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Abstract: This paper presents a full-scale deep-water steel catenary riser fatigue test system. The
proposed system can carry out fatigue tests on steel catenary risers, hoses, and subsea pipelines up to
21 m in length, ranging from 8 to 24 inches in diameter. The test system was realized by mechanical
loading with loading control systems, and could carry out axial tension and compression, bending
moment, torsion, and internal pressure to simulate all load types on deep-water steel catenary risers
or subsea pipelines. The counterforce was sustained by a counterforce frame. Through mechanical
simulation analysis, the authors determined the size of the counterforce frame and designed the
connection form of the counterforce frame and loading system. According to the required loading
capacity, the appropriate cylinder thickness and diameter were obtained through calculation. After
the design and construction of the test system, the authors designed a fatigue test to confirm the
loading capacity and accuracy of the test system. The authors performed full-scale testing to assess
the fatigue performance of pipe-to-pipe mainline 5G girth welds fabricated to BS 7608. This test was
designed according to the stress level of pipelines in the Lingshui 17-2 gas field, and the test results
were compared with the calculation results of the S–N curve.

Keywords: full-scale riser; fatigue damage; test system; steel catenary risers; deep-water

1. Introduction

A deep-water riser is the only channel connecting a subsea wellhead and surface
floating facilities, and it is an important facility for the development of deep-water oil
and gas fields. In contemporary riser construction, steel catenary risers are preferred for
deep-water oil and gas development. In deep-water environments, due to the presence
of wind, waves, currents, and pressure, both inside and outside the riser, the riser struc-
ture is subjected to complex loads. Under the effect of long-term loads, fatigue damage
failure occurs in the riser, resulting in structural damage, and the consequences are very
serious [1,2]. Low-cycle fatigue failure occurs rapidly in a short amount of time under
extreme loads [3,4]. Therefore, the fatigue life of tubular structures has received more
attention [5]. Particularly for steel tubular welded structures, fatigue failure is a very
general failure mode. Nassiraei et al. [6] proposed a detailed fatigue calculation method
for welded tubes, which was verified by an FE model, and finally validated according to
the experimental data and UK DoE acceptance criteria.

Fatigue tests are the key method to solving the problem of riser fatigue and for obtain-
ing the fatigue life of a riser. Especially in the weld structure of a riser, the toe of the weld
can easily become the fatigue crack cracking site [7,8]. Moreover, high stress concentra-
tions [9,10] and large residual stress [11–15] exist at the welding point under cyclic loading.
Under the action of higher stress, the structure will undergo plastic deformation [16]. Ac-
cording to the research, even under the action of low-cycle fatigue, the specimen will have
some structural plastic deformation [17], which makes the prediction of structural fatigue
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life more difficult. Therefore, fatigue life prediction using experimental methods is effective
in fatigue research at present. For tubular welded structures, CT specimens are mostly
used for material fatigue tests. A series of fatigue tests was carried out on CT specimens,
considering corrosion [18]. However, the structural form will affect the stress concentration,
and the fatigue life of the structure cannot be predicted by a CT sample test. Therefore, a
full-scale fatigue test is required to determine the fatigue life of the structure.

In this study, the design and construction of a full-scale riser fatigue test system were
carried out, and the composition and layout of the test platform are described in detail,
including the design of the reaction frame structure to withstand the load reaction force,
the design of the core loading system of the test platform, and the design of the fatigue test.
The experimental capability of the test platform was tested, and the experimental capability
of the system was verified by comparing the theoretical calculation results with the loading
test results. Finally, future functions of the test system and further improvements to the
test ability of the system are proposed.

2. Development of the Counterforce Frame

The counterforce frame was developed to sustain a maximum axial tension/compression
loading of 3000 kN, torque force of 200 kN, and bending moment of 1300 kN·m. Therefore,
the reinforcement design was adopted for axial force, torsion force, and bending moment
loading: the rest was trusswork. The external dimensions of the counterforce frame were
2.3 m× 2.3 m× 24 m (excluding the loading actuator). Its combined frame structure, which
had a horizontal installation, was made of Q345 steel. Its overall structure is shown in
Figure 1.
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Figure 1. Overall structure of the counterforce frame.

2.1. Main Components of Counterforce Frame

The counterforce frame was composed of the end frame (i.e., tension/pressure and
torsional loading counterforce frame), middle frame coupling (i.e., moment loading coun-
terforce frame), stiffener coupling, and counterforce frame base, as shown in Figure 2.
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The front and rear end frames were assembled using a middle frame coupling and
stiffener couplings and securely connected by 24 M48*250 12.9 high-strength bolts. The
connection form of the end frame and the stiffener coupling is shown in Figure 3.
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The middle frame coupling was welded together from two moment loading counter-
force frames and stiffener couplings. The moment cylinder mounting plate was installed on
the upper part of the moment loading counterforce frame. The moment cylinder mounting
plate could be rotated 90 degrees along the horizontal direction. The upper part of the
moment loading reaction frame was slotted, and the U-shaped structure was convenient
for lifting the riser specimen up and down. The connection form of the frame coupling is
shown in Figure 4.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 4. Connection form of the middle frame joint. 

The thickness of the end frame and the middle frame coupling was 100 mm, and the 

thickness of the stiffener coupling was 50 mm. 

2.2. Force Analysis of the Counterforce Frame 

The model of the counterforce frame was established by SOLIDWORKS, and the 

strength and natural frequency were analyzed. The counterforce frame was used to sus-

tain the reaction force of the test system, and the axial load and bending moment under 

the maximum loading capacity of the test platform could be loaded into the model in the 

form of the reaction force. An axial tension and compression of 3000 kN and an out-of-

plane bending moment of 1300 kN·m were applied to the model, and a stress cloud dia-

gram was obtained in Figures 5 and 6. 

 

Figure 5. Stress cloud diagram under axial load. 

Figure 4. Connection form of the middle frame joint.



J. Mar. Sci. Eng. 2022, 10, 1325 4 of 17

The thickness of the end frame and the middle frame coupling was 100 mm, and the
thickness of the stiffener coupling was 50 mm.

2.2. Force Analysis of the Counterforce Frame

The model of the counterforce frame was established by SOLIDWORKS, and the
strength and natural frequency were analyzed. The counterforce frame was used to sustain
the reaction force of the test system, and the axial load and bending moment under the
maximum loading capacity of the test platform could be loaded into the model in the form
of the reaction force. An axial tension and compression of 3000 kN and an out-of-plane
bending moment of 1300 kN·m were applied to the model, and a stress cloud diagram was
obtained in Figures 5 and 6.
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The maximum tensile stress was 38 MPa, and the maximum compressive stress was
29.2 MPa, much lower than the yield stress of Q345.

In order to ensure the safety of the reaction frame structure during loading, the natural
frequency of the counterforce frame was calculated to avoid loading resonance. The natural
frequency of the counterforce frame was 3 Hz. Therefore, a loading frequency of 3 Hz was
avoided when designing the test. The natural frequency analysis results of the structure
are shown in Figure 7.
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3. Development of the Loading System

The loading system included an internal water pressure loading system, axial loading
system, bending moment loading system, and torque loading system. Among them, the
axial loading system and bending moment loading system can provide cyclic loading,
equipped with a servo mechanism. The internal water pressure loading and torque loading
were static loads. The axial loading mechanism and torque loading mechanism were
combined, arranged at the end of the platform, and connected with the counterforce frame.
The moment loading system was arranged at one-third and two-thirds of the counterforce
frame to load the moment and in the form of a four-point bending moment. The internal
pressure loading system was arranged on the side of the counterforce frame. The water
pipe was connected to the flange at the end of the test pieces, and the water was injected
into the pieces through the flange hole to provide internal pressure.

3.1. Internal Hydraulic Loading System

The maximum internal water pressure applied was 60 MPa, and the flow rate under
the maximum pressure was 45 L/min. The maximum loading speed reached 10 MPa/min,
and the loading control precision was less than or equal to 0.5 MPa, according to the
maximum loading test pieces’ size (the maximum riser diameter was 24 inches, and the
length was 21 m) of the test system. The system can be used for single maximum linear
loading or cyclic fatigue loading at low frequencies. The maximum loading power of the
system was 55 KW. The specific technical parameters are shown in Table 1.

Table 1. Internal pressure loading system parameters.

Internal Pressure Loading Control System for the Specimen

Loading
Pressure
Range

Maximum
Loading
Speed

Load
Function Pressure Control Accuracy

Pressure of
the Pipeline
and Valve

Environmental Conditions

0.5~60 MPa 10 MPa/min

Single linear
loading or

low-frequency
cyclic fatigue

loading

Lifting and
lowering

accuracy: less
than

±0.2 MPa
under 5 MPa;

Pressure load
retention

accuracy: less
than

±0.5 MPa

≥70 MPa Temperature:
−5 ◦C~+40 ◦C;

Medium: tap
water or

3.5% saltwater

When the internal hydrostatic test was applied, one end of the riser specimen was
fixed to the counterforce frame, and the other end was free to extend. The free end was
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connected to the axial force loading cylinder by the guide shaft. During the internal water
pressure fatigue loading test, the axial force loading cylinder was in the free unloading state.
A schematic diagram of the internal water pressure loading system is shown in Figure 8,
and the electric automatic control valve is shown in Figure 9.
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The internal water pressure loading system consisted of a water injection and drainage
module, a high-pressure pipeline, an integrated valve, a pressure sensor and pressure
gauge, an air compressor, etc. Among them, the water injection and drainage module were
calculated according to the volume of the test pipe, meeting the maximum size of the test
pipe (outer diameter: 24 inches; pipe length: 21 m) to complete the water pressure loading
of 60 MPa within 1 min.

3.2. Servo Mechanism for Axial Tension/Compression Loading and Torsion Bidirectional Loading

In order to exert the axial force on the test specimen, an axial tension/compression
loading torque servo mechanism and a bidirectional loading mechanism were developed
and installed in the counterforce frame at one end. The test specimen, which had a
perforated flange at the end, was connected to the combined loading system by the loading
shaft through the torsion loading system. The flange at the other end of the specimen was
connected to the end of the counterforce frame. The combined loading system was installed
at the end of the counterforce frame, connected with the end frame through the anchor bolt.
A disassembly of the combined loading system is shown in Figure 10, and its assembled
form is shown in Figure 11.

The maximum applied axial tension force reached 3000 kN, and the effective ten-
sion/compression stroke was ±150 mm, with a maximum loading speed of 40 mm/s.
Cyclic fatigue loading of the axial force was realized. The maximum applied bidirec-
tional torque was 200 kN·m, with a loading angel of ±45 ◦, control accuracy ≤±2%, and
maximum loading speed of 1◦/s.

The tension/compression loading cylinder adopted frequency conversion speed regu-
lation and proportional pressure valve control as well as hydraulic cylinder loading pro-
portional tension/compression adjustment to achieve proportional and constant pressure
loading. While unloading, the system was controlled by a proportional pressure valve. At
the same time, a displacement sensor placed in the loading cylinder monitored the loading
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force and displacement changes of the test specimen in the process of tension/compression
loading in real time.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 9. Electric automatic control valve. 

The internal water pressure loading system consisted of a water injection and drain-

age module, a high-pressure pipeline, an integrated valve, a pressure sensor and pressure 

gauge, an air compressor, etc. Among them, the water injection and drainage module 

were calculated according to the volume of the test pipe, meeting the maximum size of 

the test pipe (outer diameter: 24 inches; pipe length: 21 m) to complete the water pressure 

loading of 60 MPa within 1 min. 

3.2. Servo Mechanism for Axial Tension/Compression Loading and Torsion Bidirectional Load-

ing 

In order to exert the axial force on the test specimen, an axial tension/compression 

loading torque servo mechanism and a bidirectional loading mechanism were developed 

and installed in the counterforce frame at one end. The test specimen, which had a perfo-

rated flange at the end, was connected to the combined loading system by the loading 

shaft through the torsion loading system. The flange at the other end of the specimen was 

connected to the end of the counterforce frame. The combined loading system was in-

stalled at the end of the counterforce frame, connected with the end frame through the 

anchor bolt. A disassembly of the combined loading system is shown in Figure 10, and its 

assembled form is shown in Figure 11. 

 

Figure 10. Disassembled diagram of the shaft end loading mechanism. 

 

Figure 11. Combined load shaft. 

Figure 10. Disassembled diagram of the shaft end loading mechanism.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 9. Electric automatic control valve. 

The internal water pressure loading system consisted of a water injection and drain-

age module, a high-pressure pipeline, an integrated valve, a pressure sensor and pressure 

gauge, an air compressor, etc. Among them, the water injection and drainage module 

were calculated according to the volume of the test pipe, meeting the maximum size of 

the test pipe (outer diameter: 24 inches; pipe length: 21 m) to complete the water pressure 

loading of 60 MPa within 1 min. 

3.2. Servo Mechanism for Axial Tension/Compression Loading and Torsion Bidirectional Load-

ing 

In order to exert the axial force on the test specimen, an axial tension/compression 

loading torque servo mechanism and a bidirectional loading mechanism were developed 

and installed in the counterforce frame at one end. The test specimen, which had a perfo-

rated flange at the end, was connected to the combined loading system by the loading 

shaft through the torsion loading system. The flange at the other end of the specimen was 

connected to the end of the counterforce frame. The combined loading system was in-

stalled at the end of the counterforce frame, connected with the end frame through the 

anchor bolt. A disassembly of the combined loading system is shown in Figure 10, and its 

assembled form is shown in Figure 11. 

 

Figure 10. Disassembled diagram of the shaft end loading mechanism. 

 

Figure 11. Combined load shaft. Figure 11. Combined load shaft.

The torsion loading cylinder was installed on the connecting cover flange of the tension
loading cylinder. A rack-connecting rod was installed on the tension piston rod and the
specimen, connected to the shaft of the axial tension loading cylinder. Bidirectional torsion
loading was realized on the output shaft by loading the gear and rack in the swing cylinder.

As the water pressure and axial tension/compression changed, the output shaft of the
specimen deformed outward while axial tension loaded, or inward while axial compression
loaded; thus, the torsion could be normally loaded. The rack stroke under torsion load
allowed for the horizontal movement distance of the specimen to be 150 mm.

3.3. Four-Point Bending Moment Bidirectional Loading Servo Mechanism

In order to generate a bending moment load on the specimen, a four-point moment
loading servo mechanism perpendicular to the specimen was developed. It was installed
in the middle of Section 3 of the counterforce frame, and it vertically and symmetrically
applied the bending moment. The loading shaft end was a circular arc flange, holding
the riser specimen and reciprocating the compression loading in the vertical direction of
the specimen. The moment loading servo cylinder was symmetrically installed on the
counterforce frame perpendicular to the specimen. The installation method was as follows:
The lower bending moment loading mechanism was preinstalled at the bottom of the frame.
The upper moment loading mechanism was installed on the upper flange. Before lifting
the specimen, the upper flange was rotated 90 degrees towards the parallel direction of the
reaction frame so as to facilitate the lifting of the specimen into the reaction frame. Then,
the upper flange was rotated 90 degrees, reset, and tightened with bolts. Additionally, the
loading shaft was put into the flange. In this way, the bending moment could be applied to
the specimen. A schematic diagram of the bending moment loading system is shown in
Figure 12.
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The loading device realized a maximum applied bending moment of 1300 KN·m. The
effective stroke of the cylinder was ±150 mm, with a control accuracy of less than 1%.
Cyclic fatigue loading was realized, with a maximum loading speed of 20 mm/s.

An MTS high-pressure magnetostrictive displacement sensor, external proportional
servo valve, and pressure sensor were built into the moment loading cylinder, and displace-
ment closed-loop loading or force closed-loop loading was realized. The bending moment
loading cylinder is shown in Figure 13.
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The bending moment loading cylinder adopted frequency conversion speed regulation
and proportional pressure reducing valve control to load or unload the hydraulic cylinder
proportionally in order to realize torque proportional and constant loading. A proportional
pressure reducing valve was used for unloading control. Meanwhile, the loading cylinder
had a built-in sensor that monitored the loading force of the test pipe and the displace-
ment of the specimen’s deformation in the process of the bending moment loading. The
moment loading cylinders on both sides could realize single-action/synchronous loading
and unloading.

3.4. Hydraulic Loading Servo System

In order to meet the requirements of the compound loading mechanism, a hydraulic
loading servo system was manufactured with a maximum power up to 400 KW. The hy-
draulic loading servo system was equipped with a variable frequency speed regulating
motor, oil pump, servo valve, accumulator, sensor, and other hydraulic electrical compo-
nents. Meanwhile, in order to meet the cyclic fatigue loading test, the system was equipped
with an efficient cooling water tower. A schematic diagram of the hydraulic tank is shown
in Figure 14. The servo system provides the power oil for the hydraulic cylinders.
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The hydraulic pump station was equipped with a pump station electronic control
cabinet. The electric control system for the pump station consisted of a sealed electric
control box, a low-voltage electric pump controlled by a motor, a valve controlled by an
amplifier, a servo valve real-time controller, a circuit drive board, and a connection interface
with a control platform. The pumping station controller could realize basic distribution and
water-cooling machine motor start, it could also realize onsite startup oil source system
downtime, pressure, liquid level, temperature, and alarm signal collection and input.
Meanwhile, TCP/PI ethernet interface communication with the remote central control
center was also provided to realize remote monitoring control.

The test system was designed for mechanical loading. Its main characteristics were
as follows:

(1) The full size of the test system (main body of the system) was 26 m, the size of the
counterforce frame was 24 m, and the longest size of the test pipe section was 22 m;

(2) The maximum loading capacity of the test system was designed to be 3000 kN dynamic
axial force, 1300 kN·m dynamic bending moment loading, 200 kN·m torque loading,
and 60 MPa internal water pressure loading, with a loading frequency of 30 Hz.

The platform loading capability indicators were shown in Table 2.

Table 2. Loading capacity of a full-scale steel catenary riser fatigue test system.

Size of
Specimen Axial Force Bending Moment Torque Internal Pressure

MPa

L ≤ 22 m
D < 609.6 mm 3000 kN 1300 kN·m

Loading schedule ± 150 mm 200 kN·m 60

4. Full-Scale Riser Fatigue Test

In order to verify the performance of the fatigue test platform and test the fatigue
strength of the steel catenary riser (SCR) in the Lingshui project, we designed and carried
out riser fatigue tests. The SCR for the test was produced by Hengyang Valin Steel Tube
Company and covered a 5G double jointing procedure. The test section was 5.6 m, with
three weld joints arranged. The length of the connecting section was 11.2 m. The outer
diameter of the test riser was 12 inches, and the thickness was 27 mm. Both ends were
welded with perforated flanges and connected to the end of the test platform. The structure
of the test riser section is shown in Figures 15 and 16.
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Figure 16. Full-size SCR test specimen.

The purpose of this experiment was to measure the fatigue life of the riser and weld
under high-stress conditions in the South China Sea. Based on the measured stress in
high-stress environments in the South China Sea, a stress cycle of 172 MPa (±86 MPa) was
carried out on the basis of 138 MPa of stress.

The position and weld number of the test pipe section on the platform were as follows.
The left side was the fixed end, and the right side was connected to the end of the extension
section. The loading mechanism acted on the other end of the connecting section. From the
left side, the welds were numbered G1, G2, and G3, as shown in Figure 17.
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Figure 17. Weld diagram.

The section number of the weld is shown below, and the direction of the section
Figure 17 is from left to right.

4.1. The Test Process

Before the fatigue test, the system and parameters of the specimen were tested, and
the loading method was determined. The test analysis was as follows:

1. The first-order frequency of the filling riser was 3.4 Hz, and the effect of the rising
water pressure on the first-order frequency could be ignored;

2. Under a loading of 48 MPa internal pressure, the axial displacement changed by
8.9 mm, and 732 kN axial tension continued to be applied. The overall axial displace-
ment changed by 2.3 mm. The total change in pipeline displacement was 11.2 mm;

3. On the basis of 48 MPa internal pressure and 732 kN axial tension, when the axial
tension was applied at 2900 kN, the axial displacement increased by 7 mm, and the
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pipeline displacement reached 18.2 mm. The stress value reached the maximum stress
value in the high-stress experiment;

4. On the basis of 48 MPa internal pressure and 732 kN axial tension, when the axial
pressure was applied at −1500 kN, the axial displacement decreased by 7 mm, and
the pipeline displacement reached 4.2 mm. The stress value reached the minimum
stress value in the high-stress experiment.

Therefore, the loading scheme of this test was set as follows:

(1) An internal pressure of 48 MPa was applied;
(2) A fixed axial tension of 732 kN was applied, and the average stress reached 138 MPa;
(3) A cyclic axial force between −1500 and 2900 kN was applied. The cyclic range of axial

displacement was ±7 mm, meeting 172 MPa (±86 MPa) of cyclic stress.

The stress measurement values of eight measured points for each three welding points
within 15 s were intercepted, and the curves during stress generation were drawn as shown
in Figure 18.
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Figure 18. Stress changes at each weld measuring point.

Through the stress–time history curves of the 3 welding joints and the change in the
stress–time history curves of the 24 measuring points, it can be seen that the stress cycle
range of the riser test reached 172 MPa, and the stress cycle value was relatively stable
during the test process. Based on the number of cycles calculated by the S–N curve, the
number of test settings was increased and set at 2.85 million cycles. After the completion of
the test, nondestructive testing was carried out on the weld of the test pipe to check the
test results.

4.2. Weld Test Results

After the test, ultrasonic weld inspection of the specimen was conducted. The results
of the inspection are shown in the Table 3.
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Table 3. Weld inspection of the full-scale domestic steel catenary riser in a high-stress fatigue test.

The Weld
Number

Test Results
Types of

CrackDefect Wave
Reflection Region

Defect Location (mm) Defect Indication
Length (mm)

Defect
LevelsL1 L2 Depth

G1
III 57 318 3.1~27 261

III

Weld fatigue
stress crack

III 531 855 Through-wall crack 324

G2
III 114 327 6.2~27 213 III
III 605 797 5.6~27 192 III

G3
III 24 270 Through-wall crack 246 III
III 449 735 2.3~27 286 III
III 897 989 7.3~27 92 III

It can be seen from the testing results that there were cracks caused by different degrees
of fatigue stress in the three weld positions of the test riser’s section, and through-wall
cracks appeared in the specimen.

4.3. Fatigue Analysis Based on BS7608

In most cases, potential fatigue cracks will occur at the stress concentration of the base
metal. In welded structures, fatigue failure mainly occurs in welded joints. Microcracks
appeared near the weld as a result of welding. Under the action of alternating loads, stress
concentration will appear around the microcrack, leading to crack propagation. When the
length of the crack reaches a critical point, the member will suddenly fracture, causing
the structure to fail. Reducing the stress concentration near the weld is the only way to
solve the problem of fatigue crack in the design stage. The fatigue behavior of welded
structures is a very complex phenomenon, because it depends on many factors affecting
the stress/strain field at the point where the final fracture occurs. Obviously, structural
fatigue, including welded joints, is much more complex than simple material fatigue.

In the British Standard 7608 (BS7608): Fatigue design and assessment of steel structures,
the fatigue S–N curves of different welding forms and load types are given. Fatigue of
welding joints is different from that of ordinary materials. As for the fatigue of welded
joints, the applicable yield strength is between 200 MPa and 960 MPa. For each structural
detail, there is a reference value for the fatigue strength limit. BS7608 provides different
calculation methods for different welding types, and appropriate methods can be selected
for calculation. By determining the specific form of the structure and selecting and using
the appropriate S–N curve for the welding joints, the stress spectrum in the loading process
is established, and the fatigue life is calculated by the stress spectrum. The S–N curve
also considers the size, shape, residual stress, and crack shape in order to calculate the
fatigue life of the structure more accurately. In specification BS7608, the S–N curve is
calibrated according to nominal stress. However, in practical engineering, nominal stress
does not strictly exist for welded joints with complex geometric shapes or under complex
loads. Therefore, the generalized nominal stress is introduced. For numerical calculation,
the regional stress whose stress gradient is close to zero is defined as the generalized
nominal stress. Based on the above definition, BS7608 can be used to solve practical
engineering problems.

In most cases, the underlying fatigue crack is located near a stress concentration in
the base metal such as at the welding toes or bolt holes. It is assumed that the direction of
principal stress does not change significantly during the stress cycling process. Therefore,
the maximum cyclic range of the principal stress in the stress cycling process is taken as
the cyclic stress range used in fatigue calculation, and the principal stress in any position
near the crack on the base metal is correspondingly within this maximum cyclic stress
range. It is assumed that the tensile stress is positive, whereas the compressive stress is
negative. In practice, the stress component throughout the thickness has little effect and is
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usually negligible. When the principal stress direction changes periodically, the magnitude
of the cyclic stress can be calculated by calculating the two extreme values in the process of
stress change, i.e., the difference between the peak and trough of the wave. The peaks and
troughs, here, are the value of the peaks and troughs in the main plane.

The S–N curve of the range of the cyclic stress and the number of cycles required to
achieve fatigue is as follows:

log N = log C0 − dσ−m log Sr (1)

where C0 is the correlation constant of the average S–N curve, D is the standard deviation
below the mean, σ is the relative standard deviation of N, and m is the reverse slope of the
S–N curve under a double logarithm.

In fatigue calculation, the influence of the material’s thickness on fatigue life should be
considered. The non-joint class for which the basic S–N curve applies (i.e., corresponding
the weld class B-G) requires a material thickness of no more than 16 mm. For joints
of other thicknesses, the stress range of the fatigue strength should be modified by the
following formula:

S = SB

(
tB
t

)1/4
(2)

where S is the fatigue strength equivalent to the stress of the specimen, SB is the equivalent
stress of the joint fatigue strength using the basic curve, t is the actual plate thickness when
the thickness is greater than 16 mm, and tB is the maximum plate thickness corresponding
to the basic S–N curve, which is 16 mm.

The fatigue strength of the S–N curve can be increased by 30% for welded joints with
initial cracks at the welding toes by local machining or grinding the toes.

The S–N curve is selected as a D curve for butt welding. According to the basic curve
parameters, the expression of the S–N curve is as follows:

log N = 12.6007− 3 log Sr (3)

According to the D curve formula of the BS7608 specification and the data from the
test, the S–N curve is drawn as Figure 19.
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It can be seen that the measured point is above the S–N curve, indicating that the
test riser met the fatigue requirements of BS7608. At the same time, the thickness of the
specimen needs to be corrected. According to the thickness stress correction in Formula (2),
it was calculated that for a specimen pipe with a diameter under 27 mm, the actual stress
value to be substituted by the S–N curve was 150.91 MPa. The stress value was substituted
into (3), and the required number of cycles was 1.16 million. After 2.85 million cycles,
cracks appeared in the specimen, indicating that the specimen and welding can meet the
fatigue strength requirements of BS7608.

4.4. S–N Curve Selection and Riser Thickness Correction

The test in this section was designed according to the BS7608 fatigue specification, and
the index of cycles should have been 1.16 million if calculated according to the specification.
In the actual test, it took 2.85 million cycles for the welded riser to break. The actual
cycle times increased by more than twofold compared with the theoretical cycle times. An
increase in the actual cycle time is beneficial to the safety of the structure, but it will also
increase the amount of steel used in engineering, resulting in a great increase in the cost.
Therefore, it is necessary to redesign the thickness of the riser based on the test results and
give the minimum thickness scheme of the riser to meet the requirements of the fatigue
design. This can ensure that the structure meets the fatigue safety requirements and, at the
same time, obtain the maximum economic benefits.

In general, under the same sea state, the stress response of the structure will change
with different structural forms and thickness. Different cyclic stresses will cause different
fatigue cycle indexes. Therefore, the S–N curve corresponds the cycle index with the
stress value. For a certain S–N curve, the corresponding cycle index is also fixed under
a certain stress value. However, for the same stress value but with a different thickness
of the riser structure, the cycle index of the complete damage will be different. From the
perspective of crack growth, the time of penetration crack in the thick-walled pipe with
the same crack growth rate will be correspondingly longer. This is also the reason for
the thickness modification in the BS7608 specification above. In addition, because of the
different welding quality, the fatigue life will be increased. Therefore, different calculation
formulas are defined for different welding methods in the specification. For whole pipe
structure welding, according to the BS7608 specification, the test riser in this paper is more
suitable for a D curve. However, according to the inspection of the test pipe in Table 2,
it was obvious that the cracks were all generated at a depth of 27 mm, i.e., the welding
toe of the riser. This indicates that the riser was fractured from the internal welding toe.
Therefore, a C curve is more suitable for fatigue analysis. The C curve in the specification is
as follows:

log N = 14.0342− 3.5 log Sr (4)

The C curve and D curve of the BS7608 specification and the test results are drawn in
the Figure 20.

It is obvious that the C curve was closer to the actual test situation. Therefore, it was
more appropriate to choose the C curve in the analysis. According to the modified formula
of the BS7608 specification (i.e., Formula (2)), it can be determined that the thicker the
riser, the smaller the equivalent stress value that should be substituted into the S–N curve,
and the calculated index of the cycles under the corresponding also increased to a certain
extent. In contrast, the thinner the riser, the larger the equivalent stress, and the smaller the
corresponding cycle index value.

It can be concluded that when the number of cycles was 2.85 million (the response
value was 6.45484), the corresponding C curve cyclic stress logarithm value was 2.166,
and the cyclic stress was 146.55 MPa. By substituting the cyclic stress into the thickness
correction formula, it can be calculated that under the welding condition of the test riser,
its thickness was equivalent to 30.36 mm of the standard riser. The S–N curve was based
on the linear accumulation of fatigue through the Palmgren–Miner rule; therefore, it can be
approximated that the propagation of fatigue cracks along the thickness direction of the
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structure was linear. Thus, a linear formula for thickness correction is proposed based on
the results of this test.

tA
t

=
t′

tB
(5)

where tA is the standard thickness. Here, the thickness was 27 mm, which was selected for
the experiment, as well as the reference thickness tB of this test. t′ is the standard thickness,
i.e., the number of test cycles substituted into the S–N curve to obtain the corresponding
cyclic stress value and corresponding the stress to the thickness correction formula to obtain
the standard thickness t′.
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By substituting the test results, the riser thickness t that actually met the fatigue
requirements was 24.016 mm. The safety factors of the riser’s structural design are defined
as follows:

β =
td
tr

(6)

where td is the designed thickness of the riser structure and tr is the calculated actual
thickness of the pipe. Accordingly, the safety factor of the test riser in this paper was
1.124. It can be concluded that the thickness design of the test pipe in this paper fully
considered the economic benefit of steel quantity on the basis of ensuring the fatigue
strength requirements.

5. Conclusions

In this paper, the full-scale riser fatigue test system and its main component have been
described in detail. The system was capable of conducting fatigue tests for full-scale risers,
flexible pipes, and seabed pipeline fatigue. The test system could complete a fatigue test on
risers under a severe sea state and complex loads.

The test designed in this paper was a full-size riser high-stress loading test to determine
the maximum loading capacity of the test platform. Thus, the axial loading method was
used for loading. For the test with high stress, the platform adopted axial cyclic loading
to meet the high-frequency cycle and shorten the test time. The bending moment loading
could meet the maximum loading capacity. However, with the increase in the bending
moment cylinder stroke, the loading frequency decreased, thus prolonging the test time.
Therefore, at present, when conducting the fatigue test with high cyclic stress, the test was
designed as an axial cyclic load test. The moment cyclic load can be used in tests with low
stress levels. In the future, the moment loading capacity of the test system will be upgraded
in order to realize high-stress fatigue tests under cyclic bending moment load.
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Due to the high cost of full-scale riser tests, only fatigue tests at high stress levels were
performed this time. In a subsequent study, several more sets of tests will be conducted to
draw the S–N curve of the structure, which will be compared with the specification.

In the test, the fatigue behavior of a 27 mm thick welded riser was tested. The test
results showed that the fatigue performance of the welded pipe exceeded the prediction of
the S–N curve in the code. The thickness design was reasonable, and the economic benefits
were fully considered.

This test was a fatigue test in an air environment; however, the environment of the
South China Sea is complex. Therefore, corrosion fatigue correction tests will be designed
in a future study to build a complete fatigue life prediction test system.
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