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Abstract: In this paper, we study the static discrete berth allocation problems (BAPs) for large-scale
time-critical marine-loading scenarios. The objective is to allocate the vessels to different types of
berths so that all the vessels can be loaded within the minimum time under the tidal condition. The
BAP is formalized as a min–max problem. This problem is rather complex as the vessels and berths
are quite numerous in the large-scale marine-loading problem. We analyze this problem from a novel
perspective, and find out that this problem has the characteristic of partially separable. Therefore, the
iterative variable grouping genetic algorithm (IVGGA) is designed to search the near-optimal berth
allocation plans. The vessels and berths are divided into subgroups, and the genetic algorithm (GA) is
applied to generate the near-optimal berth allocation plans in each subgroup. To achieve the balance
of loading tasks among subgroups, we propose reallocating some vessels among subgroups according
to the berth allocation plans in subgroups. To guarantee the convergency of the algorithm, an iterative
vessel reallocation policy is devised considering the loading tasks of different types of berths. We
demonstrate the proposed algorithm in dealing with large-scale BAPs through numerical experiments.
According to the results, we find that the proposed algorithm would have good performance when
the number of vessels in each subgroup are kept in medium scale. Compared with the original GA,
our algorithm shows the effectiveness of the iterative variable grouping strategy. The performance of
our algorithm is almost not changed as the number of vessels and berths increases. The proposed
algorithm could obtain efficient berth allocation plans for the large-scale marine-loading problem.

Keywords: discrete berth allocation problem; separable optimization problem; iterative variable
grouping genetic algorithm; vessel reallocation

1. Introduction

Maritime transport is one of the main transportation methods in military and civil
fields. In the civil field, it is essential to a country as it plays a major role in international
trading that can sustain economic development [1]. In the military field, maritime transport
is also the first choice to transport people and supplies cross the sea [2]. Meanwhile,
maritime transportation is one of the efficient methods in large-scale time-critical missions,
such as humanitarian aid and disaster relief (HADR) actions [3]. Maritime transportation
could be used to evacuate refugees from disaster areas to safe places or deploy medical
equipment, food, and other relief materials to the disaster areas [4,5]. The earthquakes in
Haiti in 2010 and 2021 killed thousands of people [6]. One of the main reasons for this
tragic result is there is a lack of quick and orderly disaster relief actions after earthquakes.
When a disaster occurs, the first 72 h are very critical for lifesaving [7]. As large-scale
disasters occur from time to time, HADR actions are continuous requirements for every
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country. In order to alleviate the disaster impact in the affected areas, the essential objective
of maritime transportation under these circumstances is to fulfill the mission within the
minimum time, such that the supplies and relief teams can be distributed to the disaster
regions timely. Therefore, when there is a large quantity of vessels to be used to transport
the supplies and relief teams, the available berths are required to be fully used so that the
vessels can be loaded as quickly as possible.

In large-scale time-critical maritime-loading missions, hundreds of different types of
vessels are required to be loaded. To improve the loading efficiency, the berth-planning
problem should be considered comprehensively, as it determines the following rescue
resource allocation and emergency distribution. The berth allocation problem (BAP) is
one of the key decisions of the berth-planning problem. According to the BAP, the actual
berthing positions, as well as the start and end berthing times of various types of vessels,
should be determined [8]. In the large-scale time-critical maritime transport problem, an
effective berth allocation plan is crucial for (i) minimizing the overall loading time, and
(ii) guaranteeing the robustness of the berth allocation plan.

The BAP could be classified as static BAP and dynamic BAP [9]. A static berth
allocation model mainly considers allocating the candidate vessels to appropriate berths so
that vessels are able to arrive at the assigned berths in the required time, while a dynamic
berth allocation model considers allocating the candidate vessels with known future arrival
information. In the HADR-related time-critical maritime transportation problem, as there
are many unexpected factors, it may be inefficient to generate the dynamic berth allocation
plans based on the specific arrival/departure information of vessels [10]. In order to
improve the marine transportation efficiency, the main objective of the berth allocation
problem is set to generate the berth allocation plan that could maximize the utilization
of the berths considering the vessels to be loaded. We assume that the arrival time of
vessels and the loading equipment could meet the requirement of the berth allocation
plan. Therefore, the static BAP is important for the large-scale time-critical marine-loading
missions. The planning horizon is based on the scale of marine-loading problem. It may
range from one to several days [11].

The berths could be classified into several types according to their loading capabilities
and available time windows [12]. Meanwhile, there are many different types of vessels
to be loaded in large-scale maritime transportation missions. These vessels are classified
into several levels based on their sizes and loading weights, namely small-tonnage vessels,
medium-tonnage vessels, large-tonnage vessels and heavy-tonnage vessels [13]. In the real
environment, different types of berths are capable of loading vessels with different sizes
and tonnages [14]. In addition to that, there are regular strong tide waves that would have
obvious influences on the water depths of many ports [8]. Some large-/heavy-tonnage
vessels may be restricted by the tidal condition as they could port in the berths only when
the water depth reaches certain conditions [15]. The objective of the BAP is to improve
the utilization rates of the available berths by considering the constraints of vessels and
berths. As there may be hundreds of vessels, and there are dozens of berths, the static BAP
of large-scale time-critical maritime transport scenarios is, therefore, a high-dimensional
complex optimization problem.

The genetic algorithm (GA) is widely used to resolve different types of BAPs [16]. It
is a highly parallel, stochastic, and adaptive optimization algorithm that is based on the
“survival of the fittest” principle, which evolves in the direction of optimal solution [17].
As there are hundreds of vessels to be loaded, the original GA is difficult to converge to
the near-optimal solution as there would be too many genes in one chromosome. The
cooperative coevolutionary (CC) strategy is introduced in [18] to deal with large-scale
optimization problems. The main idea of CC is to decompose the original high-dimensional
problem into a set of lower-dimensional subproblems, which are easier to solve. Typically,
each subproblem is assigned to a subpopulation of candidate solutions according to the
characteristics of the initial problem, which would then evolve according to the adopted
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Genetic Algorithm. During the iterative optimization process, the cooperative information
interaction among subcomponents happens in the evaluation of the fitness value.

This paper studied the static BAP of vessels of various types, considering the differ-
ences in the loading capabilities of berths and the tidal condition. The objective was set
to obtain a berth allocation plan that loads all the vessels within the minimum time. The
computation complexity of the original large-scale static BAP is rather high. Therefore,
we further discuss this problem. As the berths that belong to one specific type are of
the same capability, the overall loading time of each berth is determined by the number
of assigned vessels of different types. The allocation policies of vessels are not strongly
coupled. According to this feature of the BAPs and the CC strategy, we further analyze
the BAPs based on the “separable” theory. We find that the large-scale BAPs are partially
separable. To our knowledge, there is has not been a similar discussion on the BAPs before.
Based on this characteristic, we devise the iterative variable grouping genetic algorithm
(IVGGA). This algorithm searches for the approximate optimal berth allocation plans by
using the iterative optimization method. According to this novel algorithm, the available
vessels and the berths are grouped into subgroups as evenly as possible. The genetic
algorithm is used to search the near-optimal berth allocation plan in each subgroup [19].
The maximum loading time of all these subgroups would be minimized when the loading
tasks of subgroups are balanced. Therefore, we propose making a minor adjustment to
the allocations of vessels among subgroups iteratively based on the near-optimal berth
allocation plans generated by the GA. As there are various types of vessels and berths in
each subgroup, we propose determining the vessels to be reallocated between subgroups
with consideration of the overall loading time of different types of berths. According to
the numerical experiment, we find that when the number of vessels in each subgroup is
set to medium size, the algorithm can generate good results. Our method is demonstrated
in large-scale marine-loading scenarios and compared with the original genetic algorithm.
The results show that the proposed algorithm could generate approximate global optimal
berth allocation plans for large-scale BAPs.

The rest of this paper is organized as follows. The related works are presented in
Section 2, and we model the marine-loading problem in Section 3. In Section 4, the iterative
variable grouping genetic algorithm is presented. A report of the experimental results is
presented in Section 5 and discussion and conclusions in Section 6.

2. Related Works
2.1. Berth Allocation Problem

The BAP has attracted significant attention among researchers. Imai et al. formulated
a static berth allocation problem as a nonlinear integer program to minimize both the total
time that the vessels spend at the berth and the degree of dissatisfaction incurred by the
berthing order [20]. Ren and Tian proposed a tree search method based on a greedy heuris-
tic algorithm considering the priority of goods [21]. Imai, Nishimura, and Padimitriou
proposed solving this problem by using the grouped genetic algorithm [22]. According
to their method, they added the priority factor to the operation time of each vessel to the
objective function. Xu Qinghua proposed searching the optimal berth allocation plan by
virtue of the multiobjective-programming theory and genetic algorithm [23]. Çağatay Iris
et al. proposed dealing with the complex berth allocation and quay crane assignment
problems that consider time-variant/-invariant quay crane allocation policy by using the
set-partitioning models [24]. According to their method, the near-optimal solutions were
obtained by using the simplified avenues. Eduardo Tadeu Bacalhau et al. proposed dealing
with the dynamic berth allocation problem by using the hybrid genetic algorithm [16]. Their
optimization objective was to minimize the overall loading time of all the lined vessels. The
dynamic programming with state space reductions (DPSSR) method was used to reduce
the local solution space in each iteration. This method could improve the efficiency of the
genetic algorithm. However, this method struggles to deal with a large amount of candidate
vessels and berths. Dongsheng Xu et al. studied the berth allocation problem in container
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terminals in which the assignment of vessels to berths was limited by water depth and tidal
condition [25]. In their research, the time period was divided into two periods, namely,
the low-water period (LW), defined in [0, T], and the high-water period (HW), defined
in [T, ∞]. They formulated the problem as a mixed-integer linear programming (MILP)
problem, which was proved to be able to solve the dynamic and static berth allocation
problem. Eduardo Lalla-Ruiz et al. studied the BAP under time-dependent limitations [26].
They propose that the time periods defined by Dongsheng Xu in [25] would lead to infea-
sible solutions, and they proposed an alternative mathematical formulation based on the
generalized set-partitioning problem, which considers a multiperiod-planning horizon and
includes constraints related to berth and vessel time windows. Xavier Schepler et al. stud-
ied the discrete berth allocation problem considering the stochastic arrival times of vessels.
They proposed the proactive/reactive combined approach, and the approach was proved
to be efficient in dealing with the BAP with uncertain arrival times of vessels [27]. These
research works have not considered the different types of vessels and berths with different
load capability, which is too oversimplified to deal with the real problem. Ming-Wei Li
et al. proposed a PSO-based method to deal with the multiobjective optimization problem
considering the minimum additional trucking distance and the port time of vessels [14].
Their method was proved to be efficient in dealing with the multicategory vessels and
multitype berths allocation problem. Çağatay Iris et al. proposed dealing with the berth
allocation problem by using the adaptive large neighborhood search method [28]. Accord-
ing to their method, parts of the current solution were destroyed by a destroy operator;
then, the remaining partial solution was reconstructed by a repair operator at each iteration.
Their method greatly inspired us. They considered the influences of the uncertainty of
vessel arrivals and the fluctuation in the container-handling rate of quay cranes [29]. The
balance between efficiency, robustness, and recoverability was discussed. According to
their study, the vessel-specific buffer times help to guarantee the plan to be robust to the
possible fluctuations in the arrival times of vessels.

In most of the existing research, the authors considered dealing with small-/medium-
scale problems, and the number of vessels to be loaded were no more than one hundred [27,30].
The existing methods could deal with these problems efficiently. However, there is little
research on the large-scale BAP.

2.2. Cooperative Coevolutionary Method

Potter and Jong proposed the cooperative coevolutionary approach to deal with the
optimization problems with a complex structure [18]. The global problem was decomposed
into several subproblems that were defined in subranges, and the complete solutions were
obtained by assembling representative members of each of the species. According to their
specific problem, the fitness value was determined by the highly coupled elements. In each
iteration, the fitness values of each species were relative to the updated information of other
species. Yuping Wang et al. studied the formula-based variable grouping method [31].
They proposed determining the separable and nonseparable variables according to the
form of the optimization objective function. They did not discuss the influences of the
constraint conditions on the separability of the problem. Giuseppe A. Trunfio stated that
most real-world optimization problems are partially separable. Therefore, they generated
objective functions that were between separable and fully nonseparable [32]. The level of
separability is considered as a measure of the difficulty of an optimization problem. They
presented a new adaptive algorithm to enhance the efficiency of the CC algorithm. Elahe
Sadat Hosseini et al. proposed a hierarchical subchromosome genetic algorithm (HSC-GA)
to optimize the design of wireless sensor networks [33]. According to this method, the
genetic algorithm is applied on each subchromosome separately. In the research [34], the
global optimization variables were coded into a hierarchical chromosome; the chromosome
was separated into several subchromosomes. The defined subchromosome grouped the
closely related blocks together. In a future step, these subchromosomes could form the
upper-level building blocks.



J. Mar. Sci. Eng. 2022, 10, 1294 5 of 21

According to the existing research, we find that the original CC methods mainly
consider the optimization problem that the fitness value is impacted by the variables
in different subcomponents, and the global optimal solution would be obtained as the
coevolution of variables in multiple subcomponents. This paper proposes applying this
method to deal with the large-scale BAP according to the characteristics of the problem.
We propose defining the available subdomains of variables by using the iterative variable
grouping genetic algorithm in the BAP. The vessels would be classified into subgroups. To
achieve the balance of loading tasks of berths among subgroups, some vessels would be
reallocated between subgroups according to the optimal berth allocation plans generated
by the genetic algorithm in each subgroup. The near-optimal berth allocation plan would
be obtained by applying the “local optimization, vessels reallocation” iteration.

3. Modeling Large-Scale Berth Allocation Problem
3.1. Problem Analysis

There are n vessels (i.e., vessels 1, 2, . . . , n) and m berths (i.e., berths 1, 2, . . . , m). For
i = 1, 2, . . . , n, vessel i has the features of loading time ti and tonnage weight wi. For j = 1,
2, . . . , m, berth j has the feature of loading capability. According to the characteristics of
the BAP, the following constraints should be considered.

3.1.1. Loading Capability

According to the tonnage weight, the vessels are classified as heavy-tonnage vessels,
large-tonnage vessels, medium-tonnage vessels, and small-tonnage vessels [30]. The vessels
are linearly indexed from heavy-tonnage vessels to small-tonnage vessels. Therefore,
wi−1 ≥ wi, for i = 2, 3, . . . , n. We assume that the number of heavy-tonnage vessels,
large-tonnage vessels, medium-tonnage vessels, and small-tonnage vessels to be loaded
are nh, nl , nmid, and ns respectively.

We classify the berths into four types according to their loading capabilities. The type
i berths could berth and load all kinds of vessels, and the type II berths could berth and
load the large-tonnage vessels, the medium-tonnage vessels, and small-tonnage vessels.
The type III berths could berth and load the medium-tonnage vessels and small-tonnage
vessels. The type IV berths could berth and load small-tonnage vessels. The feasible vessel
berth allocation policies are depicted in Figure 1.
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Figure 1. The feasible vessel berth allocation policies; the solid lines indicate the preference allocation
policy of each type of vessel, and the dashed lines indicate the alternative allocation policy of each
type of vessel.

The berths are linearly indexed in such a way that at any point in time, berth j is able
to serve all types of vessels that berth j + 1 could serve (j = 1, 2, . . . , m − 1). According to
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the loading requirements of vessels, the feasible solutions of vessel berth allocation policies
should satisfy Equation (1).

Mp
s ∈ [1, m], Mp

mid ∈ [1, m−m1],

Mp
l ∈ [1, m−m1 −m2], Mp

h ∈ [1, m−m1 −m2 −m3]
(1)

where Mp
s is the vessel berth assignment policy for small vessels. Mp

mid is the vessel berth
assignment policy for medium vessels. Mp

l is the vessel berth assignment policy for large
vessels. Mp

h is the vessel berth assignment policy for heavy vessels. m1 is the number of
type IV berths. m2 is the number of type III berths. m3 is the number of type II berths.

3.1.2. The Tidal Condition

Many megaports (e.g., Port of Shanghai, Port of Tianjin, and Port of Hamburg) are
tidal ports [8]. To define our problem mathematically, we first discuss the natural condition
of the megaport. There are semidiurnal tidal harbors and diurnal tidal harbors [35]. These
harbors are characterized as unfixed water depths. In the diurnal tide harbors, the timeline
of a day can be divided into two time periods, [0, t1

tide] and [t1
tide, 24], according to the

water depth of the chosen port, where [0, t1
tide] is the low-water period and [t1

tide, 24] is the
high-water period. In the semidiurnal tidal harbors, the timeline of a day can be divided
into four time periods, [0, t1

tide], [t
1
tide, t2

tide], [t
2
tide, t3

tide], and [t3
tide, 24], according to the water

depth of the chosen port. [0, t1
tide] and [t2

tide, t3
tide] are the low-water periods and [t1

tide, t2
tide]

and [t3
tide, 24] are the high-water periods. Here, t1

tide and t3
tide represent the time points at

which the water level has reached a certain threshold where the berthing of large/heavy
vessels becomes less restrictive, and time 0 and t2

tide are the time points at which the water
level has fallen to a certain threshold. Therefore, some large-/heavy-tonnage vessels could
only enter the tidal berth in the high-water time period. Meanwhile, other types of vessels
could be loaded both at the low-water and high-water times. The change in water level in
tidal ports is shown in Figure 2.
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As shown in Figure 2, as the water level of the tidal harbors keeps on changing, the
tide-condition-dependent vessels can enter and depart the harbors only when the water
level reaches a certain height. On the other hand, when one vessel is in the tidal harbor,
it can stay at the harbor until the high-water time period in the next tide circle. When
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berths are assigned with an inappropriate loading plan in the tidal-condition berth, it
would lead to unnecessary idle time for some berths. As shown in Figure 3, when one
tidal berth is assigned with too many tide-condition-dependent vessels and other berths
are assigned with few, the assigned tide-condition-dependent vessels would wait for the
high-water-level period, and the low-water-level period would be left idle, while the other
berths would load for the full time, which is obviously inefficient.
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Therefore, an efficient berth allocation plan should guarantee that the tidal-condition-
dependent vessels are evenly assigned to available berths, so that the maximum loading
time of all the berths can be minimized.

3.1.3. The Allocation Efficiency Requirement

To guarantee the robustness of the berth allocation plan, the uncertain dynamic factors
that would affect the loading plan should be considered. In the practical loading process, the
loading-time consumption of some vessels may be prolonged because of unexpected events,
and some vessels may arrive at their designated berth place later than preplanned [29].
Therefore, the static berth allocation plan should be adjusted to deal with unexpected
events, such as to reallocate some vessels to nearby available berths. As we discussed
above, the large/heavy vessels can only be loaded by large-/heavy-tonnage berths in the
specific time period. If the suitable berths for large vessels are occupied by small vessels,
they would have to wait until these berths are idle. It would prolong the overall loading
time. Therefore, appropriate avenues should be used to guarantee the efficiency of the
berth allocation plan.

3.2. Problem Analysis

The required loading time of each vessel is defined as ti. We assert that the berth stay
interval of each vessel should be in one single tide circle. If one large vessel could not be
fully loaded in one circle, then it would leave the harbor before the water depth becomes
too low or stay for the next high-water period. Therefore, it may lead to additional work
loads, which would be obviously inefficient.

If the tide-dependent vessels could not be loaded in the first tide cycle, they would
wait until the next high-water period. Therefore, it may happen that the berth j is left idle
in the low-water period. T j

idle is the idle time that berth j waits for the next high-water
period as there are no small or medium vessels to be loaded. We assume that the vessels
assigned to the berth j would be loaded in nd

j days. nd
j may be determined by the assigned

tide-dependent vessels.

nd
j = max( fc(

n

∑
i=1

xijti/24), fc(
nh

∑
k=1

x′kjtk/Th)) ∀j ∈ m (2)
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where fc is rounded up to the value to the next integer, Th is the time interval that the
tidal-condition-dependent vessels can stay in the harbors in a day, and nh is the number of
high-water-requiring vessels.

The required overall loading time of the berth j is formulated as (3):

f j =
n

∑
i=1

xijti + T j
idle ∀j ∈ m (3)

where xij is a binary variable. xij = 1 if vessel i is assigned to berth j. Otherwise, xij= 0. The

value of T j
idle can be determined as below:

T j
idle = max(

n

∑
i=1

xijti, fc(
nh

∑
k=1

x′kjtk/Th) ∗ 24 + fmod(
nh

∑
k=1

x′kjtk/Th)) + t1
tide −

n

∑
i=1

xijti (4)

where x′kj is a binary variable. x′kj = 1 if vessel k is assigned to berth j. Otherwise, x′kj= 0.

According to Equation (4), we find that the value of T j
idle is zero if the jth berth is

allocated with appropriate types of vessels. When there are too many tidal-condition-
dependent vessels, the jth berth would take some more idle time before it finishes the
overall loading tasks.

The objective of the BAP is to find the berth allocation plan that minimizes the maxi-
mum berthing time of all the available berths and improves the berth allocation efficiency.
The objective function is

f = max
j∈[1,...,m]

(
n

∑
i=1

xijti + T j
idle + σnlth

j ) (5)

s.t.

m

∑
j=1

xij = 1, i ∈ [1, n] (6)

xij = 0, i ∈ [1, n− ns], j ∈ [mh + mmid + ml + 1, m] (7)

xij = 0, i ∈ [1, n− ns − nmid], j ∈ [mh + ml + 1, m] (8)

xij = 0, i ∈ [1, n− ns − nmid − nl ], j ∈ [ml + 1, m] (9)

T j
idle = max(

n

∑
i=1

xijti, fc(
nh

∑
k=1

x′kjtk/Th) ∗ 24 + fmod(
nh

∑
k=1

x′kjtk/Th)) + t1
tide −

n

∑
i=1

xijti (10)

where m is the number of available berths; n is the number of vessels to be loaded. nh is the
number of high-water-requiring vessels. σnlth

j is devised to evaluate the efficiency of the

berth allocation plan, σ is a coefficient, and nlth
j is the number of low-/medium-tonnage

vessels that are allocated to large-/heavy-tonnage berths. The Equation (4) requires each
vessel to be loaded to one berth. Equation (5) defines the feasible berths of medium-/large-
/heavy-tonnage vessels. Equation (6) defines the feasible berths of large-/heavy-tonnage
vessels. Equation (7) defines the feasible berths of heavy-tonnage vessels. Equation (8)
defines the value of T j

idle.
In addition to that, the tidal condition should be considered. Therefore, when the

vessel i is tide-dependent and xij = 1, then the following constraint should be satisfied for
the diurnal tide harbors:

si, si + ti ∈ [(k− 1) ∗ 24 + T1
j , k ∗ 24], k ∈ [1, nd

j ] (11)
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The following constraint should be satisfied for the semidiurnal tidal harbors:

si, si + ti ∈ [(k− 1) ∗ 24+ T1
j , (k− 1) ∗ 24+ T2

j ]∪ [(k− 1) ∗ 24+ T3
j , k ∗ 24], k ∈ [1, nd

j ] (12)

Equations (11) and (12) require the tide-dependent vessels to execute the loading tasks
within the high-water period.

4. Iterative-Variable-Grouping-Genetic-Algorithm-Based Method
4.1. The Characteristics of the Large-Scale Berth Allocation Problem

As we discussed above, the BAP is an integer-programming problem. The computa-
tional complexity of this problem is strongly dependent on the number and types of vessels
and berths. The GA is efficient to deal with integer-programming problems [36]. In the
large-scale marine transport problem, there may be hundreds of different types of vessels
and berths. If we treat this problem as a whole, a complete chromosome may consist of
hundreds of genes, and the feasible solution of each gene may range from tens to hundreds.
The original GA would then be difficult to obtain the near-optimal berth allocation plans
for large-scale BAPs [37].

To deal with this complex problem, we will further discuss the characteristics of the
BAP. Our BAP aims to search for the optimal berth allocation plan that minimizes the
loading time of berths and guarantees the efficiency of the plan. In the large-scale marine-
loading problem, there are many vessels of the same type and berths with the same loading
capability, as shown in Figure 4a. The required loading time of each berth is determined
by the number and type of vessels that are allocated to it. As shown in Figure 4b, one k2
type vessel could be assigned to berth 1 or berth 2. That is to say, the detailed assignment
of one given vessel would not make significant differences to the berth allocation plans.
Therefore, we were able to find out that most vessels and berths are not highly relevant for
the large-scale marine-loading problem.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 23 
 

 

 

one k2 type vessel could be assigned to berth 1 or berth 2. That is to say, the detailed as-
signment of one given vessel would not make significant differences to the berth alloca-
tion plans. Therefore, we were able to find out that most vessels and berths are not highly 
relevant for the large-scale marine-loading problem. 

 
Figure 4. The illustration of the berth allocation problem. 

To further discuss the characteristic of the BAP, we provide the definition of separa-
bility. 

Separability means that the influence of a variable on the fitness value is independent 
of any other variables [Error! Reference source not found.38]. According to this defini-
tion, we can find out that a function f: d →R R is separable if: 

( ) ( ) ( )( )
1 1

1 1,...,
arg min ,..., argmin ,... ,..., argmin ...,

d d
d dx x x x

f x x f x f x=  (13)

According to the equation, we can find out that in the separable problem, the optimal 
solutions of the original problem could be obtained by solving several univariate prob-
lems. In the large-scale marine-loading problem, there are many different types of vessels 
and berths. The required loading time of each berth is determined by all the vessels that 
are allocated to it rather than one specific vessel, which is denoted as (2). Therefore, the 
BAP is not fully separable. 

On the other hand, there are many different types of berths that could load one spe-
cific vessel. Therefore, there are no specific highly relevant variables in our BAP problem. 
When the number of each type of vessels and berths is divided into several subgroups 

{ , }, [1, ]l l l sS V B l n= ∈ , and the loading tasks of these subgroups are equal, then the original 
BAP can be solved as several subproblems in these subgroups [39], which is shown as 
Figure 5. We can obtain the equation: 

1max{ ,... }
sn

f f f=  (14)

where f  is the maximum loading time of the BAP defined in (3), and , (1, )l sf l n ∈  is the 
maximum loading time of the berths in the lth subgroup, which is generated by solving 
the equation (15): 

{1, } 0
min( max { + }+ )

l
v

l
b

n
j lth

l kj k idle j
j m k

f x t T nσ
∈ =

=   (15)

Figure 4. The illustration of the berth allocation problem.

To further discuss the characteristic of the BAP, we provide the definition of separability.
Separability means that the influence of a variable on the fitness value is independent

of any other variables [38]. According to this definition, we can find out that a function f:
Rd → R is separable if:

arg min
x1,...,xd

f (x1, . . . , xd) =

(
argmin

x1
f (x1, . . .), . . . , argmin

xd
f (. . . , xd)

)
(13)

According to the equation, we can find out that in the separable problem, the optimal
solutions of the original problem could be obtained by solving several univariate problems.
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In the large-scale marine-loading problem, there are many different types of vessels and
berths. The required loading time of each berth is determined by all the vessels that are
allocated to it rather than one specific vessel, which is denoted as (2). Therefore, the BAP is
not fully separable.

On the other hand, there are many different types of berths that could load one specific
vessel. Therefore, there are no specific highly relevant variables in our BAP problem.
When the number of each type of vessels and berths is divided into several subgroups
Sl = {Vl , Bl}, l ∈ [1, ns], and the loading tasks of these subgroups are equal, then the
original BAP can be solved as several subproblems in these subgroups [39], which is shown
as Figure 5. We can obtain the equation:

f = max{ f1, . . . fns} (14)

where f is the maximum loading time of the BAP defined in (3), and fl , l ∈ (1, ns) is the
maximum loading time of the berths in the lth subgroup, which is generated by solving the
Equation (15):

fl = min( max
j∈{1,ml

b}
{

nl
v

∑
k=0

xkjtk + T j
idle}+ σnlth

j ) (15)
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Therefore, the original BAP can be solved by the “divide and conquer strategy”.
Figure 4 depicts a simple problem where the vessels and berths can be equally divided into
two groups.

However, in most cases, the vessels and berths are not in proportion to each other.
Therefore, with regard to the practical problems, the number of each type of vessels and
berths among subgroups need not be equal. An appropriate grouping strategy should
guarantee that the berth–vessel loading tasks of subgroups are almost the same, such
as when there are 12 different vessels and five berths. These vessels and berths can be
divided into two groups {(seven vessels, three berths), (five vessels, two berths)} or {(nine
vessels, four berths), (three vessels, one berth)} as long as the loading tasks of berths in two
groups are almost the same. According to the characteristic of the BAPs, we find that most
large-scale BAPs can be treated as several subproblems. Therefore, the large-scale BAPs are
partially separable [40].

It is hard to determine the appropriate grouping strategies in most cases, as there are
various types of vessels and berths, and these vessels and berths are not in proportion to
each other. Therefore, we can only obtain the local optimal berth allocation plan for the
BAPs. The local optimal solutions satisfy the Equation (16):

f ≤ max{ f1, . . . fns} (16)

The Equation (16) indicates that the “divide and conquer strategy” cannot guarantee
obtaining the ideal results. However, in practical problems, we can obtain the near-optimal
berth allocation plans by iteratively adjusting the loading tasks among subgroups according
to the optimal berth allocation plans in each subgroup.
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4.2. Iterative Variable Grouping Genetic Algorithm

As we discussed above, there is not a proportional relationship between the number of
each type of vessels and berths in most marine-loading problems. It is difficult to determine
the appropriate grouping strategy directly. We could obtain the optimal berth allocation
plan in each subgroup by using the optimization algorithms. The required loading time of
berths in different subgroups reflect the differences in the loading tasks among subgroups.
To generate the balance of the loading tasks among subgroups, some of the vessels were
reallocated among subgroups based on the optimal berth allocation plans in subgroups.
We propose the iterative variable grouping genetic algorithm. The main operations of
this algorithm are to divide the vessels and berths into subgroups according to the initial
grouping strategy, to generate the near-optimal berth allocation plans for each subgroup by
using the genetic algorithm, and to reallocate the vessels among subgroups according to
the near-optimal berth allocation plans of subgroups.

4.2.1. Initial Grouping Strategy

The primary concern of the grouping strategy is that there are available berths for the
vessels in each subgroup.

Furthermore, we should determine the scale of vessels and berths in each subgroup
considering the features of the BAP and the characteristics of the genetic algorithm.

According to the nature of the cooperative coevolutionary method, small group sizes
are suitable for fully separable problems, making the optimization of each subcomponent
easier, and large group sizes increase the probability of grouping together interacting
variables in nonseparable problems [32]. As the allocation of one vessel is not highly related
with any other specific vessels in the large-scale BAPs, the sizes of subgroups need not
be large.

In addition to that, the GA can produce near-optimal solutions for small to medium-
size instances efficiently, and it is inefficient in dealing with larger instances [37].

According to the discussion above, we propose the initial grouping strategy as below:

(1) The number of vessels and berths should be kept in medium scale in each group;
(2) To improve the computational efficiency, the number of each type of vessels and berths

should be divided as evenly as possible;
(3) Each type of vessel should be distributed to the subgroups according to the number of

correspondence berths.

4.2.2. Searching the Near-Optimal Plans by Using the Genetic Algorithm

We searched the optimal berth allocation plan in each subgroup by using the genetic
algorithm. We regarded the berths in each group as service counters, and the vessels were
treated as guests. The objective was to serve all the guests within the minimum time. The
evolution process of the GA was realized by three evolution operators: selection operator
(SO), crossover operator (CO), and mutation operator (MO) [41]. The main parts of the
genetic algorithm are described as below:

• Chromosome

The chromosome expresses the allocations of all the vessels in one subgroup. It should
be guaranteed that the chosen berths are able to load the assigned vessels.

• Population

The population in the evolution process is created by a random process that ensures
each chromosome is feasible.

• Crossover

The crossover process is applied between two individuals (parents) that are chosen
randomly. This process creates two new individuals (children).

• Mutation



J. Mar. Sci. Eng. 2022, 10, 1294 12 of 21

Every chromosome in the population is likely to mutate. We set the value of the
randomly chosen gene to mutate in its feasible range. The mutation probability would
decline as the population came close to the optimal solution.

Some of the best chromosomes (an elite set of the selected chromosomes) may be
moved without any change to the next generation (elitism process).

• Fitness function

As the primary objective of the BAP is to load all vessels within the minimum time,
the fitness function needs to evaluate the overall loading time of berths in each subgroup.
In addition to that, to guarantee the efficiency and robustness of the BAP strategy, the
high-tonnage berths should be assigned with as few small/medium vessels as possible.
Therefore, these berths could be used to deal with unexpected events. For example, when
some vessels are temporarily added to the loading list, the idle high tonnage berths could
serve all types of vessels without modifying the original plan. When the loading tasks of
some vessels are prolonged, the unoccupied high-tonnage berths could be used to load
more types of subsequent vessels than low-tonnage berths.

According to the feature of the problem, we define the fitness function of the lth
subgroup as (17).

fl = 1/( max
j∈{1,ml

b}
{

nl
v

∑
k=0

xkjtk + T j
idle}+ σnlth

j ) (17)

where max
j∈{1,ml

b}
{

nl
v

∑
k=0

xkjtk + T j
idle} depicts the maximum loading time of berths in one sub-

group, and σnlth
j denotes the inefficient berth–vessel allocations. As we stated above, nlth

j is
the number of low-/medium-tonnage vessels that are allocated to large-/heavy-tonnage
berths, and σ is a small coefficient that guarantees σnlth

j is significantly smaller than the
former part of (17). The better chromosomes would have large values of fl .

• Selection method

There are several types of selection techniques, such as roulette wheel, rank, tourna-
ment, Boltzmann, and stochastic universal sampling [42]. As there would be a large number
of allocation plans with almost the same fitness values, the fitness function would be almost
flat in most areas. To improve the computational efficiency of the GA, the chromosomes
that are have more potential should be guaranteed to have higher selection probabilities.
As the roulette wheel technique is more agile, we define the selection method based on the
roulette wheel technique. The selection probability of an individual is set as Equation (18):

ps(ai) = f̂i/
nl

p

∑
j=1

f̂ j, ∀i ∈ nl
p (18)

where f̂ j is defined as: f̂ j =

[
f̂ j/ max

i∈1,nl
p

( f̂i)

]ne

, and ne is a positive value that is larger than

1; nl
p is the size of the population in the lth subgroup. According to this equation, the

individuals that are have more potential would be selected with higher probability.

4.2.3. Iterative Vessel Reallocation Policy

The differences in the maximum loading time between subgroups indicate the imbal-
ances in the loading tasks of related subgroups. The loading tasks and service capability of
subgroups should be modified to balance, such that the differences in loading time between
subgroups reach a small value. We propose adjusting the grouping strategy based on the
berth allocation plans generated by the GA. According to the berth allocation plans, we
could determine the required loading time of each berth. The maximum loading time of
berths in each subgroup could be used as the measure of the loading tasks of the subgroup.
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The differences in the maximum loading time among subgroups could be reduced by
reallocating some vessels between the subgroups with larger maximum loading time and
minor maximum loading time. As a result, the loading tasks of subgroups would be close
to being balanced. We propose that the appropriate grouping strategy should satisfy the
Equation (19):

max
l∈[1,ns ]

{Tmax
l } − min

l∈[1,ns ]
{Tmax

l } ≤ t′min (19)

where Tmax
l = max

k∈[1,l]
{Tk} is the maximum loading time of berths in the lth group by using

GA, ns is the number of subgroups, and t′min is the minimum loading time difference. The
value of t′min depends on the required loading time of different types of vessels. Therefore,
the vessel reallocation policy could be used iteratively to achieve balance in the loading
tasks among subgroups.

As there are many different types of berths and vessels in each subgroup, to improve
the computational efficiency, it is crucial to determine the appropriate type of vessels to
be reallocated between subgroups based on the detailed loading-time differences. As
vessels could be classified by the loading tonnage type, we propose the vectorized vessel
reallocation policy. We assumed that the GA could generate the optimal berth allocation
plans for each subgroup. According to the fitness function we defined above, small-tonnage
vessels are preferred to be allocated over small-tonnage berths; medium-tonnage vessels
are preferred to be allocated over medium-tonnage berths. As there are four types of berths,
we could obtain the vector Tv

l =< Tmax
l,1 , . . . , Tmax

l,4 >, where Tmax
l,j is the maximum overall

loading time of all the jth type of berths. We could obtain more information about the
differences between related subgroups by virtue of Tv

l . Accordingly, we propose the vessel
reallocation policy:

Firstly, choose the type of vessels to reallocate between subgroups by virtue of Tv
l .

When the loading tasks of jth type vessels are unbalanced between the two subgroups l
and h, then there would be an obvious difference between Tmax

l.j and Tmax
h.j . Suppose that

Tmax
l.j > Tmax

h.j , then some jth type vessels in the subgroup l would be chosen to reallocate to
the subgroup h.

Secondly, determine the vessel exchange policy. The variation in the overall loading
time of subgroup l and subgroup h would be−tj and tj, respectively, if we reallocate one jth
type vessel between them. As the value of tj may be large, the large variation would make
the iterative reallocation method difficult to converge to the balance of loading tasks among
subgroups. Therefore, it would be inefficient if we only reallocated the chosen vessel from
one subgroup to another subgroup in each step. To improve the computational efficiency,
we applied the vessel exchange policy. According to this policy, when one high-tonnage
vessel is chosen to reallocate from the subgroup l to the subgroup h, one small-tonnage
vessel in the subgroup h would be reallocated to the subgroup l. Therefore, the variation in
the overall loading time of the subgroup h would be:

∆Th = ts − tj (20)

where tj is the loading time of the chosen vessel and ts is the loading time of one small-
tonnage vessel. We obtain ts < tj.

By using the vessel reallocation policy, the loading tasks of related subgroups are
guaranteed to be changed slightly; this would lead to the rapid convergence of the balance
of the loading tasks among subgroups. The iterative reallocation process would stop as
the value of max

l∈[1,ns ]
{Tmax

l } − min
l∈[1,ns ]

{Tmax
l } reaches zero or does not change in a certain

time step. The flow chart of the iterative variable grouping genetic algorithm is shown as
Figure 6.
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5. Computational Experiments

In this section, we demonstrate the proposed algorithm in large-scale marine-loading
scenarios. Our approach was implemented in MATLAB 2018 on a 2.5 GHz Intel i5 quad-core
processor with 12 GB memory running on the Windows 10 operating system.

5.1. Large-Scale Berth Allocation Scenario

Many researchers demonstrate their algorithms in small-/middle-term vessel alloca-
tion scenarios [43]. In this paper, we demonstrate the proposed algorithm through dealing
with the large-scale berth allocation problem.

5.1.1. Scenario Introduction

In the large-scale time-critical berth allocation scenarios, the number of vessels to be
allocated and the number of available berths may be in the hundreds. We anticipate there
are 138 available berths. The information of available berths is shown in Table 1.

Table 1. Information of available berths.

Types of Berths Number ID Range

1 29 B1~B29
2 40 B30~B69
3 41 B70~B110
4 28 B111~B138

There are different types of vessels to be loaded. Each type of vessel has different
features in loading time and tonnage type, which are shown as Table 2.

The tidal condition is considered in this complex scenario. We set the v1, v15, v16, and
v17 type vessels as tidal-condition-dependent vessels. In this scenario, we set the harbor as
a diurnal tide harbor. We set the low-water time period to be [0:00–5:00] and high-water
time period to be [5:00–24:00].

We set the value of σ to be 0.01. It guarantees that the value of σnlth
l does not affect the

evaluation of the loading time of each berth.



J. Mar. Sci. Eng. 2022, 10, 1294 15 of 21

Table 2. The information of vessels to be loaded.

Vessel Type v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19

Number 76 23 17 63 13 10 1 1 31 12 10 200 36 8 8 13 2 17 213
Loading time 6 5 5 5 5 4 4 4 4 3 3 3 1 1 10 15 18 5 4
Tonnage type 2 3 3 3 3 3 3 3 3 3 3 4 4 4 2 1 1 3 3

5.1.2. Parameters’ Validation

To guarantee the computational efficiency, the vessels and berths should be allocated
to each subgroup as evenly as possible. Therefore, the number of berths in one subgroup
is correlated to the number of vessels belonging to this subgroup. Two main parameters
should be determined, namely the number of vessels in each subgroup and the value of ne.

To determine the optimal parameters, we validated the performance of the genetic
algorithm in different combinations of the number of vessels, and we set the value range of
the number of vessels in each subgroup to be (30, 40, 50, 60, 70, 80, 90, 100) and the value
range of ne to be (1, 2, 3, 4, 5, 6, 7, 8 ). The minimum values that were generated in four
samples are shown in Figure 7.
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As the number of vessels and berths is correlated in each subgroup, when the number
of vessels is set to a small value, the number of berths that belong to the same subgroup
would also be limited. This would lead to obvious differences in the {vessels, berths} data in
different subgroups. The IVGGA would be inefficient to generate the ideal berth allocation
plan in that situation. On the other hand, when the number of vessels in each subgroup
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is too large, the GA would be inefficient in generating the optimal berth allocation plans.
According to Figure 7, we find that when the number of vessels is set to 50, and the value
of ne is set in the range (3, 4, 5, 6, 7, 8), the IVGGA has better performance. We consider that
if the value of ne is set too high, the algorithm may be prematurely converging the solution
to a local minimum. Therefore, we define the vessels in each subgroup to be about 50, and
the value of ne to be 4. The berths and vessels are, therefore, grouped into 15 subgroups.
According to the initial grouping strategy, the number of vessels in each subgroup would be
in the range (49, 52), and the number of berths would be in the range (9, 10). The numbers
of each type of vessel and berth are evenly distributed into each subgroup as possible.

5.1.3. Performance Evaluation

The IVGGA was applied to search the approximate optimal berth allocation solution.
Firstly, the initial local optimal solutions were obtained based on the initial grouping
information, as shown in Figure 8. It shows that in some subgroups, the maximum loading
time was 26 h, and the berths in some other subgroups could fulfill the loading tasks within
23 h. To reduce the maximum loading time of all the available berths, the vessels should be
reallocated among the subgroups.
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After the iterative reallocation of vessels between subgroups, the differences of maxi-
mum loading time between each subgroup reached 0. The loading time of each berth is
shown in Figure 9. It shows that the maximum loading time was 24 h.
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Table 3. The vessel reallocation results.

Subgroup ID Number of Vessels
after Adjustment Added Vessels Removed Vessels

1 52 v13:1,v15:1 v12:2
2 52 v2:1,v14:1,v19:1 v1:1,v13:2,
3 52 v1:1,v2:1,v15:1 v13:2,v16:1
4 52 v1:1 v16:1
5 46 v3:1,v10:1,v13:1,v16:1,v18:1 v4:1,v5:1,v12:7,v15:1
6 46 v1:1,v12:1 v4:1,v9:1,v13:2,v18:1,v19:2
7 53 v12:2,v13:1,v19:1 v16:1
8 52 v4:1,v5:1,v9:1,v12:2,v19:1 v1:3,v15:1
9 52 v1:1,v9:1,v12:2,v13:1 v3:1,v15:1,v19:1
10 51 v4:1,v12:1,v13:1,v15:1 v2:1,v9:1
11 49 v12:1,v13:1,v16:1 v2:1,v10:1,v14:1
12 50 v1:1
13 49 v16:1 v1:1
14 49
15 49

In addition, the IVGGA shows the capability of guaranteeing the robustness of the
berth allocation plan. Figure 10 shows that the medium-tonnage vessels are mainly served
by the Type 2 and Type 3 berths, and the small-tonnage vessels are mainly served by the
Type 4 berths. As shown in Figure 9, the blue bars depict the overall loading times of
type 1 and type 2 berths. The yellow bars and red bars depict the overall loading times
of type 3 and type 4 berths, respectively. It shows that there are idle times for most
high-tonnage berths. Therefore, the type 1 and type 2 berths could be used to deal with
unexpected events as these berths could serve most vessels. In instances when some vessels
arrive later than the predefined start time, or the loading tasks of some vessels are not
finished in the scheduled time, the idle berths could be used to load the follow-up vessels
(the detailed berth allocation plan is recorded in Supplementary Materials).
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5.2. Comparison with Original Genetic Algorithm

In this computational experiment, we compared the proposed algorithm with the
original GA. We considered that there were 19 types of vessels to be loaded, and the
loading time and tonnage type of these vessels are listed in Table 2. These vessels are
classified as four types according to their tonnage data. The available berths could also be
classified into four types according to their loading capabilities, as recorded in Table 1. We
devised various scenarios for different numbers of vessels and available berths, as shown
in Table 4. We created many instances for each scenario, and the number of available berths
varied in a certain range. We assert that the number of vessels in each subgroup should
be no more than 50. In addition to that, to guarantee the consistency of the original GA
and the IVGGA, we assert that the length of the chromosome is linearly correlated with
the number of vessels in each subgroup. Therefore, the number of genes increase with
the number of vessels. Figure 11 shows the maximum loading time of available berths
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according to the optimization berth allocation results generated by the original GA and the
IVGGA algorithm.

Table 4. The information of vessels and berths in each scenario.

Scenario Type Number of Vessels The Range of Number of Available Berths

1 77 (15, 16)
2 151 (29, 31)
3 228 (43, 45)
4 302 (56, 58)
5 379 (70, 72)
6 453 (84, 86)
7 530 (97, 99)
8 604 (111, 113)
9 681 (125, 127)

10 755 (140, 141)
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According to the results shown in Figure 11, we find that the IVGGA outperforms
the original GA. When the number of vessels increases to 100, the original GA becomes
inefficient in generating near-optimal solutions. On the other hand, the IVGGA can generate
good results even when the number of vessels reaches 700+. Therefore, we can reach the
conclusion that the proposed algorithm can deal with large-scale BAPs.

6. Discussion and Conclusions

Large-scale maritime transport is the main transportation method in humanitarian aid
and disaster relief (HADR) actions. As transporting the supplies and relief teams timely is
very important for lifesaving and alleviating the disaster impact in the affected areas, to
make full use of the available vessels and berths is critical in HADR actions. This paper
demonstrated an iterative variable grouping genetic algorithm (IVGGA) for dealing with
the static large-scale berth allocation problem (BAP). The optimal berth allocation plan
should minimize the time to load all the vessels, and guarantee that the plan is robust to
unexpected events. The effect of the tidal condition was considered.

When there are a great number of vessels to be loaded, the original genetic algorithm
(GA) would be inefficient in generating near-optimal berth allocation plans. According to
the characteristics of the static large-scale BAPs, we found that it was partially separable.
Therefore, we propose using the “divide and conquer strategy”. We divided the vessels and
berths into subgroups, and the GA was applied to search the near-optimal berth allocation
plans in subgroups. With consideration of the unbalance of loading tasks among subgroups,
we propose iteratively reallocating the vessels between the subgroups with a larger fitness
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value and a minor fitness value. To improve the computational efficiency, we propose the
vessel reallocation policy. Our approach proved to be of high performance in generating a
near-optimal berth allocation plan in the complex scenario involving more than 700 vessels
to be loaded. According to the results of the computational experiments, we found that our
method is highly scalable.

As we mainly focused on the marine-loading problem in large-scale time-critical
missions, what we considered the most is to maximize the utilization of available berths,
and to fulfill the overall loading tasks in the minimum time. Therefore, we focused on
the static large-scale BAP in this study. However, as this problem is partially separable,
the near-optimal solution generated by using the proposed method would not fix the
assignment of each specific vessel to each berth. On the contrary, we could determine
the detailed allocation plan for vessels considering the position of vessels and berths.
Furthermore, when the detailed allocation plan was determined, the order of loading could
be determined according to the arrival times of related vessels. In our future research, we
will study the online vessel–berth allocation problem based on the static berth allocation
plans. In addition to that, as we have considered the robustness in the proposed algorithm,
small-tonnage vessels and medium-tonnage vessels are preferred to be allocated to the
shallower and smaller berths. The berths that could serve the high-/heavy-tonnage vessels
would be reserved for unexpected events rather than loading the small-/medium-tonnage
vessels. Therefore, these berths could be used to load the additional vessels or the vessels
that arrive late.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jmse10091294/s1. Table S1: The detail berth allocation plan.
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