defined as (9). The input layer has p1 nodes
with an input vector xin, with available candidates xin(t) = {η(t), η(t− 1), . . . , y(t), y(t−
1), . . . , x(t), x(t− 1), . . . }. The hidden layer has l1 nodes, and the output layer has n1 nodes
with an output vector yout. The weights ωij between the hidden nodes and output nodes
form the matrix Wij and obtain the output vector of the neural network

yout = Wijh(xin) (9)

With the definition of the amplitude matrix a, transform matrix b, input weight matrix
Wjk and output of the wavelet function fwav as h, the output of the hidden layer is

h(xin) = fwav(
Wjkxin − b

a
) , fwav(x̄in) (10)

We choose the Morlet wavelet function as the active function [28]

fwav(x̄in) = e−x̄2
in/2cos(1.75x̄in) (11)

and its derivative is

f
′
wav(x̄in) = −1.75sin(1.75x̄in)e−x̄2

in/2 − x̄incos(1.75x̄in)e−x̄2
in/2 (12)

Define
E =

1
2
(yideal − yout)

T(yideal − yout) ,
1
2

eTe (13)
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with the learning rates r1-r4, the updating laws for weights at the qth iteration are

W(q+1)
ij = W(q)

ij + ∆W(q+1)
ij

W(q+1)
jk = W(q)

jk + ∆W(q+1)
jk

a(q+1) = a(q) + ∆a(q+1)

b(q+1) = b(q) + ∆b(q+1)

(14)

which are illustrated by the gradient descent method based on (13)

∆W(q+1)
ij = −r1

∂E

∂W(q)
ij

, −r1eh(x̄in)

∆W(q+1)
jk = −r2

∂E

∂W(q)
jk

, −r2eW(q)
ij f

′
wav(

W(q)
jk x̄in − b(q)

a(q)
)x̄in(a(q))−1

∆a(q+1) = −r3
∂E

∂a(q)
, r3eW(q)

ij f
′
wav(

W(q)
jk x̄in − b(q)

a(q)
)(W(q)

jk x̄in − b(q))(a(q))−2

∆b(q+1) = −r4
∂E

∂b(q)
, r4eW(q)

ij f
′
wav(

W(q)
jk x̄in − b(q)

a(q)
)(a(q))−1

(15)

When the neural network finishes the training on the given data set, the disturbance
(8) identified by (9) after updates (14) and (15) will achieve the optimal weights W∗ij , W∗jk, a∗

and b∗.

3. Main Results
3.1. Environmental Compensation Scheme inside the Reference System

Define an environment-compensated reference model{
ẋm(t) = Amxm(t) + Bmum(t) + Dm f̂m(t)

ym(t) = Cxm(t)
(16)

where xm(t), um(t), f̂m(t), ym(t), Am, Bm and Dm are the references of x(t), u(t), fm(t), y(t),
A(t), B(t) and D(t). The reference control input can be given by

um(t) = −R−1
m BT

mPmxm(t) (17)

in which Pm satisfies
AT

mPm + Pm Am + Qm = 0 (18)

with weight matrices of the cost function satisfying Qm > 0 and Rm > 0. The external
disturbance f̂m(t) is defined based on function φdis,

f̂m(t) = φdis(xin(t), W∗ij , W∗jk, a∗, b∗) (19)

where f̂m(t) represents the item to restore the disturbance force f (t), which is actually
the fm(t) collected in the training set; xin(t) = {ηm(t), ηm(t − 1) . . . , xm(t), xm(t− 1)
. . . , ym(t), ym(t − 1) . . . } contains the reference inputs that are chosen for different ap-
proximation models, where ηm(t) is related to fm(t). The training of (8) approximated by
(9) stops with

|| f̂m(t)− fm(t)|| < em (20)

where em is a positive constant vector.
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Based on the approximation model (19), the following theorem gives an adaptive com-
pensated reference model control law with the structure assigned by Figure 2, where θ∗ repre-
sents the overall optimal hyperparameters W∗ij , W∗jk, a∗, b∗when the adaptive iteration finishes.
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Figure 2. Model reference adaptive vibration controller with compensated environment.

3.2. Model-Based Adaptive Controller Design

Theorem 1. For the offshore platform (3), subject to random disturbance, choose a rough reference
model stating {

˙̄xm(t) = Am x̄m(t) + Bmūm(t) + Dm f̂ (t)

ȳm(t) = Cx̄m(t)
(21)

where x̄m(t) and ȳm(t) are the reference states of x(t) and y(t), and ūm(t) is the reference
control input

ūm(t) = −(R̄m + BT
m P̄mBm)

−1
BT

m P̄m Am x̄m(t) (22)

in which P̄m is derived from

P̄m = AT
m(I + BmR̄−1

m BT
m)
−1P̄m Am + Q̄m (23)

with R̄m > 0, Q̄m > 0. The environmental compensation model derived from (19) is replaced by

f̂ (t) = φdis(xin(t), W∗ij , W∗jk, a∗, b∗) (24)

where xin(t) = {y(t), y(t− 1) . . . } contains the reference state input to be chosen in different
approximation models. There exists an output feedback adaptive control law

û(t) = Êy(t)ūm(t) + F̂y(t)y(t) (25)

which guarantees a stable system{
ẋ(t) = (A(t) + M(t)F(t)N)x(t) + B(t)û(t) + D(t) f (t)

y(t) = Cx(t)
(26)

where C decides the system output y(t) out of the system state x(t) with adaptive weights Êy(t),
and F̂y(t) updating by 

˙̂ET
y (t) = P̄−1

yE ūm(t)ēT(t)CP̄yeBm

˙̂FT
y (t) = P̄−1

yF y(t)ēT(t)CP̄yeBm
(27)

in which ē(t) = ȳm(t)− y(t), P̄yF > 0, P̄yE > 0, P̄ye > 0, and it is the solution of

AT
m P̄ye + P̄ye Am + Q̄e = 0 (28)
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where the quadratic weight matrix Q̄e satisfies Q̄e > 0.

Proof. First, the reference control input (22) (which is another form of (17)) for (21) is
derived from the quadratic cost function [23]

J = x̄T
mQm x̄m + ūT

mRmūm (29)

It satisfies the stability conditions under the optimal theory with a maximum principle.
The reference system (21), controlled by the reference control law (22), is stable.

Second, the compensated environmental disturbance requires the vibration response
output of the rough reference model (16) and several features of the external disturbance in
the form

f̂m(t) = φdis(xin(t), W∗ij , W∗jk, a∗, b∗) (30)

The offline training should be performed on the historical data set with the goal (20).
When the training completes, the real-time environmental loads will be approximated by
the neural hyperparameters and the designated instant input. With regard to the same
group of obtained neural hyperparameters, they are acquired by the training sample
xin(t) = {xm(t), xm(t− 1) . . . , ym(t), ym(t− 1) . . . } and fm(t) from (16) and then applied
to output f̂ (t) using real xin(t) = {x(t), x(t− 1) . . . , y(t), y(t− 1) . . . } from (26). Note that
the state x(t) is not available in this situation together with η(t) and f (t). Therefore, we
should use xin(t) = {y(t), y(t− 1) . . . } in both training and testing. The training period is
adjusted with xin(t) = {ym(t), ym(t− 1) . . . }. Given a non-negative constant vector eε, the
approximated f̂ (t) from (24) satisfies

|| f̂ (t)− f (t)|| < eε (31)

which is the generalization goal of the neural network. It is achieved after numerical
training [30,31].

Considering (5) and (16), the adjusting period of the adaptive weights should have the
goal for the reference matrix Dm and approximated loads f̂ (t) as

lim
t→∞

Dm f̂ (t)− D(t) f (t)→ 0 (32)

It is noticed that real values for D(t) and f (t) are required for parameter correction, yet
they are not given. There is no optimal value serving as the basis for approximation. As
an alternative, the bound constraint of the parameters is given as follows for the proof of
stability. Application with (31) and (32) added with a constant D, D(t) ≤ D satisfies

||Dm f̂ (t)− D(t) f (t)|| ≤ ||(Dm − D) f (t) + Dmeε|| (33)

Define the maximum disturbance load as fmax, the bound constraint for (32) should be

||Dm − D|| ∗ || f (t)||+ ||Dm|| ∗ ||eε|| ≤ ||Dm − D|| ∗ || fmax||+ ||Dm|| ∗ ||eε|| (34)

Each term on the right side of the above inequality is constant, which means there is an
upper bound for (34). With the proper reference matrix Dm, the adaptive law satisfies the
premise (32).

Third, the error system between (3) and (26) is

ė(t) =ẋm(t)− ẋ(t)

=Ame(t) + [Am − A(t)−M(t)F(t)N − B(t)F̂y(t)]x(t)

+ [Bm − B(t)Êy(t)]um(t)

(35)

To realize the ideal approximating goal (36) with a positive constant matrix ec,

lim
t→∞
||e(t)|| < ec (36)
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the adaptive weights should converge to the optimal Ê∗y(t) and F̂∗y (t) with{
Am = A(t) + M(t)F(t)N + B(t)F̂∗y (t)

Bm = B(t)Ê∗y(t)
(37)

Inserting (37) into (35) derives

ė(t) = Ame(t) + BmE∗−1
y (t)F̂y(t)y(t) + BmE∗−1

y (t)Êy(t)ūm(t) (38)

with the deviation between the adaptive weights and the optimal weights defined by{
F̃y(t) = F̂∗y (t)− F̂y(t)

Ẽy(t) = Ê∗y(t)− Êy(t)
(39)

(38) needs to satisfy the Lyapunov stability with the chosen function

V(t) = eT(t)P̄yee(t) + tr(F̃T
y (t)P̄yF F̃y(t)) + tr(ẼT

y (t)P̄yEẼy(t)) (40)

where P̄ye > 0, P̄yF > 0, P̄yE > 0, satisfying V(t) > 0. Using the derivative of (40) yields

V̇(t) =eT(t)(AT
m P̄ye + P̄ye Am)e(t) + 2tr[ ˙̃FT

y (t)P̄yF F̃y(t)

+ eT(t)P̄yeBmE∗−1
y (t)F̃y(t)y(t)]

+ 2tr[ ˙̃ET
y (t)P̄yEẼy(t) + eT(t)P̄yeBmE∗−1

y (t)Ẽy(t)um(t)]

(41)

Letting the last two items on the right side of (41) be zero, we havetr[ ˙̃FT
y (t)P̄yF F̃y(t) + eT(t)P̄yeBmE∗−1

y (t)F̃y(t)y(t)] = 0

tr[ ˙̃ET
y (t)P̄yEẼy(t) + eT(t)P̄yeBmE∗−1

y (t)Ẽy(t)um(t)] = 0
(42)

Inserting (39) into (42) derives the updating rules
˙̃FT
y (t) = −P̄−1

yF y(t)eT(t)P̄yeBmE∗−1
y (t)

˙̃ET
y (t) = −P̄−1

yE um(t)eT(t)P̄yeBmE∗−1
y (t)

(43)

Noticing that there is no optimal value E∗−1
y (t), we set E∗−1

y (t) = I as the substitute.
Additionally, e(t) is not available as we assume when using y(t) (output feedback), instead
of x(t) (state feedback), in the control environment. In this case, we use a rough replacement
in the adaptive law in 

˙̃FT
y (t) = −P̄−1

yF y(t)ēT(t)P̄yeBm

˙̃ET
y (t) = −P̄−1

yE um(t)ēT(t)P̄yeBm
(44)

and expect the adaptive rules to compensate this inaccurate setting of E∗y and ē(t). Addi-
tionally, the exchange from e(t) to ē(t) leads to a mismatch between the dimensions of ē(t)
and P̄ye. The proper weight matrix C is added in

˙̃FT
y (t) = −P̄−1

yF y(t)ēT(t)CP̄yeBm

˙̃ET
y (t) = −P̄−1

yE um(t)ēT(t)CP̄yeBm
(45)

Inserting (39) into (45) yields the rules for adaptive weights in (27).
Finally, the non-zero part left in (41) with the quadratic weight matrix Q̄e > 0 satis-

fies (28). It is easy to obtain the qualified P̄ye, and the control performance of the rules (45)
with P̄ye replaced by P̄m is given in the simulation. Therefore, (41) obtains V̇(t) < 0, and
(38) is stable. This ends the proof.
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4. Numerical Results and Discussions

We conduct several simulation experiments on the offshore platform located in Gulf of
Mexico described in Table 1 [32,33]. All the numerical tests use MATLAB as the simulating
tool on CPU AMD Ryzen 7 4700U. The simulation duration is several minutes, and the
sampling rate is 100 hz.

Table 1. Parameters of offshore platform and sea condition.

Description Symbol Value Unit

Significant wave height Hs 5 m
Peak frequency ω0 0.79 rad/s
Water depth d 218 m
Pile cylinder D 1.83 m
Height of platform L 249 m
First modal mass m1 7,825,307 kg
Nominal value of natural frequency (platform) ι1 2.0446 rad/s
Nominal value of damping ratio (platform) ξ1 2% -
AMD device mass m2 78,253 kg
Nominal value of natural frequency (AMD) ι2 2.0074 rad/s
Nominal value of damping ratio (AMD) ξ2 20% -
Drag coefficient Cd 1.0 -
Inertia coefficient Cm 1.5 -
Atmospheric density ρ̄ 1.23 -
Windward resistance coefficient CH 1.01 -

4.1. Simulating Verification of the Offshore Platform with Active Mass Damper to
Suppress Vibration

The simulation model based on (3) in the marine environment (8) is materialized with
the nominal values in Table 1. The wave description (6) is established by the JONSWAP
spectrum [24]. We conduct a frequency analysis on the acceleration response of the platform,
which is displayed in Figure 3. The blue line represents the vibration resulting from the
wave loads, and the vibration controller settings for the yellow line will be introduced in the
following subsections, together with the figures displaying the total vibration responses.
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Figure 3. Power spectral density on the acceleration response of the offshore platform.

The two peaks indicate the governing vibration frequency of the platform. They are
aligned with the peak frequency of the waves (0.79 rad/s) and the natural frequency of the
platform (2.2 rad/s). The reduction in vibration is obvious when comparing the two lines,
indicating the effectiveness of the proposed controller to be specified as follows.
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4.2. Adaptive Core and Reference Input Chosen for Disturbance Approximation

In the following section, the marine environment of the reference model concern-
ing (21), (24) and (25) is estimated by (9). Two key points of the neural network are
discussed in this section: the core neural function and the input.

Firstly, we should pick up a proper core neural network for the approximator. The
Morlet wavelet function (11) is used as the active function when constructing the wavelet
neural network (WNN). In comparison, the most common back-propagation neural net-
work (BPNN) is activated with the sigmoid function in the hidden layer [34]. The training
data set includes the equivalent force of external loads, and the wave surface height is recon-
structed at a significant height 5.0 m [24]. Considering the available data on the disturbance,
the input of the neural networks in this part is designated as η(t), η(t− 1), η(t− 2), η(t− 3),
and the output is f (t). Their numerical values during 80s are displayed in Figure 4. The
two networks have 4-7-1 nodes, 3× 104 training samples, maximum 800 epochs and 2× 104

testing samples. Specifically, the test set is collected when the simulated wave’s significant
height stays around 3.0 m, which means the fitting processes are different between the
training and testing sets.
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Figure 4. Ocean loads and wave height.

The proportion of the positive and negative values in the testing errors is shown in
Table 2. The sum of the positive and negative proportions of each neural network should be
100% because we delete the zeros when counting the total. It is shown that the comparable
BPNN has a drift in output. The testing output of BPNN is apparently biased towards the
training data, which are bigger in value. The WNN keeps the same trend with the test data,
with basically impartial positive and negative errors. Although the BPNN obtains smaller
mean square errors in the output, as shown in Figure 5 (we display the samples between
[0.9× 104, 1.4× 104] for better illustration), the main object of this approximation period
is to achieve a fair result during both training and testing. In that case, the WNN is more
appropriate for our environmental compensation task.

Table 2. The proportion of output error from different neural networks.

Positive Errors Negative Errors

BPNN 80.77% Less than 20%
WNN 61.79% 38.21%
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Figure 5. Comparison of the approximation models using different neural networks.

Secondly, the approximator needs suitable input data. Different types of input for
the neural network are discussed in this subsection, including the system state response
x(t), system output response y(t), wave characteristics such as wave height η(t), or the
combination of multi-class data. The most common input for identifying external wave
forces should be the wave height η(t), as mentioned above, and we display the possible
input η(t) and the defined output f (t) in Figure 4. Additionally, other possible inputs are
x(t) and y(t), and we list them in Figure 6.
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Figure 6. Ocean loads and displacement response of the platform.

We have constraints on the system (3) that no real-time disturbance data or full state
data are available. Based on historical data sets including state samples and disturbance
samples, we discuss the feasibility of different input. The sea surface height is theoretically
more reliable as the input, as its approximation errors will not accumulate. The estimation
at this time will not affect the next result, as a new η(t) is consistently given. In comparison,
when the vibration response is used as the input of the approximation model, it will change
the next approximation via the feedback part of the control law Êy(t)ūm(t). According to
Figures 4 and 6, we set two different neural networks, WNN1 and WNN2. The input of
WNN1 is the sea surface height η(t), and, for WNN2, the input is the vibration response
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y(t). The comparison of the average error during each iteration is shown in Figure 7. It
shows around 400 iterations in a possible simulation environment.

WNN1 represents the situation with qualified sensors to acquire wave features. WNN2
represents the limit that the disturbance monitoring sensors break down, and the approx-
imation is totally dependent on the structural response of the platform itself. When the
training is complete, both WNN1 and WNN2 obtain the desired estimation performance
with a relatively small convergence error. Therefore, the vibration response output y(t) is
proved reliable in the following experiments, satisfying the constraint of the state losses
(x(t), f (t) and η(t)) in the system.
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Figure 7. Comparison of the approximation models using different inputs.

4.3. Controller Test Using Different Reference Models

In this subsection, the simulation model of the offshore platform to be controlled has
unknown structural parameters. The nominal physical values are shown in Table 1, while
each parameter has random perturbations. The discrete nominal parameters (t = 0) are
listed as follows.

A(0) + M(0)F(0)N =


0.9998 0 0.0100 0
0.0002 0.9994 0 0.0098
−0.0423 0.0004 0.9988 0.0002
0.0400 −0.0441 0.0083 0.9905


B(0) = 10−6 × [0, 0.0006,−0.0013, 0.1272]T

D(0) = 10−8 × [0.0006, 0, 0.1277, 0.0005]T

(46)

Case 1. Control Performance with No. 1 Reference Model

In this case, (46) has 10% perturbations as {m1(t) ± 10%, ι1(t) ± 10%, ξ1(t) ± 10%,
m2(t)± 10%, ι2(t)± 10% and ξ2(t)± 10%}. Theoretically, any other platform model can be
used as a reference model under the same settings of the governing mode. In this case, we
use the features from another platform as the reference model [23]. Obviously, the platform
height, water depth, mass and damping characteristics of the reference and the target
platform models are different. The reference model with fixed nominal values is described
by the following matrices in a discrete form.
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Am =


0.9998 0 0.0100 0
0.0003 0.9997 0 0.0100
−0.0486 0.0003 0.9980 0
0.0541 −0.0542 0.0046 0.9954


Bm = 10−6 × [0, 0.0042,−0.0042, 0.8416]T

Dm = 10−8 × [0.0021, 0, 0.4215, 0.0017]T

(47)

The control test is conducted in an ocean environment when the significant wave
height stays at 5.0 m, with a comparable model reference adaptive controller (MRAC). We
adopt the concepts [35,36] and assume that all of the information for the reference model is
known. It has the adaptive law (25), in which the reference control input ūm(t) is replaced
by um(t) in (17) on the basis of (16). The disturbance item f̂ (t) is replaced by the real
value item f (t), which means the limit for detection is quite strict. The wavelet neural
network-based adaptive controller (WNNAC) is obtained via Theorem 1, together with an
environmental compensation strategy (24), to replace (8), as shown in (21). In (29), we set
Qm = 105 × diag{1, 0, 1, 0}, Rm = 10−4 for deriving (22). The other positive matrices are
initially random. In short, the MRAC ideally knows all of the needed states and parameters,
while the WNNAC needs approximations of certain information. The analysis of the
responses is listed in Table 3 and Figures 8–10, where Su, Sx, Sa and Mu, Mx, Ma are the
standard and maximum deviations, respectively.

Table 3. Numerical analysis of the vibration response of the offshore platform.

Su(104 N) Sx(m) Sa(m/s2) Mu(104 N) Mx(m) Ma(m/s2)

No control - 0.0436 0.1317 - 0.1182 0.3818
MRAC 14.785 0.0571 0.2365 71.996 0.2450 0.9797

MRAC(1-300s) 5.8586 0.0237 0.0883 21.388 0.0891 0.3379
WNNAC 1.5257 0.0151 0.0461 7.5821 0.0498 0.1546
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Figure 8. Displacement response of the offshore platform structure.
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Figure 9. Acceleration response of the offshore platform structure.
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Figure 10. Control force to suppress the vibration.

Compared with the vibration response under uncontrolled conditions, the WNNAC
can reduce the maximum displacement to 42.13%, the average deviation to 34.63%, the
maximum acceleration deviation to 40.49% and the average deviation to 35.00%. The
maximum control force provided by the WNNAC is 10.83% of that provided by the MRAC,
and the average control force is 10.32%. In Figures 8 and 9, the MRAC fails in a small range
of around 350 s. For the first 300 s, the WNNAC has a 64.55% reduction in maximum
control compared to the MRAC with a mean reduction of 73.96%. We only show 400 s in
this simulation, and the total experiment lasts 16 min, with both controllers staying stable.

Case 2. Control Performance with Different Reference Models

In order not to lose the arbitrariness, we also test the WNNAC and MRAC when the
reference model has random changes based on Case 1. For example, the element in the
third row and first column of Am is 10 times the original value. Bm has random changes at
each element. The reference matrices are replaced by

Am =


0.9976 0 0.0100 0
0.0030 0.9997 0 0.0100
−0.4859 0.0003 0.9958 0
0.0531 −0.0542 0.0046 0.9954


Bm = 10−6 × [0, 0.0006,−0.0013, 0.1272]T

(48)

Dm and the other settings are the same as in (47).
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The vibration responses compared with the MRAC are displayed in Figures 11–13. We
can see that the WNNAC needs fewer control forces to achieve a control effect equivalent to
that of the MRAC, and more details are displayed in Figure 12. The MRAC and WNNAC
have basically the same reduction in the vibration responses, while the WNNAC has much
smaller and more stable control forces in Figure 13.
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Figure 11. Acceleration response of the offshore platform structure using another reference model.
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Figure 12. Acceleration response of the offshore platform structure (details).
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Figure 13. Control force to suppress the vibration using another reference model.

Additionally, we test the WNNAC with the nominal values of m1(t), ι1(t), ξ1(t), m2(t),
ι2(t) and ξ2(t) in the reference model and they have 0-60% random changes. The accelera-
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tion responses are shown in Figure 14 and details in Figure 15. The maximum perturbations
of the reference model for each of the WNNACs are represented as 0 (blue line), 30%(red
line) and 60%(yellow line). For example, the 60% perturbations are calculated by {m1± 60%,
ι1 ± 60%, ξ1 ± 60%, m2 ± 60%, ι2 ± 60%, ξ2 ± 60%} in (47). The purple dashed line and the
green dashed line define the perturbed scope of the acceleration response. Obviously, the
WNNAC constrains the vibration response to a limited extent, which means changes in the
chosen reference model are acceptable.
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Figure 14. Control force to suppress the vibration with different perturbations in platform parameters.
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Figure 15. Control force to suppress the vibration with different perturbations in platform parameters
(enlarged view of Figure 13).

5. Conclusions

The adaptive control problem for offshore platforms subject to ocean loads is discussed
in this paper. The simulation tests on the numerical model of the given platform prove that
the proposed environmental compensating measures reduce more than half of the control
forces compared to non-adaptive controllers. Moreover, the compensated reference system
is able to be transferred among different perturbing systems. The potential aspect to opti-
mize is in the rules to follow when selecting a proper reference model, including the proper
sequences of different variables. We believe that there are many other reference models
that can derive a stable adaptive controller for the target platform, and to what extent our
environmental approximation measure maintains effectiveness could be investigated.
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11. Petković, D.; Danesh, A.S.; Dadkhah, M.; Misaghian, N.; Shamshirband, S.; Zalnezhad, E.; Pavlović, N.D. Adaptive control
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