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Abstract: In this paper, the formation coordination control of discrete-time distributed leaderless
multiple autonomous underwater vehicle (AUV) system with double independent position–velocity
communication topology and control inputs on a nonconvex set is studied. Firstly, the problem of
formation coordination control of multi-AUV system is transformed into the problem of formation
consensus of multi-AUV system, and the consistent state of leaderless multi-AUV system formation
was defined. Secondly, considering the existence of bounded communication delay and nonconvex
control input constraints for multi-AUV system formation under weak communication conditions, a
formation consistent constraint controller algorithm for discrete-time leaderless multi-AUV system
with double independent communication topology is proposed by introducing constraint operators.
By using the properties of graph theory, random matrix and SIA matrix, and selecting appropriate
controller parameters, the multi-AUV system formation can reach the defined consensus state.
Furthermore, the unbounded communication delay of multi-AUV system formation is studied.
Finally, the simulation results show that the proposed controller constraint algorithm is effective.

Keywords: leaderless multi-AUV; formation coordinated control; discrete-time; double independent
communication topology; nonconvex control input

1. Introduction

The multiple autonomous underwater vehicle (AUV) system is composed of multiple
isomorphic or heterogeneous AUVs that are close to each other and can carry out infor-
mation exchange and assistance. Compared with single AUV, multi-AUV system carrys
different equipment, shares information, and coordinate to complete the set tasks, which
can effectively increase the work scope of the task, reduce the working time, improve the
work efficiency, and greatly reduce the possibility of the failure of the entire task due to the
failure of single AUV [1,2]. However, the multi-AUV formation needs to design the cor-
responding assistance mechanism according to different task requirements to achieve the
purpose of collaborative control. However, the dynamics characteristics of single AUV in
the formation system, the interference of Marine environment and the interaction between
different instructions are coupled. In addition, the coordination method among individuals
in distributed multi-AUV system also brings many problems to the design of control sys-
tem [3,4]. Therefore, the formation coordination problem of distributed multi-AUV system
is studied in this paper.

Formation consensus of multi-AUV system means that multiple autonomous un-
derwater vehicles reach a consensus on the value of information state through mutual
negotiation among members in a certain network topology [5,6]. In the underwater survey
task, the placement points of each member in the multi-AUV formation system are random
and irregular, and the formation usually needs to be carried out according to the task
requirements of the multi-AUV system [7,8]. This process is described and verified by the
formation consensus problem of the multi-AUV system [9,10]. Therefore, in this paper, the
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problem of formation coordination control of multi-AUV system is transformed into the
problem of formation consensus.

The multi-AUV system needs a lot of information interaction to realize the coor-
dination and control among individuals during the execution of tasks. In underwater
operation, the formation process of multi-AUV system mainly relies on underwater acous-
tic communication to coordinate the motion state of each member, to achieve fast and
stable [11,12]. The limitations of acoustic wave bandwidth, frequency and distance in
water limit the ability and timeliness of information exchange between the members of the
multi-AUV formation. A large number of data packet loss and communication delay are
difficult to ensure that AUV formation has an effective, complete and stable communication
chain [13–15]. In addition, the limitations of the communication equipment carried by
AUV and the interference of ocean noise on the underwater acoustic channel of AUV
formation will lead to the distortion of the effective motion state information, and the
AUV formation cannot converge due to the distortion of the state information. Therefore,
weak communication conditions dominated by delay, data packet loss, communication
interruption and ocean noise are inevitable problems in the field of AUV collaborative
operation [16]. Therefore, the formation consensus problem of multi-AUV system with
communication delay is analyzed in this paper.

When considering the formation consensus problem of multi-AUV systems, the po-
sition communication topology and velocity communication topology usually share the
same communication topology [17,18]. In this case, if there is communication delay and
communication packet loss, the position state and velocity state are affected simultaneously.
Therefore, the double independent position–velocity communication topology is selected
in this paper when considering the consensus of formation [19,20]. The so-called double
independent position–velocity communication topology is to divide the motion state in-
formation transmitted among the members of the formation into pose state information
and velocity state information, and the two parts of information are transmitted through
the independent position communication topology and velocity communication topology,
respectively. In this way, the influence of communication delay and packet loss between
AUVs on formation consensus can be reduced, and the amount of single packet data in
communication can be reduced [21].

In our previous work, a lot of research results have been obtained on formation
consensus of multi-AUV system [22–27]. However, most of the research results are based
on the system in an ideal environment, without considering that the system may be limited
by various constraints [13,17]. Although the problem of nonconvex control constraints is
studied in [27], it is limited to the consistency problem of multi-AUV system with velocity
constraints in nonconvex sets, and the formation problem is not considered. In fact, due to
various objective conditions, such as the constraints of different driving forces in different
directions. The control input of multi-AUV formation system can not be arbitrarily large,
and is usually limited to a set of constraints, which may be nonconvex [28,29]. The leader-
follow coordination control problem of continuous-time multi-AUV formation with two
independent topologies and time-varying delays has been studied in reference [22,23].
Although, in the leader following formation, the follower does not need to carry more self-
positioning and navigation equipment, and can judge its corresponding state through the
status information of the leader, the division of labor in the formation is too concentrated,
and if the leader fails, the whole formation cannot work normally. According to different
underwater task requirements and considering the state adjacency information of a single
AUV, the formation of leaderless multi-AUV system is a kind of formation structure that
can make corresponding actions that are beneficial to the overall movement trend [30,31].
Compared with the leader–follower formation, the above formation has the advantages
of strong autonomy and high redundancy, and each AUV carries communication and
positioning systems less related to the survey task, which reduces the overall survey
payload of the formation of multi-AUV system.
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Therefore, in view of the above problems, the formation consensus problem of discrete-
time distributed leaderless multi-AUV system with double communication topology and
nonconvex control constraints is studied in this paper. The specific contributions of this
paper are as follows.

1. The problem of formation coordination control of multi-AUV system is transformed
into the problem of formation consensus of multi-AUV system, and the definition of
formation consensus of leaderless multi-AUV system was given;

2. Under the condition that the communication delay of multi-AUV system formation
with nonconvex control input constraints is bounded, a consensus constraint controller
algorithm for discrete-time leaderless multi-AUV system formation with double
independent position–velocity communication topology is proposed;

3. Combining the properties of the graph theory, random matrix and SIA matrix, it is
proved that the formation of multi-AUV system can achieve the defined consensus
objective by selecting the appropriate controller parameters and communication
topology. On this basis, the unbounded communication delay of multi-AUV system
formation is further studied.

The rest of this paper is arranged as follows. In Section 2, the notations, definitions,
lemmas and model of multi-AUV system are introduced. In Section 3, the formation
consensus of the leaderless multi-AUV system is discussed. In Section 3.1, the discrete time
constrained controller algorithm under the condition of bounded communication delay
is proposed, and in Section 3.2, it is extended to the case of unbounded communication
delay. In Section 4, the conclusions of this paper are verified by simulation experiment. In
Section 5, the conclusion and future work are drawn.

2. Preliminaries
2.1. Notations

The set of m dimensional real column vectors is represented as Rm, the set of m× n real
matrices is represented as Rm×n, the transpose of a vector a and matrix A are represented
as a> and A>, the ith entry of the vector a is represented as ai, the ijth entry of the
matrix A is represented as Aij, the Euclidean norm of the vector a is represented as
‖a‖, and the Kronecker product is represented as ⊗. The m dimensional unit matrix is
represented as Im, the column vector with all 1 is represented as 1, the null vector and
the null matrix are represented as 0 and 0, respectively. The block diagonal matrix is
represented as diag{A1, A2, . . . , Am}, the product of the matrices As, . . ., Am is represented
as ∏m

i=s Ai = As. . .Am, and the sum is denoted by the symbol Σ.

2.2. The Model of Multi-AUV System

In our previous work, the linearization process of symmetric AUV with 6 degrees of
freedom has been considered, which will not be repeated in this paper. The system state
of AUV is expressed as η = [x, y, z, θ, ψ, u, v, w, q, r]>, then the linear model of AUVi in
multi-AUV formation system directly given as follows

ẋi = vi, (1)

v̇i = ui. (2)

where xi = [xi, yi, zi, θi.ψi]
> ∈ R5, vi =


cosψcosθ −sinψ cosψsinθ 0 0
sinψcosθ cosψ sinψsinθ 0 0
−sinθ 0 cosθ 0 0

0 0 0 1 0
0 0 0 0 1

cos




ui
vi
wi
qi
ri

 ∈
R5, and ui ∈ R5 represent the position state, speed state and control input of AUVi,
i = 1, 2, . . . , n, respectively [22].

The formation of multi-AUV system usually adopts fixed formation in underwater
tasks, and the relative position of each member has been fixed in the preset formation,
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including distance and angle. Then, there must be a relatively fixed reference point O(t) for
the fixed formation, and let the vector ∆li denote the expected position of the AUVi relative
to O(t) in the three-dimensional space. In this paper, for the formation of the leaderless
multi-AUV system, the relative fixed reference point O(t) of the formation is set to coincide
with the vector reference point O

′
(t) formed by the average state of each AUV during the

transition from the disorder state to the fixed formation, as shown in Figure 1.

AUVi

{xi(t), vi(t)}

{x̄(t), v̄(t)} O(t) or O
′
(t)

{x̄(t) + ∆li, v̄(t)}

∆li

Figure 1. The example of leaderless formation.

In the formation process, since the position state xi(t) and velocity state vi(t) of each
AUV continue to change, the reference point O(t) always keeps moving. In addition,
because the expected point {x̄(t) + ∆li, v̄(t)} of each AUV is fixed with respect to O(t), it
can be judged that if AUV can converge to O(t), it must also converge to {x̄(t) + ∆li, v̄(t)} ,
where x̄(t) = 1

n ∑n
i=1 xi(t), v̄(t) = 1

n ∑n
i=1 vi(t). Then, the formation consensus of leaderless

multi-AUV system is defined as follows.

Definition 1. In the formation of leaderless multi-AUV system composed of n AUVs, the position
state vector and velocity state vector of AUVi at time t are xi(t) and vi(t), respectively. If the
formation satisfies the following formulas, it is said that the formation of leaderless multi-AUV
system can achieve consensus and continuously ensure formation convergence and stability.

lim
t→∞
‖xi(t)− x̄(t)− ∆li‖ = 0, (3)

lim
t→∞
‖vi(t)− v̄(t)‖ = 0. (4)

Let

ξi
1(t) = xi(t)− ∆li ∈ R5, (5)

ξi
2(t) = vi(t) ∈ R5, (6)

according to the linearized model (1) and (2), the discrete-time model of AUVi can be
obtained as follows

ξi
1(k + 1) = ξi

1(k) + ξi
2(k)T +

T2

2
ui(k), (7)

ξi
2(k + 1) = ξi

2(k) + Tui(k), (8)

where ξi
1(k) ∈ R5, ξi

2 ∈ R5, ui(k) ∈ R5 are the position state, speed state, control input
of the ith AUV at time kT, T is the control period, k stands for the discrete-time index,
k = 0, 1, 2, . . . . In addition, ui(k) satisfies the nonconvex constraint, that is, for any ui(k),
ui(k) is constrained on the non-empty nonconvex set Ui ⊆ R5. Therefore, the following
assumptions are given regarding the set Ui.
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Assumption 1 ([32]). For the non-empty bounded closed set Ui ∈ R5, i = 1, 2, . . . , n such
that 0 ∈ Ui, there exist positive constants σi, σi, such that maxx∈Ui ‖ SUi (x) ‖= σi and
minx/∈Ui

‖ SUi (x) ‖= σi. Here, the operator SUi (·) is defined by

SUi (x) =


0, x = 0

x
‖ x ‖max0≤α≤‖x‖

{
α| αβx
‖ x ‖ ∈ Ui, 0 ≤ β ≤ 1

}
, x 6= 0.

(9)

The purpose of Assumption 1 is to find the largest vector SUi (x) in the set U that
has the same direction as x, as shown in Figure 2, where z denotes any vector in the
five-dimensional space.

O

Ui

SUi (z1) = z1

SUi (z2)
z2

SUi (z3)
z3SUi (z4)

z4

Figure 2. The example of the operator SUi (·).

Through the above transformation (5) and (6), the coordination formation control
problem shown in (3) and (4) can be equivalent to the consensus control problem with
respect to ξi

1(k) and ξi
2(k).

Define
ξ i(k) = [ξi

1
>
(k), ξi

2
>
(k)]> ∈ R10 (10)

then the coordination control objective of leaderless multi-AUV system formation to achieve
consensus can be equivalently expressed as follows

lim
k→∞

‖ ξ i(k)−
1
n

n

∑
j=1

ξ j(k) ‖= 0 (11)

Since this paper discusses the coordination control problem of formation under weak
communication condition, that is, there is communication delay in formation process, let
τij(k) represent the communication delay between AUVi and AUVj at time kT, then the
following definition is given about τij(k).

Definition 2. In the discrete-time multi-AUV system, τij(k) ≥ 0 is the communication delay
between AUVi and AUVj.

1. For any τij(k), if there exists a constant τmin ≥ 0 such that T − τij(k) ≥ τmin, then the
multi-AUV system is said to be no communication delayed.

2. For any τij(k), if there exists a positive integer N such that NT − τij(k) ≥ τmin, then the
multi-AUV system is said to be communication delay bounded. In this case, τij(k) is valued
as follows

τij(k) = Nij, (12)

where Nij is a non-negative integer, and satisfies (Nij + 1) ≤ N, 0 ≤ τij(k)− NijT ≤ T,
(Nij + 1)T − τij(k) ≥ τmin and (Nij + 1) ≤ N.
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3. If there is τij(k), for any positive integer N, τij(k)− NT > T, then the multi-AUV system is
said to be communication delay unbounded.

Compared with bounded communication delay, if τij(k) is the unbounded communica-
tion delay, then AUVj in the formation cannot receive the information transmitted by AUVi
at time kt, which will greatly affect the integrity of the formation and the accuracy of the
position/velocity. With respect to Definition 2, for all i, j, when Nij = 0, no communication
delay can be regarded as a special case of bounded communication delay. Therefore, only
two cases of bounded communication delay and unbounded communication delay are
considered in this paper.

2.3. Graph Theory and Lemmas

Let G(V, ε, A) be the digraph of the multi-AUV formation system with n mem-
bers, where V = {1, 2, . . . , n} is the set of nodes, ε ⊆ V × V is the set of edges and
A = [aij] ∈ Rn×n is the adjacency matrix associated with the digraph, and aii = 0. The
Laplace matrix Ln = [lij] ∈ Rn×n is defined as [lii] = ∑n

i=1 aij, [lij] = −aij, i 6= j. The edge
(i, j) in the edge set of a digraph indicates that node j can receive the information of node
i, where the node i is called the parent node and the node j is called the child node, if
(i, j) ∈ ε then aji > 0, otherwise aji = 0. Let Ni = {j ∈ V|(j, i) ∈ ε} represents the set of
neighbors of node i. The combination of edges (i1, i2), (i2, i3), . . . is called a directed path.
The digraph is known as the directed tree if all nodes but one root node have a parent node
and there is a directed path at the root to connect all other nodes. The digraph is strongly
connected if there is a directed path between any two different nodes in the digraph. The
union of a set of graphs is a graph composed of the union of nodes of graphs and the union
of edge sets. A union of graphs is defined as a graph consisting of the union of nodes and
the union of edge sets of these graphs.

For a nonnegative matrix M = [mij] ∈ Rn×n, if ∑n
j=1 mij = 1, i ∈ 1, 2, . . . , n, then M is

a random matrix. Furthermore, for a random matrix M = [mij] ∈ Rn×n, if there is and only
one eigenvalue satisfying λ = 1 and other eigenvalues satisfying |λi| < 1, then random
matrix M is a SIA matrix.

Lemma 1 ([33]). For the random matrix M = [mij] ∈ Rn×n, if its diagonal elements are positive
and the graph associated with M has a spanning trees, the M is a SIA matrix.

Lemma 2 ([34]). For a finite SIA matrix set S1, S2, . . . , Sk, the product matrix Sij Sij−1 . . .Si1 of
any finite matrix matrix Si1 , Si2 , . . . , Sij is also a SIA matrix, for an infinite number of matrices
Sij , Sij−1 , . . . , then there exists a constant vector y ∈ Rn that satisfies lim

j→∞
Sij Sij−1 . . .Si1 = 1ny>.

Lemma 3 ([35]). For m ≥ 2 nonnegative matrices P1, P2, . . . , Pm, assuming that its diagonal
elements are all positive, then there exists ε > 0 satisfying P1P2. . .Pm ≥ ε(P1 + P2 + · · ·+ Pm).
If the graph associated with the matrix Pa = P1 + P2 + · · ·+ Pm contains a spanning tree, then
the graph associated with the matrix Pt = P1P2. . .Pm also contains a spanning tree.

3. Results
3.1. Formation Constrained Controller with Bounded Communication Delay

Let Gp, Gv be the double independent position–velocity communication topology

of formation, τ
ij
p (k) and τ

ij
v (k) be different communication delays and satisfy the delay

bounded condition of Definition 2, namely, there are positive integers Np and Nv, so

that 0 ≤ τ
ij
p (k) ≤ Np, 0 ≤ τ

ij
v (k) ≤ Nv. Then, the discrete-time constrained coordina-

tion controller of the leaderless multi-AUV system formation with double communica-
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tion topology and the control input satisfying the nonconvex control constraints is given
as follows

ui(k) = SUi

[ n

∑
j=1

aij(k)(ξ
j
1(k− τ

ij
p )− ξi

1(k))− κi
p(k)(ξ

i
1(k)−

1
n

n

∑
j=1

ξ
j
1(k− τ

ij
p ))

+
n

∑
j=1

bij(k)(ξ
j
2(k− τ

ij
v )− ξi

2(k))− κi
v(k)(ξ

i
2(k)−

1
n

n

∑
j=1

ξ
j
2(k− τ

ij
v ))
]
, (13)

where aij(k) and bij(k) are the ijth element of position adjacency matrix Ap(k) and velocity
adjacency matrix Av(k), respectively, and κi

p(k) and κi
v(k) are the gain of the coordination

controller at time kT.
According to Assumption 1, (13) is nonlinear. Therefore, (13) will be linearized in the

following. Define

hi(k) =


‖ SUi [πi(k)] ‖
‖ πi(k) ‖

, πi(k) 6= 0,

1, πi(k) = 0,
(14)

where

πi(k) =
n

∑
j=1

aij(k)(ξ
j
1(k− τ

ij
p )− ξi

1(k))− κi
p(k)(ξ

i
1(k)−

1
n

n

∑
j=1

ξ
j
1(k− τ

ij
p ))

+
n

∑
j=1

bij(k)(ξ
j
2(k− τ

ij
v )− ξi

2(k))− κi
v(k)(ξ

i
2(k)−

1
n

n

∑
j=1

ξ
j
2(k− τ

ij
v )) (15)

Since SUi [πi(k)] and πi(k) have the same direction, (13) can be written as

ui(k) = SUi [πi(k)] = hi(k)πi(k)

= hi(k)
[ n

∑
j=1

aij(k)(ξ
j
1(k− τ

ij
p )− ξi

1(k))− κi
p(k)(ξ

i
1(k)−

1
n

n

∑
j=1

ξ
j
1(k− τ

ij
p ))

+
n

∑
j=1

bij(k)(ξ
j
2(k− τ

ij
v )− ξi

2(k))− κi
v(k)(ξ

i
2 −

1
n

n

∑
j=1

ξ
j
2(k− τ

ij
v ))
]
, (16)

and for all i, k, 0 < hi(k) ≤ 1.
Now ξi

1
>
(k), ξi

2
>
(k) ,i = 1, 2, . . . , n are transformed. Let

φ(k) = {ξ1
1
>
(k), . . . , ξn

1
>(k), ξ1

2
>
(k), . . . , ξn

2
>(k)}> ∈ R10n, (17)

then the discrete-time multi-AUV system (7) and (8) with the constrained coordination
controller (13) can be expressed as

φ(k+1)=
[

In TIn
0 In

]
⊗I5φ(k)−

[
T2

2 H(k) 0
0 TH(k)

][
Dp

0 (k)+κp(k) Dv
0(k)+κv(k)

Dp
0 (k)+κp(k) Dv

0(k)+κv(k)

]
⊗I5φ(k)

+
M

∑
m=0

[
T2

2 H(k) 0
0 TH(k)

][
Dpm(k)+κp(k)Npm(k) Dvm(k)+κv(k)Nvm(k)
Dpm(k)+κp(k)Npm(k) Dvm(k)+κv(k)Nvm(k)

]
⊗I5φ(k−m). (18)

where k ≤ m ≤ 0. Let Nm = max{Np, Nv}, then m satisfies the inequality Nm ≤
m ≤ 0. Let Lp(k), Lv(k) ∈ Rn×n be Laplace matrix with respect to communication
topologies Gp(k) and Gv(k), then Dp

0 (k) = diag(Lp(k)), Dv
0(k) = diag(Lv(k)). κp(k) =

diag{κ1
p(k), κ2

p(k), . . . , κn
p(k)} ∈ Rn×n, κv(k) = diag{κ1

v(k), κ2
v(k), . . . , κn

v (k)} ∈ Rn×n. When

τ
ij
p (k) = τ

ij
v (k) = m, the ijth entries of matrices Dpm(k) and Dvm(k) are the weights aij(k)
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and bij(k) of edges (j, i), respectively; otherwise, the ijth entries of Dpm(k) and Dvm(k)
are zero. For matrices Npm(k) and Nvm(k), the ijth entry of Npm(k) and Nvm(k) is 1

n if

τ
ij
p (k) = τ

ij
v (k) = m, the ijth entry is zero otherwise.

Further φ>(k), φ>(k− 1), . . . , φ>(k− Nm) are transformed. Let

ϕ(k) = {φ>(k), φ>(k− 1), . . . , φ>(k− Nm)}> ∈ R10(Nm+1)n, (19)

then
ϕ(k + 1) = Q(k)⊗ I5ϕ(k), (20)

where Q(k) ∈ R[2(Nm+1)n]×[2(Nm+1)n], its specific representation is as follows.

Q(k) =


Q11(k) Q12(k) · · · Q1,Nm+1(k)
Q21(k) Q22(k) · · · Q2,Nm+1(k)

...
...

. . .
...

QNm ,1(k) QNm ,2(k) · · · QNm+1,Nm+1(k)


Each block matrix in matrix Q(k) can be, respectively, expressed as

Q11(k) =

[
In − T2

2 H(k)[Dp
0 (k) + κp(k)] TIn − T2

2 H(k)[Dv
0(k) + κv(k)]

−TH(k)[Dp
0 (k) + κp(k)] In − TH(k)[Dv

0(k) + κv(k)]

]

+

[
T2

2 H(k)[Dp0(k) + κp(k)Np0(k)] T2

2 H(k)[Dv0(k) + κv(k)Nv0(k)]
TH(k)[Dp0(k) + κp(k)Np0(k)] TH(k)[Dv0(k) + κv(k)Nv0(k)]

]

Q1,q(k) =

[
T2

2 H(k)[Dp(q−1)(k) + κp(k)Np(q−1)(k)]
T2

2 H(k)[Dv(q−1)(k) + κv(k)Nv(q−1)(k)]
TH(k)[Dp(q−1)(k) + κp(k)Np(q−1)(k)] TH(k)[Dv(q−1)(k) + κv(k)Nv(q−1)(k)]

]

Qq,q−1(k) =
[

In 0
0 In

]
where q is a positive integer, and 2 ≥ q ≥ Nm + 1. The other matrix blocks are 2n × 2n-order
null matrices.

According to the above procedure, the consistency theorem for discrete-time multi-
AUV formation system with nonconvex control inputs and double independent position–
velocity communication topology is given below.

Theorem 1. When the related parameters and communication topology meet the following condi-
tions:

1. The position communication topology Gp and speed communication topology Gv have directed
trees, respectively.

2. For all k ≥ 0, 0 ≤ hi(k)(lii
p (k) +

n−1
n κi

p(k)) ≤ 1, 0 ≤ hi(k)(lii
v (k) +

n−1
n κi

v(k)) < 1−T
T ,

where lii
p (k) = ∑n

j=1 aij(k), lii
v (k) = ∑n

j=1 bij(k), i, j = 1, 2, . . . , n.
3. T < 1

2 .

The discrete-time multi-AUV formation system (7) and (8) with the discrete-time constrained
coordination controller (13) can achieve consensus.

Proof of Theorem 1. First, the random matrix is constructed. Let

Q̄(k) = Q(k)− Q̃(k), (21)

where Q̃(k) ∈ R[2(Nm+1)n]×[2(Nm+1)n], Q̃11(k) =

[
TIn 0
−TIn TIn

]
, Q̃qq(k) =

[
−TIn 0

0 −TIn

]
,

Q̃q(q−1)(k) =

[
TIn 0

0 TIn

]
, and the other matrix blocks are 2n × 2n-order null matrices.



J. Mar. Sci. Eng. 2023, 11, 107 9 of 22

According to the conditions (2) and (3) given by Theorem 1 and the properties of random
matrices, we know that Q̄(k) ∈ R[2(Nm+1)n]×[2(Nm+1)n] is a random matrix.

Then, according to (20) and (21) , ϕ(k) can be written as

ϕ(k + 1) = [Q̄(k) + Q̃(k)]⊗ I5 ϕ(k), (22)

and

ϕ(k) =
k

∏
r=l

Q(r)ϕ(l) =
k

∏
r=l

[Q̄(r) + Q̃(r)]⊗ I5 ϕ(l), (23)

where r, l are non-negative integers, and k > l ≥ 0.
When k → ∞, the expansion of ∏k

r=l [Q̄(r) + Q̃(r)] consists of these two forms
CQ̄Q̃Q̄∞DQ̄Q̃ and C

′

Q̄Q̃Q̃∞D
′

Q̄Q̃. Where Q̄∞ is the matrix composed of infinite matrices

Q̄(r), Q̃∞ is the matrix composed of infinite matrices Q̃(r), CQ̄Q̃, DQ̄Q̃, C
′

Q̄Q̃ , D
′

Q̄Q̃ are

matrices composed of finite matrices Q̄(r) and Q̃(r), respectively, and k ≥ r ≥ l ≥ 0.
Furthermore, according to the conditions given by Theorem 1, it can be known that the
communication topology associated with random matrix Q̄(r) has a directed tree. Then,
according to the definitions of random matrix and SIA matrix Lemma 1, Q̄(r) is a SIA
matrix. Thus, When k→ ∞, the matrix Q̄∞ has the same row vectors.

Next, define

Q̄∞ =


r1 r2 · · · rNm+1
r1 r2 · · · rNm+1
...

...
. . .

...
r1 r2 · · · rNm+1

, (24)

where ri =

[
ri1 ri2
ri1 r12

]
∈ R2n×2n, and the matrices ri1, ri2 ∈ Rn×n each have the same row

vectors, i = 1, 2, . . . , Nm + 1. Through matrix operation, the matrix CQ̄Q̃Q̄∞DQ̄Q̃ can be
obtained in the following form,

CQ̄Q̃Q̄∞DQ̄Q̃ =


r∞

11 r∞
12 · · · r∞

1,2(Nm+1)
r∞

21 r∞
22 · · · r∞

2,2(Nm+1)
...

...
. . .

...
r∞

2(Nm+1),1 r∞
2(Nm+1),2 · · · r∞

2(Nm+1),2(Nm+1)

, (25)

and for all i, i = 1, 2, . . . , 2(Nm + 1), the matrix r∞
ij is the n-order matrix with the same

row vectors. On the other hand, for the matrix C
′

Q̄Q̃Q̃∞D
′

Q̄Q̃, taking the infinite norm of

C
′

Q̄Q̃Q̃∞D
′

Q̄Q̃, we can obtain the following inequality

0 ≤ ‖C′Q̄Q̃Q̃∞D
′

Q̄Q̃‖∞ = ‖Q̄‖∞ · · · ‖Q̄‖∞︸ ︷︷ ︸
γ

‖Q̃‖∞ · · · ‖Q̃‖∞︸ ︷︷ ︸
δ→∞

= ‖Q̃‖∞ · · · ‖Q̃‖∞︸ ︷︷ ︸
δ→∞

≤ 0, (26)

where γ, δ are nonnegative integers and γ + δ = k− l.Therefore, it can be seen from (26)
that

C
′

Q̄Q̃Q̃∞D
′

Q̄Q̃ = 0. (27)
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Finally, by combining (25) and (27), when k→ ∞, the matrix lim
k→∞

∏k
r=l Q(r)⊗ I5 ϕ(l)

has the same row vector for every n rows, that is,

lim
k→∞

ϕ1(k) = lim
k→∞

ϕ2(k) = · · · = lim
k→∞

ϕn(k),

lim
k→∞

ϕn+1(k) = lim
k→∞

ϕn+2(k) = · · · = lim
k→∞

ϕ2n(k),

...

lim
k→∞

ϕ2n(Nm−1)+1(k) = lim
k→∞

ϕ2n(Nm−1)+2(k) = · · · = lim
k→∞

ϕ2nNm(k),

lim
k→∞

ϕ2nNm+1(k) = lim
k→∞

ϕ2nNm+2(k) = · · · = lim
k→∞

ϕ2n(Nm+1)(k).

where ϕi(k) ∈ R5, i = 1, 2, . . . , 2n(Nm + 1) is the ith component of vector ϕ(k).
Then, for all i, j = 1, 2, . . . , n, when k→ ∞, according to transformations (17) and (19),

it can be obtained that

lim
k→∞

ξ i(k) = lim
k→∞

ξ j(k),

lim
k→∞

‖ ξ i(k)−
1
n

n

∑
j=1

ξ j(k) ‖= 0.

At this time, the multi-AUV formation system (7) and (8) with controller (13) can
achieve consensus in its average state if the conditions given by Theorem 1 are satisfied.
Therefore, Theorem 1 is proved.

If the formation of the multi-AUV systems can achieve the consensus in Theorem 1,
then it shows that the vectors (ξ j

1(k− τ
ij
p )− ξi

1(k)) and (ξ
j
2(k− τ

ij
v )− ξi

2(k)) are bounded for
all
i, j = 1, 2, . . . , n, k = 0, 1, 2, . . . . Therefore, the following assumption is given.

Assumption 2. When the formation of multi-AUV systems can achieve the consensus in Theo-
rem 1, assume that there are non-negative constants Mij

p , Mij
v , which satisfy

‖ ξ
j
1(k− τ

ij
p )− ξi

1(k) ‖ ≤ Mij
p , (28)

‖ ξ
j
2(k− τ

ij
v )− ξi

2(k) ‖ ≤ Mij
v , (29)

for all i, j, k.

In fact, in the process of formation tend to be more consistent, the coordinated control
system of formation, the initial state of each unit in the formation, the controller gain, control
period and communication topology are given in advance according to the conditions
in Theorem 1, then vector (ξ

j
1(k − τ

ij
p ) − ξi

1(k)) and vector (ξ
j
2(k − τ

ij
v ) − ξi

2(k)) can be

easily solved. At this time, the non-negative constant Mij
p and Mij

v can be found to make

‖ ξ
j
1(k− τ

ij
p )− ξi

1(k) ‖≤ Mij
p and ‖ ξ

j
2(k− τ

ij
v )− ξi

2(k) ‖≤ Mij
v . Therefore, Assumption 2 is

easy to realize.

Corollary 1. When the formation of multi-AUV systems can achieve the consensus in Theorem 1,
for all i, k,hi(k) satisfies

Tσi
TMi

p + (1− T)Mi
v
≤ hi(k) ≤ 1 (30)

where Mi
p = max{Mi1

p , Mi2
p , . . . , Min

p } and Mi
v = max

{
Mi1

v , Mi2
v , . . . , Min

v
}

.
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Proof of Corollary 1. By the definition of hi, for all k = 0, 1, . . . , when πi(k) 6= 0, hi(k) =
‖SUi [πi(k)]‖
‖πi(k)‖

, i = 1, 2, . . . , n. Below from the numerator, denominator two aspects to discuss.
Firstly, according to the assumption of constraint operator SUi (·) in Assumption 1, it can be
known that ‖ SUi [πi(k)] ‖≤ σi. Secondly, according to the conditions in Theorem 1,

πi(k) ≤ lii
p (k)Mi

p +
n− 1

n
κi

p(k)Mi
p + lii

p (k)Mi
v +

n− 1
n

κi
p(k)Mi

v ≤ Mi
p +

1− T
T

Mi
v.

So for all i, k,

hi(k) ≥
Tσi

TMi
p + (1− T)Mi

v
.

Corollary 1 is proved.

In Theorem 1, Condition 1 states that if a formation can maintain the existence of a
directed tree in its communication topology in the case of bounded communication delay
and random communication delay, the preset communication topology of the formation
is required to be relatively high. In general, when the multi-AUV formation system has
communication delay, the communication topology cannot be guaranteed to have a directed
tree. In view of this situation, another corollary about Theorem 1 is given below.

Corollary 2. For the leaderless multi-AUV formation system (7) and (8) with bounded communi-
cation delay, the discrete-time constrained controller algorithm (13) is selected when the following
conditions are satisfied

1. The union of position communication topologies Gp(k), Gp(k + 1), . . . , Gp(k + Nm − 1) the
union of velocity communication topologies Gv(k), Gv(k + 1), . . . , Gv(k + Nm − 1) have di-
rected
trees, respectively,

2. For all k ≥ 0, 0 ≤ hi(k)(lii
p (k) +

n−1
n κi

p(k)) ≤ 1, 0 ≤ hi(k)(lii
v (k) +

n−1
n κi

v(k)) < 1−T
T ,

where lii
p (k) = ∑n

j=1 aij(k), lii
v (k) = ∑n

j=1 bij(k), i, j = 1, 2, . . . , n.
3. T < 1

2 .

the multi-AUV formation can achieve the set consensus state, and Tσi
TMi

p+(1−T)Mi
v
≤ hi(k) ≤ 1,

i, j = 1, 2, . . . , n, k = 0, 1, 2 . . . .

Proof of Corollary 2. Definition

L̄k
p = Lp(k) + Lp(k + 1) + · · ·+ Lp(k + Nm − 1),

L̄k
v = Lv(k) + Lv(k + 1) + · · ·+ Lv(k + Nm − 1).

According to the conditions of Theorem 1, It can be known that the communication
topological directed spanning tree related to matrices L̄k

p, L̄k
v. According to the proof process

of Theorem 1, matrix Q̄(k) is a random matrix, then according to Lemma 3, there exists
ε > 0, which satisfies

Q̄M(k) = Q̄(k)Q̄(k + 1) . . . Q̄(k + Nm − 1) ≥ ε(Q̄(k) + Q̄(k + 1) + · · ·+ Q̄(k + Nm − 1)),

and the product matrix Q̄M(k) contains a directed spanning tree, so Q̄M(k) is a SIA matrix.

ϕ(k + 1) = [Q̄(k) + Q̃(k)]⊗ I5 ϕ(k),

for any non-negative integer r, l, there is

ϕ(k) =
k

∏
r=l

Q(r)ϕ(l) =
k

∏
r=l

[Q̄(r) + Q̃(r)]⊗ I5 ϕ(l),
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where k ≥ r ≥ l ≥ 0, k > l. When k→ ∞, the expansion of the product matrix ∏k
r=l [Q̄(r) +

Q̃(r)] also consists of two forms of matrices CQ̄Q̃Q̄∞DQ̄Q̃ and C
′

Q̄Q̃Q̃∞D
′

Q̄Q̃. Where matrix

Q̄∞ is the matrix composed of the product of infinite Q̄(r) matrices, matrix Q̃∞ is the matrix
composed of the product of infinite Q̃(r) matrices, and CQ̄Q̃, DQ̄Q̃, C

′

Q̄Q̃ , and D
′

Q̄Q̃ are

product matrices composed of finite Q̄(r) and Q̃(r) matrices.
The proof of Theorem 1 shows that the product matrix C

′

Q̄Q̃Q̃∞D
′

Q̄Q̃ = 0. Therefore,

only matrices of form CQ̄Q̃Q̄∞DQ̄Q̃ are considered in the following. The product matrix
CQ̄Q̃Q̄∞DQ̄Q̃ can be expressed as

CQ̄Q̃Q̄∞DQ̄Q̃ = CQ̄Q̃(Q̄(r)Q̄(r + 1) . . . Q̄(r + Nm − 1))∞DQ̄Q̃ = CQ̄Q̃Q̄∞
MDQ̄Q̃.

where the matrix Q̄∞
M is the matrix obtained by multiplying infinitely many Q̄M(r) matrices.

According to the properties of SIA matrix, the product matrix Q̄∞
M has the same row vectors.

Therefore, the product matrix CQ̄Q̃Q̄∞
MDQ̄Q̃ has the same row vectors for every n rows.

That is, when k → ∞, the product matrix ∏k
r=l Q(r) has the same row vector for every n

rows. So for any i, j = 1, 2, . . . , n, when k→ ∞, there is

lim
k→∞

ξ i(k) = lim
k→∞

ξ j(k),

lim
k→∞

‖ ξ i(k)−
1
n

n

∑
j=1

ξ j(k) ‖= 0.

Corollary 2 is proved.

3.2. Formation Constrained Controller with Unbounded Communication Delay

Under the condition of weak communication, the multi-AUV formation system may
have unbounded communication delay, that is, there exists τ

ij
p (k), τ

ij
v (k) for any positive

integer N, it satisfies τ
ij
p (k)− NT > T, τ

ij
v (k)− NT > T, that is to say, AUVj in the for-

mation cannot receive the information transmitted by AUVi at time kt. For this case, its
corresponding weight values are selected as aji = 0 and bji = 0. Therefore, the communi-
cation topology Gp(k), Gv(k), associated with Lp(k), Lv(k) ∈ Rn×n are not guaranteed to
contain a spanning tree.

According to the definition of communication delay, assuming that τ
ij
p (k)− NT > T

and τ
ij
v (k)− NT > T, satisfy the success of communication according to the probability

ρc
p ∈ (0, 1) and ρc

v ∈ (0, 1), respectively, there are positive integers mc
p, mc

c, such that

1− (1− ρc
p)

mc
p > µ, (31)

1− (1− ρc
v)

mc
v > µ. (32)

If µ is chosen as a value very close to 1, then it can be assumed, for mc times communi-
cation between systems, at least one can be successful. Therefore, for the case of unbounded
communication delay in Definition 2, τ

ij
p (k) = τ

ij
v (k) = mc is selected. In this case, the

consensus problem of multi-AUV formation system with unbounded communication delay
is transformed into the consensus problem of formation with bounded communication
delay. Therefore, the following theorem is given for multi-AUV formation systems with
unbounded communication delay.

Theorem 2. For the leaderless multi-AUV formation system (7) and (8) with unbounded commu-
nication delay, the discrete-time constrained controller algorithm (13) is selected when the following
conditions are satisfied
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1. The union of position communication topologies Gp(k), Gp(k + 1), . . . , Gp(k + mc − 1) the
union of velocity communication topologies Gv(k), Gv(k + 1), . . . , Gv(k + mc − 1) have di-
rected trees, respectively,

2. For all k ≥ 0, 0 ≤ hi(k)(lii
p (k) +

n−1
n κi

p(k)) ≤ 1, 0 ≤ hi(k)(lii
v (k) +

n−1
n κi

v(k)) < 1−T
T ,

where lii
p (k) = ∑n

j=1 aij(k), lii
v (k) = ∑n

j=1 bij(k), i, j = 1, 2, . . . , n.
3. T < 1

2 .

the multi-AUV formation can achieve the set consensus state, and Tσi
TMi

p+(1−T)Mi
v
≤ hi(k) ≤ 1,

i, j = 1, 2, . . . , n, k = 0, 1, 2 . . . .

The proof of Theorem 2 is the same as that of Corollary 2, so the explanation is not
repeated.

In Theorem 2, the formation is only considered in the case of no communication delay
and unbounded communication delay. However, in general, the formation may have no
communication delay, bounded communication delay and unbounded communication
delay during operation, and it is impossible to uniformly determine the communication
delay bound in practice. At the same time, when the bounded communication delay is
too large, the validity of the obtained data is too low. Therefore, in practical applications,
a non-negative constant integer NA is usually selected to determine the bounded or un-
bounded communication delay. Therefore, the following assumption is given regarding
the communication delay τ

ij
p (k) and τ

ij
v (k).

Assumption 3. For any τ
ij
p (k), τ

ij
v (k) 6= 0, a non-negative constant integer NA is selected.

Suppose that

1. when τ
ij
p (k), τ

ij
v (k) ≤ NA , τ

ij
p (k), τ

ij
v (k) are called the bounded communication delay of the

multi-AUV formation system,
2. when τ

ij
p (k), τ

ij
v (k) > NA, τ

ij
p (k), τ

ij
v (k) are called the unbounded communication delay of

the multi-AUV formation system.

Suppose τ
ij
p (k), τ

ij
v (k) meet the requirements of successful communication, bounded

communication delay and unbounded communication delay according to probability
ρ̄c

p, ρ̄c
v ∈ (0, 1), ρ̄

y
p, ρ̄

y
v ∈ [0, 1) and ρ̄w

p , ρ̄w
v ∈ [0, 1), respectively. Then, for any µ ∈ (0, 1), there

exist positive integers m̄c
p, m̄c

v ≤ NA such that

1− (1− ρ̄c
p)

m̄c
v ≥ 1− (1− ρ̄c

p − ρ̄
y
p)

m̄c
v > µ̄,

1− (1− ρ̄c
v)

m̄c
v ≥ 1− (1− ρ̄c

v − ρ̄
y
v)

m̄c
v > µ̄,

and ρ̄c
p + ρ̄

y
p + ρ̄w

p = 1, ρ̄c
v + ρ̄

y
v + ρ̄w

v = 1. If µ̄ is taken to be a value very close to 1, it can
be assumed that, for the case of unbounded communication delay in Assumption 2, the
formation can succeed in at least one of m̄c = max[m̄c

p, m̄c
v] communications. Therefore,

according to Assumption 3, the following corollary can be obtained.

Corollary 3. For the leaderless multi-AUV formation system (7) and (8) with communication delay,
the discrete-time constrained controller algorithm (13) is selected when the following conditions are
satisfied

1. The union of position communication topologies Gp(k), Gp(k + 1), . . . , Gp(k + NA − 1) the
union of velocity communication topologies Gv(k), Gv(k + 1), . . . , Gv(k + NA − 1) have
directed trees, respectively,

2. For all k ≥ 0, 0 ≤ hi(k)(lii
p (k) +

n−1
n κi

p(k)) ≤ 1, 0 ≤ hi(k)(lii
v (k) +

n−1
n κi

v(k)) < 1−T
T ,

where lii
p (k) = ∑n

j=1 aij(k), lii
v (k) = ∑n

j=1 bij(k), i, j = 1, 2, . . . , n.
3. T < 1

2 .
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the multi-AUV formation can achieve the set consensus state, and Tσi
TMi

p+(1−T)Mi
v
≤ hi(k) ≤ 1,

i, j = 1, 2, . . . , n, k = 0, 1, 2 . . . .

Proof of Corollary 3. For all i, j = 1, 2, . . . , n, k = 0, 1, 2, . . . , τ
ij
p (k), τ

ij
v (k) meet Assumption 3,

then the values of τ
ij
p (k), τ

ij
v (k) are selected as follows

τ
ij
p (k) =

τ
ij
p (k), 0 ≤ τ

ij
p (k) ≤ NA,

m̄c, τ
ij
p (k) > NA,

τ
ij
p (k) =

τ
ij
p (k), 0 ≤ τ

ij
p (k) ≤ NA,

m̄c, τ
ij
p (k) > NA.

At this time, the consensus problem of multi-AUV formation systems satisfying
Assumption 3 is transformed into the consensus problem of formation systems with
bounded communication delay. Therefore, the following proof procedure is the same
as Corollary 2.

4. Simulation

In this part, the above conclusions are mainly verified by simulation. Assume that
the multi-AUV formation system consists of five AUVs, which are AUV1, AUV2, AUV3,
AUV4 and AUV5, respectively. The position communication topology Gp and velocity
communication topology Gv are selected as the communication structures shown in Figure 3.
For the adjacency matrix Ap and Av of Gp and Gv, when aij 6= 0, bij 6= 0,aij = 0.1,
bij = 1. The nonconvex control constraint set Ui is selected as Ui = {x|‖x‖ ≤ 1} ∪ {x|‖x−
[−1, 1, 0, 0, 0]>‖ ≤ 1} ∪ {x|‖x− [−1,−1, 0, 0, 0]>‖ ≤ 1}, ∀i = 1, 2, . . . , n. In this case, σi = 1.
The initial states are selected as xi = [−50, 50], yi = [−50, 50], zi = [−20, 0], ψi = [0, 3],
θi = 0, and νi = [0.5, 0, 0, 0, 0]. The control period and controller parameters are selected
as T = 0.04, κi

1 = 0.77 and κi
2 = 14.7. The relative expected positions are selected as

∆l1 = [20, 0, 0, 0, 0]>, ∆l2 = [0, 20, 0, 0, 0]>, ∆l3 = [0, 0,−20, 0, 0]>, ∆l4 = [−20, 0, 0, 0, 0]>

and ∆l5 = [0,−20, 0, 0, 0]>. According to Assumption 3, the value of NA is random and is
chosen as NA = 3 in this part. According to (31) and (32), the value of µ should be close
to 1, so µ = 0.99 is selected. The values of ρ̄c

p, ρ̄
y
p and ρ̄w

v are random, then when k = 0,
ρ̄c

p = ρ̄c
v = 1. Further, suppose that when k = 1, ρ̄c

p = ρ̄c
v = 0.9, ρ̄

y
p(1) = ρ̄

y
v(1) = 0.1,

when k = 2, ρ̄c
p = ρ̄c

v = 0.9, ρ̄
y
p(1) = ρ̄

y
v(1) = 0.05, ρ̄

y
p(2) = ρ̄

y
v(2) = 0.05, when k = 3,

ρ̄c
p = ρ̄c

v = 0.9, ρ̄
y
p(1) = ρ̄

y
v(1) = 0.05, ρ̄

y
p(2) = ρ̄

y
v(2) = 0.03, ρ̄

y
p(3) = ρ̄

y
v(3) = 0.02, when

k > 3, ρ̄c
p = ρ̄c

v = 0.9, ρ̄
y
p(1) = ρ̄

y
v(1) = 0.05, ρ̄

y
p(2) = ρ̄

y
v(2) = 0.03, ρ̄

y
p(3) = ρ̄

y
v(3) = 0.01,

ρ̄w
p (4) = ρ̄w

v (4) = 0.01, where ρ̄
y
p(i), ρ̄

y
v(i), i = 1, 2, 3, respectively, represent the probability

of τ
ij
p = i, τ

ij
v = i, ρ̄w

p (4), ρ̄w
v (4) represents the probability of τ

ij
p (k) > 3, τ

ij
v (k) > 3, at this

point, m̄c = 3. In this part, u(i), π(i) represents the ith component of u, π, i = 1, 2, 3, 4, 5.
Then the simulation structure of multi-AUV formation system (7) and (8) with constraint
controller (13) under the condition of communication delay is shown in Figures 4–8.
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(a) (b)

Figure 3. The double independent position–velocity communication graph: (a) the position commu-
nication graph, (b) the velocity communication graph.

(a) (b) (c)

(d) (e)

Figure 4. The position state of the multi−AUV formation: (a) the x state of multi−AUV, (b) the y
state of multi−AUV, (c) the z state of multi−AUV, (d) the θ state of multi−AUV, (e) the ψ state of
multi−AUV.
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(a) (b) (c)

(d) (e)

Figure 5. The other states of the multi−AUV formation: (a) the u state of multi−AUV, (b) the v
state of multi−AUV, (c) the w state of multi−AUV, (d) the q state of multi−AUV, (e) the r state of
multi−AUV.

(a) (b) (c)

(d) (e)

Figure 6. The control input u of the multi−AUV formation: (a) the u(1) state of multi−AUV, (b) the
u(2) state of multi−AUV, (c) the u(3) state of multi−AUV, (d) the u(4) state of multi−AUV, (e) the
u(5) state of multi−AUV.
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(a) (b) (c)

(d) (e)

Figure 7. The π state of the multi−AUV formation: (a) the π(1) state of multi−AUV, (b) the π(2)
state of multi−AUV, (c) the π(3) state of multi−AUV, (d) the π(4) state of multi−AUV, (e) the π(5)
state of multi−AUV.

Figure 8. The 3D trajectory of the multi−AUV formation.

It can be seen from Figures 4 and 5 that the relevant states of the multi-AUV system
can reach a consistent state after a period of adjustment. By comparing Figures 6 and 7,
the control inputs of the multi-AUV system formation can be controlled to meet the set
nonconvex constraints. From Figure 9, it can be seen that the multi-AUV system can form a
fixed formation after a period of adjustment and maintain the stability of the formation.

In order to compare with the traditional communication topology, the communication
topology Gd is selected for the multi-AUV formation system, as shown in Figure 3a. At
this time, if communication delay exists, then both position information and velocity
information have communication delay, that is, τ

ij
p (k) = τ

ij
v (k) = τ

ij
d (k), where τ

ij
d (k)

represents the communication delay from AUVj to AUVi at kT. When other values are

consistent with the above double communication topology, τ
ij
d (k) is selected according to

the above values of τ
ij
p (k), τ

ij
v (k), then the simulation results of the formation are shown in

Figures 9–13.
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(a) (b) (c)

(d) (e)

Figure 9. The position state of the multi−AUV formation: (a) the x state of multi−AUV, (b) the y
state of multi−AUV, (c) the z state of multi−AUV, (d) the θ state of multi−AUV, (e) the ψ state of
multi−AUV.

(a) (b) (c)

(d) (e)

Figure 10. The other states of the multi−AUV formation: (a) the u state of multi−AUV, (b) the v
state of multi−AUV, (c) the w state of multi−AUV, (d) the q state of multi−AUV, (e) the r state of
multi−AUV.
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(a) (b) (c)

(d) (e)

Figure 11. The control input u of the multi−AUV formation: (a) the u(1) state of multi−AUV, (b) the
u(2) state of multi−AUV, (c) the u(3) state of multi−AUV, (d)The u(4) state of multi−AUV , (e) the
u(5) state of multi−AUV.

(a) (b) (c)

(d) (e)

Figure 12. The π state of the multi−AUV formation: (a) the π(1) state of multi−AUV, (b) the π(2)
state of multi−AUV, (c) the π(3) state of multi−AUV, (d) the π(4) state of multi−AUV, (e) the π(5)
state of multi−AUV.
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Figure 13. The 3D trajectory of the multi−AUV formation.

From Figures 9–13, it can be seen that in the case of traditional communication topol-
ogy, the constraint controller proposed in this paper can also realize the consensus of
the formation of multi-AUV system when the relevant parameters and communication
topology meet certain conditions. However, compared with the simulation results of the
double independent position–velocity communication topology in Figures 4–8, it can be
seen that the multi-AUV formation with the double communication topology has less
influence, faster convergence speed and shorter convergence time under the condition of
communication delay.

5. Conclusions

In this paper, the problem of formation coordinated control of discrete time leaderless
multi-AUV system with double communication topology and nonconvex control input
constraints is studied. First, the consensus state of the leaderless formation is constructed.
Secondly, a constraint controller with bounded communication delay is proposed by
introducing the constraint operator, which solves the problem of coordinated control of
leaderless multi-AUV system formation nonconvex control input constraints. By using the
related properties of graph theory and SIA matrix, selecting the appropriate parameters and
communication topology, the formation of multi-AUV system can achieve the set consensus
goal. On this basis, the cooperative control problem of multi-AUV system with unbounded
communication delay is further extended to solve the problem of multi-AUV systems with
control input constraint in nonconvex sets under weak communication conditions. Finally,
the effectiveness of the proposed controller is verified by the simulation results, and the
multi-AUV system can achieve the consensus of the formation and keep the formation
unchanged. However, the disturbance of underwater environment to formation is not
considered in this paper. In fact, there may be obstacles when the formation approaches a
given consistency target, so this part should be considered in future research.
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