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Abstract: Within the framework of the theory of unsteady turbulent flows in a stratified fluid, a new
parameterization of the turbulent Prandtl number is proposed. The parameterization is included in
the k-e-closure and used within the three-dimensional model of thermohydrodynamics of an enclosed
water body where density distribution includes pycnocline. This allows us to describe turbulence in
a stratified shear flow without the restrictions associated with the gradient Richardson number and
justify the choice of closure constants. Numerical experiments, where the downward penetration
of turbulence was considered, confirm the advantage of the developed approach in describing the
effects neglected in the classical closures.
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1. Introduction

The processes of turbulent mixing in the hydrosphere, associated, in particular, with
meso- and submesoscale movements, play an important role in the dynamics of the ocean
and inland waters. In particular, the instability of large-scale flows, including the break-
down of mesoscale eddies on topographic irregularities and transition to submesoscale
processes, including internal waves and turbulent jets [1], and the resulting turbulent
mixing, can lead to the formation of fine structure with areas of sharp gradients of hy-
drophysical quantities (temperature, salinity, flow velocity, etc.).

Currently, the most widely used and practically significant are three main approaches to
modeling stratified turbulent flows. The first one is direct numerical simulation (DNS) of the
Navier-Stokes equations, which may be used for a detailed study of turbulence over the entire
range of its scales. The second approach, large eddy simulation (LES), uses a coarser grid and
is based on the concept of “filtering” turbulence to explicitly resolve the largest scales of the
flow. However, the relatively high requirements for computing resources limit the application
of the above approaches for predicting processes of various scales in the environment.

The third approach to turbulence modeling is based on the ensemble-averaged de-
scription of random fields of hydrothermodynamic quantities in the Reynolds—Averaged
Navier-Stokes (RANS) equations. In this approach, the mean flow is calculated using
RANS equations, which include Reynolds stresses (! u}) (u} denotes the fluctuations of the
i-th velocity component, and the angular brackets denote ensemble averaging). For the
Reynolds stresses, the transport equations can also be derived; in this case, they will include
additional unknowns—the moments of thermohydrodynamic fields of higher order. In
turbulence modeling, the problem of determining these stresses is known as the “closure
problem”. One of the most common classes of RANS models used in modern oceanology
and limnology refers to the two-parameter models that include transport equations for
two parameters characterizing turbulence (they are commonly the turbulent kinetic energy
k and another dimensional variable, for example, the rate of dissipation of turbulence
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energy ¢, the product of k and the turbulence length scale L, or the frequency of turbulent
pulsations, etc.) [2-5].

When simulating water bodies with seasonal temperature stratification, the presence
of shear due to the wind stress (wind forcing), as well as strong turbulent mixing due to
the breaking of surface waves, the so-called “k-¢” scheme is most often used in practical
modeling [2,3] In this scheme, a gradient approximation is applied to the turbulent stress:

—(uju}) = K (%ﬁf + agz ) ) — 36ij(uf?), where the eddy viscosity Ky, is calculated from the
ratio K;;; = cyk2 /€. Under the assumption of locally isotropic turbulence, the linear scale of

3
turbulence L is calculated from the formula L = Csz ; where ¢, and C are the coefficients

which are usually determined empirically. The equations of the k-¢ theory are as follows:
ok _ 0 (Knm ok
Fri §($+V)§+P+B*5/
%= 2 (% 4+7) %+ $(Cle-P— Coeve + CacB),
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Ky = Pyt K.
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Here, v is the molecular viscosity, 8y and &, are turbulent Schmidt numbers, the func-

: K| (ou 2 v 2 - : :
tion P = C¢ - (§> + (E) defines the generation of turbulent energy by the velocity

shear, B = — %C &,T% g—g is responsible for turbulent energy generation and consumption
due to buoyancy, Ci, Co¢, C3¢, C¢, Ce 1 are empirical constants [6], and K}, is the eddy
thermal conductivity.

The corresponding approximate transport equation for € is commonly obtained under
numerous physical assumptions and includes four additional empirical constants. It
should also be noted that one of the significant drawbacks of RANS models is the ensemble
averaging method used in their derivation, which does not allow, for example, to identify
physical mechanisms of turbulence generation, such as, for example, internal gravity
waves. In addition, a disadvantage of traditional RANS models is the assumption that
their empirical coefficients are assumed constant. In flows with stable stratification, where
internal gravity waves and turbulence-wave interaction can play an important role, this
assumption is not fulfilled.

Despite the popularity and, in many cases, the effectiveness of the k-¢ scheme, it is
often insufficient for the calculation of the dynamics of turbulent shear flows in a stratified
fluid at high Richardson numbers. It is known that the values of the gradient Richardson

dp

-8 % (where g is the gravity acceleration, p is density, and Uy is
velocity) in the upper mixed ocean layer (UML) including pycnocline, often significantly
exceed the critical value Ri = 1/4, determined by the necessary condition Ri < 1/4 for the
Miles-Howard hydrodynamic instability [7,8] obtained in the linear approximation. On the
other hand, to maintain the turbulence that already exists, a less demanding condition [9] is
required: Ri < Prr, where Prr = K,/ K}, is the turbulent Prandtl number equal to the ratio
of the coefficient of eddy viscosity K, to the eddy diffusivity of scalar quantities, Kj,. This
condition is a general consequence of the turbulent energy balance equation, which means
that the generation of turbulence energy due to the velocity shear exceeds its consumption
due to the work of the buoyancy forces and dissipation. It is important to note that Prr
is constant in the standard k-¢ closure, and the terms describing the buoyancy forces are
either included in the transport equation for k and ¢ (with certain additional assumptions),
or the additional algebraic relations for turbulent stresses and fluxes of various scalar
quantities, for example, heat, which is typical for temperature-stratified water bodies, are
used. These modifications lead to a significant complication of schemes for closing the
turbulent Reynolds stresses and to the appearance of additional empirical constants.

number Ri =
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At the same time, measurements show that even at Ri > Prg, there is turbulence in the
pycnocline, which has an intermittent nature, in the form of randomly located spots [10,11].
This turbulence provides an efficient transport of heat, salt, nutrients, and pollutants
through pycnocline. Turbulent transport of this type is often much more significant than
the effects of molecular thermal conductivity and diffusion. In general, the problem of the
dependence of the small-scale turbulence on shear and stratification at large values of Ri
remains an urgent and actively developing area of limnology and oceanology [12].

Over the past 20 years, new approaches based on spectral theories were developed [13,14]
to describe the features of stratified turbulent flows [15,16]. These models can in some
respects be an alternative to the traditional RANS models; they potentially allow one to
more consistently describe non-stationary processes of turbulent-wave interaction than the
RANS models. The QNSE (quasi-normal scale elimination) theory has been implemented
in the atmospheric model WRF [17,18] and has been validated against the oceanic data
both on meso- and submesoscales [19,20]. This theory also confirms the absence of a critical
Richardson number [21], which is investigated in this paper using the more well-known
RANS approach.

In this paper, we proposed a new approach for the analysis of stratified water layers
within the k-e scheme, taking into account the Prr(Ri) parameterization based on the
original model [22] of unsteady turbulent flows in a stratified fluid. The authors of [22]
used a sequential mathematical procedure based on an approximate solution of the equation
for the probability distribution function f(v, A, 1, t) (v is velocity, and A is density at the
given r and t) of the values of the hydrophysical fields and reduced the uncertainty of
gradient semi-empirical RANS schemes at Ri > 1. Later, in the works of the Zilitinkevich’s
group [23,24], the theory of energy and flux-budget (EFB) turbulence closure was proposed.
It is based on the balance equations for the energies and fluxes, and the relaxation equation
for a turbulent time scale.

As noted above, one of the main results of the model [22] and the proposed param-
eterization based on it, is the conclusion that there is no critical value of Ri as a measure
of flow laminarization in a stably stratified medium. Among other applications, this is of
interest for describing mesoscale (horizontal scales 10-100 km) and submesoscale (10°-10° m)
movements in the hydrosphere [12]. For example, ocean studies at high latitudes indicate
that the values of Ri range from 3 to 40 for the Gulf Stream [25] and 2 to 20 for the Florida
current [26]. In this case, the shear of the mesoscale flow can interact with internal waves,
causing increased mixing [27]. The geostrophically balanced flow of the upwelling-driven
coastal jet off Oregon also has Ri > 1 [28]. Therefore, today, with the growing interest in meso-
and submesoscale models of hydrosphere circulation, the problem of parameterization of
turbulent mixing processes, including regions of large Ri, remains topical.

2. Turbulence Closure

Without dwelling on the details which are described in the work [22], here we briefly
outline the main points of the model.

We began by introducing the variable probability distribution function f(v, A, r, )
for the fluid velocity v and density A:

v, A, 5, 1) = 6(u—v)s(po — A), @

where ¢ is Dirac delta-function, and the angular parentheses denote the ensemble aver-
aging. Using this together with the Navier-Stokes equations for u and p, Ostrovsky and
Troitskaya [22] obtained the expressions for the average fluxes of momentum, turbulent
kinetic energy, density fluctuations, and mass. They are the same as those used in the
common k-¢ theory, except for the last one, having the form:

" o_ o) | (*)  gBi
<p/ui> = —LV< o, +gi V2, — V2, |’ (3)
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Here V = /(u'?) is the characteristic scale of velocity, g is the gravity acceleration,
and B; are the components of the vector

oo () 2

which characterizes the effect of pressure fluctuations due to random displacements of a
particle in a stratified fluid.

The expression (3) for the mass flux includes the summand g; g;;/;z - gﬁp, which,
as shown below, leads to some significant differences from results obtained within the
framework of known gradient models [1].

As shown in [22], the components of the vector  have the form B, = B, =0, B, = <p’ 2> ‘R
for a statistically homogeneous field of density fluctuations. Here R is the anisotropy parameter:

1/ LZ << Li’/
R= (5)

L 2
%<L7;)/ LZ>>LV/

where L, and L, are the vertical and horizontal scales of the density field correlation,
respectively.

The physical meaning of the additional terms in (3) mentioned above is related to
the dependence of the force acting upon a random displacement of a liquid particle in a
stratified medium on the ratio of the characteristic scales L, and L,.

As a result, a closed model of a turbulent flow in a stratified fluid is obtained. It
includes the equations for the mean values of velocity (u), density (p), turbulent kinetic
energy k = 3V2/2, and variance of density pulsations (p’):

u; u; 8 ;
)l s e = (L () ),

%W+ (u >a(p =25 L\[(a@ + 5 (8P ’2>+g/3))
2

o+ (wi) 3 aéﬁ? oLV )
(3<P> + 3 <<p'2> +8:)) + 97 = 5 (LVRS),
a<gt ) +<ui>9<aPXi> B(P Lf( + (g z<P/2>—g,5i)ﬁ)+

k1/2 B 3(p”
LDER oy g )

In an incompressible fluid considered here, V-u = 0. This system includes mutual
transformation between kinetic and potential energies of turbulent pulsations. Here (see
also [22]), turbulence can be maintained by mean velocity shear (including that generated
by internal waves) at any values of Ri. In particular, there is no turbulence “breakdown”
phenomenon, in which, in certain phases of the wave, the velocity shear cannot maintain a
nonzero level of turbulent energy.

Note that in the last two equations in (6) Kolmogorov’s hypotheses for the dissipation
CKk3/2
L

rate of turbulent energy € and turbulent diffusion coefficient e are used; namely, € =

and ep = %(p’%, where C ~ D = 0.09 are empirical constants and L is turbulent
length scale. In the aforementioned k — € scheme, the dissipation rate is described with an
empirical coefficient K;; in Equation (1) to account for non-equilibrium conditions.

First, we used the system (6) to consider the evolution of homogeneous turbulence in a
current with constant shear. This simplified model allows us to demonstrate the exchange
between kinetic and potential energies at any Richardson numbers and find the dependence of
turbulent Prandtl number on Richardson number. The velocity shear V, is constant, and the
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stratification corresponds to the constant Brunt-Vaiisald frequency. The system (6) was reduced
< pl2 > gZ

to two ordinary equations for kinetic k and potential IT = N2

energies of turbulence:

dk 11 Ck3/2
% = VELVE- NLVE(1- (1 - R)) - &7,

dIl 2 311 Dk2TT @
21— N2LvE(1- (1 - R)) - DL
First, we provided a stationary non-zero solution of Equation (7). It had a form:
_ VI? .
kst = 2(; f(Rl)/ (8)

V2 L?
[ = Oé — kst,

where f(Ri) is a function of the Richardson number, f(Ri) = 1 — (4 — 3R)Ri + [1 + Ri?

(4—3R)* 4 (4 — 6R)Ri] 1. The time of the establishment of the equilibrium had an order
t1 ~1/Vo:v/C (see also Figure 1).

Energy (a) Energy (b)
1.0 1.0
x\ ) | 0.8F
0k 0.5 1.0 15 2.0 J . , ,
: Time 0.5 L0 15 2.0
04k 04F o e e e e ——— Time
~,
02 00 == 0.2 —,
- — - ’
-
0f ot

Figure 1. Dimensionless kinetic energy k = k/ky, ky = (VOZ)2L2 /C (the solid line) and potential
energy = /y,x = (VOZ)ZL2 /C (the dashed line) of turbulence as functions of dimensionless time
f=t/ty, tx = 1/Vy,\/C at different values of the Richardson number (a) 0.5 and (b) 5. The initial
conditions and the anisotropy parameter R = 0.5 are the same in both cases.

Figure 1 shows the dependence of the dimensionless kinetic k() and the potential
T1(t) energies of turbulence on time, corresponding to the model (6). For the chosen initial
conditions, the kinetic energy of turbulent fluctuations decreases, whereas the potential
energy of density fluctuations increases.

Note that if Ri > 1 (see Figure 1b), then in a short time f, ~ (%) =RiTl << t,a
quasi-stationary relation between the energies, k = 3II(1 — R), is established. The subsequent

evolution to the stationary state (8) does not depend on the Richardson number, namely:

dk  ~3(1—R) k3(3(1—R)(C+ D)
E_L\/EZL—BR Ve~ (4 —3R)L

An important parameter is the turbulent Prandtl number. In the stationary state, it is
given by:
ulu! I1 -1
PrT:7< l ],>P°Z = (13(1R)> ,
(prup) Vo k

Using (8), it is easy to obtain an increasing dependence of the Prandtl number on the
Richardson number:

N=

(4—3R)Ri+1+ (((4—3R)Ri+1)" — 4Ri)
2

Prr(Ri) = ©)
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In particular, in the asymptotic case, i > 1, we have:
Prr(Ri) = (4 —3R)Ri. (10)

Therefore, the condition of turbulence sustainment in a stratified fluid, Ri < Prp, [13]
is satisfied at any value of Ri; i.e., there is no generation threshold for the Richardson
number. Zilitinkevich [23,24] obtained similar expressions for the stationary values of
IT(Ri), k(Ri), and Prr(Ri) in the framework of the EFB model. The comparison of the above
dependence (10) with the EFB model developed in these works is presented in Figure 2.

1000 ¢

Pr(Ri)

EFB
----- Ostrovsky & Troitskaya, R=0.3
—_——— = Ostrovsky & Troitskaya, R=0.5

0.1
0.001 0.01 0.1 1 10 100

Ri
Figure 2. Dependence of the Prandtl number on the Richardson number from the EFB model [23,24]
and the model by Ostrovsky and Troitskaya [22].

These parameterizations are equivalent to a constant. It can be seen that Prr(Ri) is an
indefinitely increasing function, and for large values of Ri it grows linearly.
Note that the expressions (8) for the stationary values have the same form as in the

2/3
k-e model, where the eddy viscosity coefficient is Ky, = ¢y, VkL, where k = (%) so that

3
the turbulence scaleis L = C k% Using here the traditional approximation for the diffusion
rate of the scalar value (e.g., [29]), one can determine the dissipation rate of the potential
energy of turbulent fluctuations ery when the temporal scales of velocity fluctuations and

the scalar value are equal:
IT ¢

En‘k a

The expressions (8) (then will have) the form:

2 _ V2C .
2 = 5 f(Ri), an
o _ 2(1—f(Ri))
k fRy)

Note also that from the expressions for the sources P and B of turbulent energy from
(1) applied to the above example of homogeneous turbulence, in the stationary case we
obtained:

2
3I1 ) _ ngi (12)

Clsv()zz_C3EN2<1_k(l_R) i
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From this expression and the formulae (11) it follows that, as already mentioned, the
parameters of the k-¢ model are not independent but they are related by the following
equation depending on Ri:

. 6(1— f(Ri)) Coe f/py s
—C3Ri |1 - —++(1-R) | = = f(Ri). 1

Cle C3€ 1 ( f(Rl) ( ) CZ ( l) ( 3)
In particular, in the limit of Ri— oo, for the function f(Ri) this relation takes the form:

Cie(4 — 3R) — Cae = 3Cpe(1 — R).

Thus, we supplemented the system (1) with the expression (9) to additionally take into
account the contribution of shear and stratification, remove restrictions on the description
of turbulence at large Ri, and justify the choice of constants. Hence, applying the theory
developed in [22] to the description of turbulence in the k-e model, the resulting equation
can be written in the form:

dk d ( K dk
L afz(éTJrv % L pyB—¢,
(Ig—’”—t—v 3¢ 4 £(Cy-P— Cyeve +Cac-B),

2
of

Il
Yo

Ky = C £ (14)

C
1\ —1
K, = ((4—3R )Ri+1+(((42—3R)R1‘+1)2_4Ri)2> K,

Here the constants in the second equation are related by (13). These equations are
used for the specific calculations described in the next section.

3. Numerical Experiments

Using the developed modified turbulent closure, we considered here some realistic
examples of the interaction between turbulence and shear flow. Based on the above theory,
we studied the effect of the turbulent Prandtl number parameterization on the description of
mixing in a stratified shear flow using the three-dimensional hydrostatic RANS model. The
numerical code, developed at Moscow State University [30-32] unites different approaches
(RANS, LES, DNS) to describe geophysical turbulent flows with high temporal and spatial
resolution. The equations of the model are as follows:

d
W = —A(u) + Dy (i, Xm) + Dz(u, K +v) — 5L — B2 [T pdz' + fc,0,
Xm)

po ox
% = —A(v) + Dy(o, + Dz (v, Ky +v) — gg—z - p%% T pdz' — feoru,
Vu=3+3+9%2=0,
2‘% = —A(T) + Dy(v, xp) + D2(T, Ky, + A),
% = —A(S)+ Du(S, xn) + D2(S, Ky + A),
p=p(T,s),

om _
5 = w.

(15)

Here u = (u,v,w) is the velocity vector, 7 is the free surface deviation from the
equilibrium state, fc,, is the Coriolis parameter, T is the temperature, S is the salinity, p is
the density, Ky, (xm) and Kj, (x,) are coefficients of vertical (horizontal) turbulent viscosity
and temperature conductivity, respectively, v and A are coefficients of molecular viscosity
and temperature conductivity, respectively, and z is the vertical coordinate going from the
water bottom z= —-H(x, y) to the surface. In addition, A(q) is the advection operator, and
Dp (g, A) and D, (g, K) are the operators defining horizontal and vertical diffusion with the
coefficients A and K, respectively. The coefficients K;; and K}, describing vertical turbulent
mixing were calculated using the standard k—e model (1).
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To estimate the effect of turbulent Prandtl number parameterization on the description
of turbulent mixing processes, two configurations of the model were used: an idealized
reservoir with a rectangular cross-section, prescribed constant wind speed, neglecting the
effects of short-wave radiation and Coriolis force, and a more specific configuration of the
model corresponding to the Finnish lake, Kuivajérvi. In both cases, we compared the results
obtained using the standard k-¢ scheme (1) and the scheme with parameterization described
above (14). In the standard scheme, the turbulent Prandtl number was set constant and
equal to 1.25. Such a value agrees with estimates of Prr, in the conditions of neutral
stratification according to the data of laboratory experiments [33,34] and is commonly
used in calculations of circulation in inland water bodies with neutral (or close to neutral)
stratification (see, e.g., [35]). The values of constants in k-epsilon model are taken from the
data given in [6]. In the second, modified scheme, the expressions (14) and (13) were used
for the calculation of these constants.

The idealized setting used the following parameters: 10 m depth, surface temperature
20 °C with an initial gradient 0T /dz = 1.5 °C/m, which corresponds to the Brent—Vaisila
frequency (buoyancy frequency) N = 4-1072 s~!, constant momentum flux on the surface:
T=10"2N/m?.

Figure 3 demonstrates that even in this idealized case, the description of the vertical
distribution of turbulent kinetic energy is sensitive to the proposed modification.

%,ﬁ : & & ®parameterization, 1 day
H B Bparameterization, 7 day
A 4 Aparameterization, 14 day
-8 O O Ostandard, 1 day
A A Astandard,7 day
O O Ostandard, 14 day
-10

I T I T |
0 1x10°  2x10° 3x10°  4x10°
k, [m%s?]

Figure 3. Profiles of the kinetic energy of turbulence in different days of calculation using the standard
and modified schemes in the first numerical experiment.

In the case of a standard closure, the turbulence breakdown effect exists, and we see
sharp transitions where the kinetic energy of turbulence becomes equal to zero. In the
case of a modified closure the vertical distribution of turbulent kinetic energy is smooth
within transient layer. This is the feature of the modified closure—it implies the existence
of turbulence at Ri > 1.

For the example of Lake Kuivajérvi, the results of parameterization were investigated
for a real water body. This small body of water is located in Southern Finland. The results
of measurements made in 2013 [36,37] were used as atmospheric forcing data during the
entire calculation time (components of wind speed, fluxes of short-wave radiation, sensible
and latent heat), as well as a set of the initial conditions (for example, initial density vertical
distribution). In the measurement area, the water depth was 12 m. A period of 24 h in June
of 2013 was chosen when the intense heat flux resulted in large values of the Richardson
number. The vertical distribution of the turbulence kinetic energy is shown in Figure 4, and
the vertical distribution of the Richardson number values is shown in Figure 5.
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Figure 4. Profiles of the kinetic energy of turbulence using the standard and modified schemes in the lake.

0 -

_4_

z [m]

=12

1106 1x10+ 1x102 1 100  10.000
Ri

Figure 5. Profile of the Richardson number in the same numerical experiment.

Using our parameterization, we calculated the evolution of temperature distribution
from May to October of 2013. Figure 6 shows a significant downward penetration of heat,
which agrees with the observed data [38]. This confirms the advantages of the proposed
approach compared to, for example, the Canuto stability functions [39] with the limited
function of the Prandtl number used in [38].

2000 3000 4000
Time, hours

Figure 6. Time-depth distribution of temperature in Kuivajérvi Lake.

In the numerical experiment, the Richardson number varies significantly in the range
from ~0.001 to ~100-1000, reaching large values already at a shallow depth. In this case,
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the kinetic energy varies smoothly over the entire mixing region. In the framework of the
standard model (with the fixed Prandtl number), the turbulence below the thermocline is
suppressed by viscosity and dissipation, whereas molecular diffusion is insufficient for
transport through the thermocline. On the contrary, for the improved model, which takes
into account an increase in Prr due to an increase in Kj; at large Ri, a significant energy
transfer through thermocline does exist. Significant penetration of scalar substances along
the depth corresponds to the data observed in natural conditions [38].

4. Conclusions

In this paper, we proposed a parameterization of the turbulent Prandtl number based
on a model that takes into account the mutual transformation of the kinetic and potential
energies of turbulent pulsations. This parameterization is introduced into the formula
for the coefficient of eddy viscosity in the k-e¢ scheme to correctly take into account the
stratification when calculating the thermohydrodynamics of stratified water objects. Be-
sides, the obtained results confirm the choice of closure constants calculated as functions
of the Richardson number. To test the chosen parametrization, two types of numerical
experiments were carried out: a configuration of an idealized water body and the one
with the use of field measurements carried out on Lake Kuivajdrvi. For the calculations,
a three-dimensional hydrostatic model was used. The calculation results allow us to con-
clude that the description of vertical mixing in stratified water bodies is sensitive to the
parameterization of the turbulent Prandtl number.

The parameterization leads to the smoothing of all sharp changes in the vertical
distributions of turbulent kinetic energy and thickness of the transient layer, and there is
no turbulence “breakdown” phenomenon since turbulence is maintained at any values
of the Richardson number. For the example of Lake Kuivajarvi, the fundamental role of
parameterization in calculating the thermodynamics of a reservoir under the conditions
of a formed thermocline was demonstrated. It was shown that due to an increase in the
coefficient of turbulent diffusion, there is significant penetration of small-scale turbulence
below the thermocline.

These results can have broader applications in numerical models of the atmosphere,
ocean, and inland water bodies, in particular, when calculating seasonal and interannual
dynamics, as well as for describing the processes of transfer of biochemical impurities,
through a thermocline.

As for the application of the obtained results to the description of mesoscale and
submesoscale processes, the interest in using the proposed approach is confirmed by studies
of ocean currents and, in particular, by the presence of large values of the Richardson
number in in many regions of the World Ocean. At present, we plan to include the
proposed parameterization in the oceanic block of the INM RAS climate model [40] for
further application of the proposed approach in the framework of the parameterization of
meso- and submesoscale processes in global weather and climate studies.
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