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Abstract: In this paper, we study the static discrete berth allocation problems (BAPs) for large-scale 

time-critical marine-loading scenarios. The objective is to allocate the vessels to different types of 

berths so that all the vessels can be loaded within the minimum time under the tidal condition. The 

BAP is formalized as a min–max problem. This problem is rather complex as the vessels and berths 

are quite numerous in the large-scale marine-loading problem. We analyze this problem from a 

novel perspective, and find out that this problem has the characteristic of partially separable. There-

fore, the iterative variable grouping genetic algorithm (IVGGA) is designed to search the near-opti-

mal berth allocation plans. The vessels and berths are divided into subgroups, and the genetic algo-

rithm (GA) is applied to generate the near-optimal berth allocation plans in each subgroup. To 

achieve the balance of loading tasks among subgroups, we propose reallocating some vessels among 

subgroups according to the berth allocation plans in subgroups. To guarantee the convergency of 

the algorithm, an iterative vessel reallocation policy is devised considering the loading tasks of dif-

ferent types of berths. We demonstrate the proposed algorithm in dealing with large-scale BAPs 

through numerical experiments. According to the results, we find that the proposed algorithm 

would have good performance when the number of vessels in each subgroup are kept in medium 

scale. Compared with the original GA, our algorithm shows the effectiveness of the iterative varia-

ble grouping strategy. The performance of our algorithm is almost not changed as the number of 

vessels and berths increases. The proposed algorithm could obtain efficient berth allocation plans 

for the large-scale marine-loading problem. 

Keywords: discrete berth allocation problem; separable optimization problem; iterative variable 

grouping genetic algorithm; vessel reallocation 

1. Introduction

Maritime transport is one of the main transportation methods in military and civil 

fields. In the civil field, it is essential to a country as it plays a major role in international 

trading that can sustain economic development [1]. In the military field, maritime 

transport is also the first choice to transport people and supplies cross the sea [2]. Mean-

while, maritime transportation is one of the efficient methods in large-scale time-critical 

missions, such as humanitarian aid and disaster relief (HADR) actions [3]. Maritime trans-

portation could be used to evacuate refugees from disaster areas to safe places or deploy 

medical equipment, food, and other relief materials to the disaster areas [4,5]. The earth-

quakes in Haiti in 2010 and 2021 killed thousands of people [6]. One of the main reasons 

for this tragic result is there is a lack of quick and orderly disaster relief actions after 
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earthquakes. When a disaster occurs, the first 72 h are very critical for lifesaving [7]. As 

large-scale disasters occur from time to time, HADR actions are continuous requirements 

for every country. In order to alleviate the disaster impact in the affected areas, the essen-

tial objective of maritime transportation under these circumstances is to fulfill the mission 

within the minimum time, such that the supplies and relief teams can be distributed to 

the disaster regions timely. Therefore, when there is a large quantity of vessels to be used 

to transport the supplies and relief teams, the available berths are required to be fully used 

so that the vessels can be loaded as quickly as possible. 

In large-scale time-critical maritime-loading missions, hundreds of different types of 

vessels are required to be loaded. To improve the loading efficiency, the berth-planning 

problem should be considered comprehensively, as it determines the following rescue re-

source allocation and emergency distribution. The berth allocation problem (BAP) is one 

of the key decisions of the berth-planning problem. According to the BAP, the actual 

berthing positions, as well as the start and end berthing times of various types of vessels, 

should be determined [8]. In the large-scale time-critical maritime transport problem, an 

effective berth allocation plan is crucial for (i) minimizing the overall loading time, and 

(ii) guaranteeing the robustness of the berth allocation plan. 

The BAP could be classified as static BAP and dynamic BAP [9]. A static berth allo-

cation model mainly considers allocating the candidate vessels to appropriate berths so 

that vessels are able to arrive at the assigned berths in the required time, while a dynamic 

berth allocation model considers allocating the candidate vessels with known future arri-

val information. In the HADR-related time-critical maritime transportation problem, as 

there are many unexpected factors, it may be inefficient to generate the dynamic berth 

allocation plans based on the specific arrival/departure information of vessels [10]. In or-

der to improve the marine transportation efficiency, the main objective of the berth allo-

cation problem is set to generate the berth allocation plan that could maximize the utili-

zation of the berths considering the vessels to be loaded. We assume that the arrival time 

of vessels and the loading equipment could meet the requirement of the berth allocation 

plan. Therefore, the static BAP is important for the large-scale time-critical marine-loading 

missions. The planning horizon is based on the scale of marine-loading problem. It may 

range from one to several days [11]. 

The berths could be classified into several types according to their loading capabili-

ties and available time windows [12]. Meanwhile, there are many different types of vessels 

to be loaded in large-scale maritime transportation missions. These vessels are classified 

into several levels based on their sizes and loading weights, namely small-tonnage vessels, 

medium-tonnage vessels, large-tonnage vessels and heavy-tonnage vessels [13]. In the 

real environment, different types of berths are capable of loading vessels with different 

sizes and tonnages [14]. In addition to that, there are regular strong tide waves that would 

have obvious influences on the water depths of many ports [8]. Some large-/heavy-ton-

nage vessels may be restricted by the tidal condition as they could port in the berths only 

when the water depth reaches certain conditions [15]. The objective of the BAP is to im-

prove the utilization rates of the available berths by considering the constraints of vessels 

and berths. As there may be hundreds of vessels, and there are dozens of berths, the static 

BAP of large-scale time-critical maritime transport scenarios is, therefore, a high-dimen-

sional complex optimization problem. 

The genetic algorithm (GA) is widely used to resolve different types of BAPs [16]. It 

is a highly parallel, stochastic, and adaptive optimization algorithm that is based on the 

“survival of the fittest” principle, which evolves in the direction of optimal solution [17]. 

As there are hundreds of vessels to be loaded, the original GA is difficult to converge to 

the near-optimal solution as there would be too many genes in one chromosome. The co-

operative coevolutionary (CC) strategy is introduced in [18] to deal with large-scale opti-

mization problems. The main idea of CC is to decompose the original high-dimensional 

problem into a set of lower-dimensional subproblems, which are easier to solve. Typically, 

each subproblem is assigned to a subpopulation of candidate solutions according to the 



J. Mar. Sci. Eng. 2022, 10, 1294 3 of 21 
 

 

characteristics of the initial problem, which would then evolve according to the adopted 

Genetic Algorithm. During the iterative optimization process, the cooperative information 

interaction among subcomponents happens in the evaluation of the fitness value. 

This paper studied the static BAP of vessels of various types, considering the differ-

ences in the loading capabilities of berths and the tidal condition. The objective was set to 

obtain a berth allocation plan that loads all the vessels within the minimum time. The 

computation complexity of the original large-scale static BAP is rather high. Therefore, we 

further discuss this problem. As the berths that belong to one specific type are of the same 

capability, the overall loading time of each berth is determined by the number of assigned 

vessels of different types. The allocation policies of vessels are not strongly coupled. Ac-

cording to this feature of the BAPs and the CC strategy, we further analyze the BAPs based 

on the “separable” theory. We find that the large-scale BAPs are partially separable. To 

our knowledge, there is has not been a similar discussion on the BAPs before. Based on 

this characteristic, we devise the iterative variable grouping genetic algorithm (IVGGA). 

This algorithm searches for the approximate optimal berth allocation plans by using the 

iterative optimization method. According to this novel algorithm, the available vessels 

and the berths are grouped into subgroups as evenly as possible. The genetic algorithm is 

used to search the near-optimal berth allocation plan in each subgroup [19]. The maxi-

mum loading time of all these subgroups would be minimized when the loading tasks of 

subgroups are balanced. Therefore, we propose making a minor adjustment to the alloca-

tions of vessels among subgroups iteratively based on the near-optimal berth allocation 

plans generated by the GA. As there are various types of vessels and berths in each sub-

group, we propose determining the vessels to be reallocated between subgroups with con-

sideration of the overall loading time of different types of berths. According to the numer-

ical experiment, we find that when the number of vessels in each subgroup is set to me-

dium size, the algorithm can generate good results. Our method is demonstrated in large-

scale marine-loading scenarios and compared with the original genetic algorithm. The re-

sults show that the proposed algorithm could generate approximate global optimal berth 

allocation plans for large-scale BAPs. 

The rest of this paper is organized as follows. The related works are presented in 

Section 2, and we model the marine-loading problem in Section 3. In Section 4, the iterative 

variable grouping genetic algorithm is presented. A report of the experimental results is 

presented in Section 5 and discussion and conclusions in Section 6. 

2. Related Works 

2.1. Berth Allocation Problem 

The BAP has attracted significant attention among researchers. Imai et al. formulated 

a static berth allocation problem as a nonlinear integer program to minimize both the total 

time that the vessels spend at the berth and the degree of dissatisfaction incurred by the 

berthing order [20]. Ren and Tian proposed a tree search method based on a greedy heu-

ristic algorithm considering the priority of goods [21]. Imai, Nishimura, and Padimitriou 

proposed solving this problem by using the grouped genetic algorithm [22]. According to 

their method, they added the priority factor to the operation time of each vessel to the 

objective function. Xu Qinghua proposed searching the optimal berth allocation plan by 

virtue of the multiobjective-programming theory and genetic algorithm [23]. Çağatay Iris 

et al. proposed dealing with the complex berth allocation and quay crane assignment 

problems that consider time-variant/-invariant quay crane allocation policy by using the 

set-partitioning models [24]. According to their method, the near-optimal solutions were 

obtained by using the simplified avenues. Eduardo Tadeu Bacalhau et al. proposed deal-

ing with the dynamic berth allocation problem by using the hybrid genetic algorithm [16]. 

Their optimization objective was to minimize the overall loading time of all the lined ves-

sels. The dynamic programming with state space reductions (DPSSR) method was used 

to reduce the local solution space in each iteration. This method could improve the 
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efficiency of the genetic algorithm. However, this method struggles to deal with a large 

amount of candidate vessels and berths. Dongsheng Xu et al. studied the berth allocation 

problem in container terminals in which the assignment of vessels to berths was limited 

by water depth and tidal condition [25]. In their research, the time period was divided 

into two periods, namely, the low-water period (LW), defined in [0, T], and the high-water 

period (HW), defined in [T,  ]. They formulated the problem as a mixed-integer linear 

programming (MILP) problem, which was proved to be able to solve the dynamic and 

static berth allocation problem. Eduardo Lalla-Ruiz et al. studied the BAP under time-

dependent limitations [26]. They propose that the time periods defined by Dongsheng Xu 

in [25] would lead to infeasible solutions, and they proposed an alternative mathematical 

formulation based on the generalized set-partitioning problem, which considers a multi-

period-planning horizon and includes constraints related to berth and vessel time win-

dows. Xavier Schepler et al. studied the discrete berth allocation problem considering the 

stochastic arrival times of vessels. They proposed the proactive/reactive combined ap-

proach, and the approach was proved to be efficient in dealing with the BAP with uncer-

tain arrival times of vessels [27]. These research works have not considered the different 

types of vessels and berths with different load capability, which is too oversimplified to 

deal with the real problem. Ming-Wei Li et al. proposed a PSO-based method to deal with 

the multiobjective optimization problem considering the minimum additional trucking 

distance and the port time of vessels [14]. Their method was proved to be efficient in deal-

ing with the multicategory vessels and multitype berths allocation problem. Çağatay Iris 

et al. proposed dealing with the berth allocation problem by using the adaptive large 

neighborhood search method [28]. According to their method, parts of the current solu-

tion were destroyed by a destroy operator; then, the remaining partial solution was recon-

structed by a repair operator at each iteration. Their method greatly inspired us. They 

considered the influences of the uncertainty of vessel arrivals and the fluctuation in the 

container-handling rate of quay cranes [29]. The balance between efficiency, robustness, 

and recoverability was discussed. According to their study, the vessel-specific buffer 

times help to guarantee the plan to be robust to the possible fluctuations in the arrival 

times of vessels. 

In most of the existing research, the authors considered dealing with small-/medium-

scale problems, and the number of vessels to be loaded were no more than one hundred 

[27,30]. The existing methods could deal with these problems efficiently. However, there 

is little research on the large-scale BAP. 

2.2. Cooperative Coevolutionary Method 

Potter and Jong proposed the cooperative coevolutionary approach to deal with the 

optimization problems with a complex structure [18]. The global problem was decom-

posed into several subproblems that were defined in subranges, and the complete solu-

tions were obtained by assembling representative members of each of the species. Accord-

ing to their specific problem, the fitness value was determined by the highly coupled ele-

ments. In each iteration, the fitness values of each species were relative to the updated 

information of other species. Yuping Wang et al. studied the formula-based variable 

grouping method [31]. They proposed determining the separable and nonseparable vari-

ables according to the form of the optimization objective function. They did not discuss 

the influences of the constraint conditions on the separability of the problem. Giuseppe A. 

Trunfio stated that most real-world optimization problems are partially separable. There-

fore, they generated objective functions that were between separable and fully nonsepa-

rable [32]. The level of separability is considered as a measure of the difficulty of an opti-

mization problem. They presented a new adaptive algorithm to enhance the efficiency of 

the CC algorithm. Elahe Sadat Hosseini et al. proposed a hierarchical subchromosome 

genetic algorithm (HSC-GA) to optimize the design of wireless sensor networks [33]. Ac-

cording to this method, the genetic algorithm is applied on each subchromosome sepa-

rately. In the research [34], the global optimization variables were coded into a hierarchical 
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chromosome; the chromosome was separated into several subchromosomes. The defined 

subchromosome grouped the closely related blocks together. In a future step, these sub-

chromosomes could form the upper-level building blocks. 

According to the existing research, we find that the original CC methods mainly con-

sider the optimization problem that the fitness value is impacted by the variables in dif-

ferent subcomponents, and the global optimal solution would be obtained as the coevo-

lution of variables in multiple subcomponents. This paper proposes applying this method 

to deal with the large-scale BAP according to the characteristics of the problem. We pro-

pose defining the available subdomains of variables by using the iterative variable group-

ing genetic algorithm in the BAP. The vessels would be classified into subgroups. To 

achieve the balance of loading tasks of berths among subgroups, some vessels would be 

reallocated between subgroups according to the optimal berth allocation plans generated 

by the genetic algorithm in each subgroup. The near-optimal berth allocation plan would 

be obtained by applying the “local optimization, vessels reallocation” iteration. 

3. Modeling Large-Scale Berth Allocation Problem 

3.1. Problem Analysis 

There are n vessels (i.e., vessels 1, 2, …, n) and m berths (i.e., berths 1, 2, …, m). For i 

= 1, 2, …, n, vessel i has the features of loading time it  and tonnage weight iw . For j = 1, 

2, …, m, berth j has the feature of loading capability. According to the characteristics of 

the BAP, the following constraints should be considered. 

3.1.1. Loading Capability 

According to the tonnage weight, the vessels are classified as heavy-tonnage vessels, 

large-tonnage vessels, medium-tonnage vessels, and small-tonnage vessels [30]. The ves-

sels are linearly indexed from heavy-tonnage vessels to small-tonnage vessels. Therefore, 

-1i iw w , for i = 2, 3, …, n. We assume that the number of heavy-tonnage vessels, large-

tonnage vessels, medium-tonnage vessels, and small-tonnage vessels to be loaded are hn

, ln , midn , and sn  respectively. 

We classify the berths into four types according to their loading capabilities. The type 

i berths could berth and load all kinds of vessels, and the type II berths could berth and 

load the large-tonnage vessels, the medium-tonnage vessels, and small-tonnage vessels. 

The type III berths could berth and load the medium-tonnage vessels and small-tonnage 

vessels. The type IV berths could berth and load small-tonnage vessels. The feasible vessel 

berth allocation policies are depicted in Figure 1. 

 

Figure 1. The feasible vessel berth allocation policies; the solid lines indicate the preference alloca-

tion policy of each type of vessel, and the dashed lines indicate the alternative allocation policy of 

each type of vessel. 
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The berths are linearly indexed in such a way that at any point in time, berth j is able 

to serve all types of vessels that berth j + 1 could serve (j = 1, 2, …, m − 1). According to the 

loading requirements of vessels, the feasible solutions of vessel berth allocation policies 

should satisfy Equation (1). 

1

1 2 1 2 3

[1, ], [1, ],

[1, ], [1, ]

p p
s mid

p p
l h

M m M m m

M m m m M m m m m

  

      
 (1)

where p
sM  is the vessel berth assignment policy for small vessels. p

midM  is the vessel 

berth assignment policy for medium vessels. p
lM  is the vessel berth assignment policy 

for large vessels. p
hM  is the vessel berth assignment policy for heavy vessels. 1m  is the 

number of type IV berths. 2m  is the number of type III berths. 3m  is the number of type 

II berths. 

3.1.2. The Tidal Condition 

Many megaports (e.g., Port of Shanghai, Port of Tianjin, and Port of Hamburg) are 

tidal ports [8]. To define our problem mathematically, we first discuss the natural condi-

tion of the megaport. There are semidiurnal tidal harbors and diurnal tidal harbors [35]. 

These harbors are characterized as unfixed water depths. In the diurnal tide harbors, the 

timeline of a day can be divided into two time periods, 1[0, ]tidet  and 1[ ,24]tidet , according 

to the water depth of the chosen port, where 1[0, ]tidet  is the low-water period and 
1[ ,24]tidet  is the high-water period. In the semidiurnal tidal harbors, the timeline of a day 

can be divided into four time periods, 1[0, ]tidet , 1 2[ , ]tide tidet t , 2 3[ , ]tide tidet t , and 3[ , 24]tidet , accord-

ing to the water depth of the chosen port. 1[0, ]tidet  and 2 3[ , ]tide tidet t  are the low-water peri-

ods and 1 2[ , ]tide tidet t  and 3[ , 24]tidet  are the high-water periods. Here, 1
tidet  and 3

tidet  repre-

sent the time points at which the water level has reached a certain threshold where the 

berthing of large/heavy vessels becomes less restrictive, and time 0 and 2
tidet  are the time 

points at which the water level has fallen to a certain threshold. Therefore, some large-

/heavy-tonnage vessels could only enter the tidal berth in the high-water time period. 

Meanwhile, other types of vessels could be loaded both at the low-water and high-water 

times. The change in water level in tidal ports is shown in Figure 2. 

 

Figure 2. The change in water level in the tidal ports. 
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As shown in Figure 2, as the water level of the tidal harbors keeps on changing, the 

tide-condition-dependent vessels can enter and depart the harbors only when the water 

level reaches a certain height. On the other hand, when one vessel is in the tidal harbor, it 

can stay at the harbor until the high-water time period in the next tide circle. When berths 

are assigned with an inappropriate loading plan in the tidal-condition berth, it would lead 

to unnecessary idle time for some berths. As shown in Figure 3, when one tidal berth is 

assigned with too many tide-condition-dependent vessels and other berths are assigned 

with few, the assigned tide-condition-dependent vessels would wait for the high-water-

level period, and the low-water-level period would be left idle, while the other berths 

would load for the full time, which is obviously inefficient. 

 

Figure 3. The tidal-condition-affected inappropriate berth allocation plan. 

Therefore, an efficient berth allocation plan should guarantee that the tidal-condi-

tion-dependent vessels are evenly assigned to available berths, so that the maximum load-

ing time of all the berths can be minimized. 

3.1.3. The Allocation Efficiency Requirement 

To guarantee the robustness of the berth allocation plan, the uncertain dynamic fac-

tors that would affect the loading plan should be considered. In the practical loading pro-

cess, the loading-time consumption of some vessels may be prolonged because of unex-

pected events, and some vessels may arrive at their designated berth place later than pre-

planned [29]. Therefore, the static berth allocation plan should be adjusted to deal with 

unexpected events, such as to reallocate some vessels to nearby available berths. As we 

discussed above, the large/heavy vessels can only be loaded by large-/heavy-tonnage 

berths in the specific time period. If the suitable berths for large vessels are occupied by 

small vessels, they would have to wait until these berths are idle. It would prolong the 

overall loading time. Therefore, appropriate avenues should be used to guarantee the ef-

ficiency of the berth allocation plan. 

3.2. Problem Analysis 

The required loading time of each vessel is defined as it . We assert that the berth 

stay interval of each vessel should be in one single tide circle. If one large vessel could not 

be fully loaded in one circle, then it would leave the harbor before the water depth be-

comes too low or stay for the next high-water period. Therefore, it may lead to additional 

work loads, which would be obviously inefficient. 

If the tide-dependent vessels could not be loaded in the first tide cycle, they would 

wait until the next high-water period. Therefore, it may happen that the berth j is left idle 

in the low-water period. j
idleT  is the idle time that berth j waits for the next high-water 

period as there are no small or medium vessels to be loaded. We assume that the vessels 

assigned to the berth j would be loaded in d
jn  days. d

jn  may be determined by the as-

signed tide-dependent vessels. 
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'

1 1

max( ( / 24), ( / ))
hnn

d
j c ij i c kj k h

i k

n f x t f x t T
 

    j m   (2)

where cf  is rounded up to the value to the next integer, Th  is the time interval that the 

tidal-condition-dependent vessels can stay in the harbors in a day, and hn  is the number 

of high-water-requiring vessels. 

The required overall loading time of the berth j is formulated as (3): 

1

n
j

j ij i idle
i

f x t T


   j m   (3)

where ijx  is a binary variable. ijx  = 1 if vessel i is assigned to berth j. Otherwise, ijx = 0. 

The value of j
idleT  can be determined as below: 

' ' 1
mod

1 1 1 1

max( , ( / T )*24 ( / T )) -
h hn nn n

j
idle ij i c kj k h kj k h tide ij i

i k k i

T x t f x t f x t t x t
   

       (4)

where '
kjx  is a binary variable. '

kjx  = 1 if vessel k is assigned to berth j. Otherwise, '
kjx = 0. 

According to Equation (4), we find that the value of j
idleT  is zero if the jth berth is 

allocated with appropriate types of vessels. When there are too many tidal-condition-de-

pendent vessels, the jth berth would take some more idle time before it finishes the overall 

loading tasks. 

The objective of the BAP is to find the berth allocation plan that minimizes the max-

imum berthing time of all the available berths and improves the berth allocation effi-

ciency. The objective function is 

[1,..., ]
1

max ( + )
n

j lth
ij i idle j

j m
i

f x t T n




   (5)

s.t. 

1

1, [1, ]
m

ij
j

x i n


   (6)

0, [1, - ], [ + 1, ]ij s h mid lx i n n j m m m m       (7)

0, [1, - - ], [ + 1, ]ij s mid h lx i n n n j m m m      (8)

0, [1, - - - ], [ +1, ]ij s mid l lx i n n n n j m m     (9)

' ' 1
mod

1 1 1 1

max( , ( / T )*24 ( / T )) -
h hn nn n

j
idle ij i c kj k h kj k h tide ij i

i k k i

T x t f x t f x t t x t
   

       (10)

where m  is the number of available berths; n  is the number of vessels to be loaded. hn  

is the number of high-water-requiring vessels. lth
jn  is devised to evaluate the efficiency 

of the berth allocation plan,   is a coefficient, and lth
jn  is the number of low-/medium-

tonnage vessels that are allocated to large-/heavy-tonnage berths. The Equation (4) re-

quires each vessel to be loaded to one berth. Equation (5) defines the feasible berths of 

medium-/large-/heavy-tonnage vessels. Equation (6) defines the feasible berths of large-

/heavy-tonnage vessels. Equation (7) defines the feasible berths of heavy-tonnage vessels. 

Equation (8) defines the value of j
idleT . 
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In addition to that, the tidal condition should be considered. Therefore, when the 

vessel i is tide-dependent and ijx  = 1, then the following constraint should be satisfied for 

the diurnal tide harbors: 

1, [( 1)*24 , *24], [1, ]di i i j js s t k T k k n      (11)

The following constraint should be satisfied for the semidiurnal tidal harbors: 

1 2 3, [( 1)*24 ,( 1)*24 ] [( 1)*24 , *24], [1, ]di i i j j j js s t k T k T k T k k n           (12)

Equations (11) and (12) require the tide-dependent vessels to execute the loading 

tasks within the high-water period. 

4. Iterative-Variable-Grouping-Genetic-Algorithm-Based Method 

4.1. The Characteristics of the Large-Scale Berth Allocation Problem 

As we discussed above, the BAP is an integer-programming problem. The computa-

tional complexity of this problem is strongly dependent on the number and types of ves-

sels and berths. The GA is efficient to deal with integer-programming problems [36]. In 

the large-scale marine transport problem, there may be hundreds of different types of 

vessels and berths. If we treat this problem as a whole, a complete chromosome may con-

sist of hundreds of genes, and the feasible solution of each gene may range from tens to 

hundreds. The original GA would then be difficult to obtain the near-optimal berth allo-

cation plans for large-scale BAPs [Error! Reference source not found.37]. 

To deal with this complex problem, we will further discuss the characteristics of the 

BAP. Our BAP aims to search for the optimal berth allocation plan that minimizes the 

loading time of berths and guarantees the efficiency of the plan. In the large-scale marine-

loading problem, there are many vessels of the same type and berths with the same load-

ing capability, as shown in Figure 4a. The required loading time of each berth is deter-

mined by the number and type of vessels that are allocated to it. As shown in Figure 4 (b), 

one k2 type vessel could be assigned to berth 1 or berth 2. That is to say, the detailed as-

signment of one given vessel would not make significant differences to the berth alloca-

tion plans. Therefore, we were able to find out that most vessels and berths are not highly 

relevant for the large-scale marine-loading problem. 

 

Figure 4. The illustration of the berth allocation problem. 

To further discuss the characteristic of the BAP, we provide the definition of separa-

bility. 
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Separability means that the influence of a variable on the fitness value is independent 

of any other variables [Error! Reference source not found.38]. According to this defini-

tion, we can find out that a function f: d R R is separable if: 

      
1 1

1 1
,...,

arg min ,..., argmin ,... ,..., argmin ...,
d d

d d
x x x x

f x x f x f x  (13)

According to the equation, we can find out that in the separable problem, the optimal 

solutions of the original problem could be obtained by solving several univariate prob-

lems. In the large-scale marine-loading problem, there are many different types of vessels 

and berths. The required loading time of each berth is determined by all the vessels that 

are allocated to it rather than one specific vessel, which is denoted as (2). Therefore, the 

BAP is not fully separable. 

On the other hand, there are many different types of berths that could load one spe-

cific vessel. Therefore, there are no specific highly relevant variables in our BAP problem. 

When the number of each type of vessels and berths is divided into several subgroups 

{ , }, [1, ]l l l sS V B l n  , and the loading tasks of these subgroups are equal, then the original 

BAP can be solved as several subproblems in these subgroups [39], which is shown as 

Figure 5. We can obtain the equation: 

1max{ ,... }
sn

f f f  (14)

where f  is the maximum loading time of the BAP defined in (3), and , (1, )l sf l n   is the 

maximum loading time of the berths in the lth subgroup, which is generated by solving 

the equation (15): 

{1, } 0

min( max { + }+ )

l
v

l
b

n
j lth

l kj k idle j
j m k

f x t T n
 

   (15)

Therefore, the original BAP can be solved by the “divide and conquer strategy”. Fig-

ure 4 depicts a simple problem where the vessels and berths can be equally divided into 

two groups. 

 

Figure 5. A simple example that solves the original BAP by solving two subproblems. 

However, in most cases, the vessels and berths are not in proportion to each other. 

Therefore, with regard to the practical problems, the number of each type of vessels and 

berths among subgroups need not be equal. An appropriate grouping strategy should 

guarantee that the berth–vessel loading tasks of subgroups are almost the same, such as 

when there are 12 different vessels and five berths. These vessels and berths can be di-

vided into two groups {(seven vessels, three berths), (five vessels, two berths)} or {(nine 

vessels, four berths), (three vessels, one berth)} as long as the loading tasks of berths in 

two groups are almost the same. According to the characteristic of the BAPs, we find that 

most large-scale BAPs can be treated as several subproblems. Therefore, the large-scale 

BAPs are partially separable [40]. 

It is hard to determine the appropriate grouping strategies in most cases, as there are 

various types of vessels and berths, and these vessels and berths are not in proportion to 
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each other. Therefore, we can only obtain the local optimal berth allocation plan for the 

BAPs. The local optimal solutions satisfy the equation (16): 

1max{ ,... }
sn

f f f  (16)

The Equation (16) indicates that the “divide and conquer strategy” cannot guarantee 

obtaining the ideal results. However, in practical problems, we can obtain the near-opti-

mal berth allocation plans by iteratively adjusting the loading tasks among subgroups 

according to the optimal berth allocation plans in each subgroup. 

4.2. Iterative Variable Grouping Genetic Algorithm 

As we discussed above, there is not a proportional relationship between the number 

of each type of vessels and berths in most marine-loading problems. It is difficult to de-

termine the appropriate grouping strategy directly. We could obtain the optimal berth 

allocation plan in each subgroup by using the optimization algorithms. The required load-

ing time of berths in different subgroups reflect the differences in the loading tasks among 

subgroups. To generate the balance of the loading tasks among subgroups, some of the 

vessels were reallocated among subgroups based on the optimal berth allocation plans in 

subgroups. We propose the iterative variable grouping genetic algorithm. The main oper-

ations of this algorithm are to divide the vessels and berths into subgroups according to 

the initial grouping strategy, to generate the near-optimal berth allocation plans for each 

subgroup by using the genetic algorithm, and to reallocate the vessels among subgroups 

according to the near-optimal berth allocation plans of subgroups. 

4.2.1. Initial Grouping Strategy 

The primary concern of the grouping strategy is that there are available berths for the 

vessels in each subgroup. 

Furthermore, we should determine the scale of vessels and berths in each subgroup 

considering the features of the BAP and the characteristics of the genetic algorithm. 

According to the nature of the cooperative coevolutionary method, small group sizes 

are suitable for fully separable problems, making the optimization of each subcomponent 

easier, and large group sizes increase the probability of grouping together interacting var-

iables in nonseparable problems [32]. As the allocation of one vessel is not highly related 

with any other specific vessels in the large-scale BAPs, the sizes of subgroups need not be 

large. 

In addition to that, the GA can produce near-optimal solutions for small to medium-

size instances efficiently, and it is inefficient in dealing with larger instances [37]. 

According to the discussion above, we propose the initial grouping strategy as below: 

(1) The number of vessels and berths should be kept in medium scale in each group; 

(2) To improve the computational efficiency, the number of each type of vessels and 

berths should be divided as evenly as possible; 

(3) Each type of vessel should be distributed to the subgroups according to the number 

of correspondence berths. 

4.2.2. Searching the Near-Optimal Plans by Using the Genetic Algorithm 

We searched the optimal berth allocation plan in each subgroup by using the genetic 

algorithm. We regarded the berths in each group as service counters, and the vessels were 

treated as guests. The objective was to serve all the guests within the minimum time. The 

evolution process of the GA was realized by three evolution operators: selection operator 

(SO), crossover operator (CO), and mutation operator (MO) [41]. The main parts of the 

genetic algorithm are described as below: 

 Chromosome 



J. Mar. Sci. Eng. 2022, 10, 1294 12 of 21 
 

 

The chromosome expresses the allocations of all the vessels in one subgroup. It 

should be guaranteed that the chosen berths are able to load the assigned vessels. 

 Population 

The population in the evolution process is created by a random process that ensures 

each chromosome is feasible. 

 Crossover 

The crossover process is applied between two individuals (parents) that are chosen 

randomly. This process creates two new individuals (children). 

 Mutation 

Every chromosome in the population is likely to mutate. We set the value of the ran-

domly chosen gene to mutate in its feasible range. The mutation probability would decline 

as the population came close to the optimal solution. 

Some of the best chromosomes (an elite set of the selected chromosomes) may be 

moved without any change to the next generation (elitism process). 

 Fitness function 

As the primary objective of the BAP is to load all vessels within the minimum time, 

the fitness function needs to evaluate the overall loading time of berths in each subgroup. 

In addition to that, to guarantee the efficiency and robustness of the BAP strategy, the 

high-tonnage berths should be assigned with as few small/medium vessels as possible. 

Therefore, these berths could be used to deal with unexpected events. For example, when 

some vessels are temporarily added to the loading list, the idle high tonnage berths could 

serve all types of vessels without modifying the original plan. When the loading tasks of 

some vessels are prolonged, the unoccupied high-tonnage berths could be used to load 

more types of subsequent vessels than low-tonnage berths. 

According to the feature of the problem, we define the fitness function of the lth sub-

group as (17). 

{1, } 0

1/ ( max { + }+ )

l
v

l
b

n
j lth

l kj k idle j
j m k

f x t T n
 

   (17)

where 
{1, } 0

max { + }

l
v

l
b

n
j

kj k idle
j m k

x t T
 

  depicts the maximum loading time of berths in one subgroup, 

and lth
jn  denotes the inefficient berth–vessel allocations. As we stated above, lth

jn  is the 

number of low-/medium-tonnage vessels that are allocated to large-/heavy-tonnage 

berths, and   is a small coefficient that guarantees lth
jn  is significantly smaller than 

the former part of (17). The better chromosomes would have large values of lf . 

 Selection method 

There are several types of selection techniques, such as roulette wheel, rank, tourna-

ment, Boltzmann, and stochastic universal sampling [42]. As there would be a large num-

ber of allocation plans with almost the same fitness values, the fitness function would be 

almost flat in most areas. To improve the computational efficiency of the GA, the chromo-

somes that are have more potential should be guaranteed to have higher selection proba-

bilities. As the roulette wheel technique is more agile, we define the selection method 

based on the roulette wheel technique. The selection probability of an individual is set as 

Equation (18): 

1

ˆ ˆ(a ) / ,

l
pn

l
i i j p

j

ps f f i n


    (18)
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where ˆjf  is defined as: 
1,

ˆ ˆ ˆ/ max( )
e

l
p

n

j j i
i n

f f f


 
  
 

, and en  is a positive value that is larger 

than 1; l
pn  is the size of the population in the lth subgroup. According to this equation, 

the individuals that are have more potential would be selected with higher probability. 

4.2.3. Iterative Vessel Reallocation Policy 

The differences in the maximum loading time between subgroups indicate the im-

balances in the loading tasks of related subgroups. The loading tasks and service capabil-

ity of subgroups should be modified to balance, such that the differences in loading time 

between subgroups reach a small value. We propose adjusting the grouping strategy 

based on the berth allocation plans generated by the GA. According to the berth allocation 

plans, we could determine the required loading time of each berth. The maximum loading 

time of berths in each subgroup could be used as the measure of the loading tasks of the 

subgroup. The differences in the maximum loading time among subgroups could be re-

duced by reallocating some vessels between the subgroups with larger maximum loading 

time and minor maximum loading time. As a result, the loading tasks of subgroups would 

be close to being balanced. We propose that the appropriate grouping strategy should 

satisfy the equation (19): 

max max '
min

[1, ][1, ]
max{ } min { }

ss
l l

l nl n
T T t


   (19)

where max

[1, ]
max{ }l k
k l

T T


  is the maximum loading time of berths in the l th group by using 

GA, sn  is the number of subgroups, and '
mint  is the minimum loading time difference. 

The value of '
mint  depends on the required loading time of different types of vessels. 

Therefore, the vessel reallocation policy could be used iteratively to achieve balance in the 

loading tasks among subgroups. 

As there are many different types of berths and vessels in each subgroup, to improve 

the computational efficiency, it is crucial to determine the appropriate type of vessels to 

be reallocated between subgroups based on the detailed loading-time differences. As ves-

sels could be classified by the loading tonnage type, we propose the vectorized vessel 

reallocation policy. We assumed that the GA could generate the optimal berth allocation 

plans for each subgroup. According to the fitness function we defined above, small-ton-

nage vessels are preferred to be allocated over small-tonnage berths; medium-tonnage 

vessels are preferred to be allocated over medium-tonnage berths. As there are four types 

of berths, we could obtain the vector max max
,1 ,4,...,v

l l lT T T , where max
,l jT is the maximum 

overall loading time of all the jth type of berths. We could obtain more information about 

the differences between related subgroups by virtue of v
lT . Accordingly, we propose the 

vessel reallocation policy: 

Firstly, choose the type of vessels to reallocate between subgroups by virtue of v
lT . 

When the loading tasks of jth type vessels are unbalanced between the two subgroups l 

and h, then there would be an obvious difference between max
.l jT  and max

.h jT . Suppose that 
max max
. .l j h jT T , then some jth type vessels in the subgroup l would be chosen to reallocate to 

the subgroup h. 

Secondly, determine the vessel exchange policy. The variation in the overall loading 

time of subgroup l and subgroup h would be jt  and jt , respectively, if we reallocate 

one jth type vessel between them. As the value of jt  may be large, the large variation 

would make the iterative reallocation method difficult to converge to the balance of load-

ing tasks among subgroups. Therefore, it would be inefficient if we only reallocated the 

chosen vessel from one subgroup to another subgroup in each step. To improve the com-

putational efficiency, we applied the vessel exchange policy. According to this policy, 
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when one high-tonnage vessel is chosen to reallocate from the subgroup l to the subgroup 

h, one small-tonnage vessel in the subgroup h would be reallocated to the subgroup l. 

Therefore, the variation in the overall loading time of the subgroup h would be: 

h s jT t t    (20)

where jt  is the loading time of the chosen vessel and st  is the loading time of one small-

tonnage vessel. We obtain s jt t . 

By using the vessel reallocation policy, the loading tasks of related subgroups are 

guaranteed to be changed slightly; this would lead to the rapid convergence of the balance 

of the loading tasks among subgroups. The iterative reallocation process would stop as 

the value of max max

[1, ][1, ]
max{ } min { }

ss
l l

l nl n
T T


  reaches zero or does not change in a certain time step. 

The flow chart of the iterative variable grouping genetic algorithm is shown as Figure 6. 

 

Figure 6. A flowchart for the detailed steps for the proposed iterative variable grouping genetic 

algorithm. 

5. Computational Experiments 

In this section, we demonstrate the proposed algorithm in large-scale marine-loading 

scenarios. Our approach was implemented in MATLAB 2018 on a 2.5 GHz Intel i5 quad-

core processor with 12 GB memory running on the Windows 10 operating system. 

5.1. Large-Scale Berth Allocation Scenario 

Many researchers demonstrate their algorithms in small-/middle-term vessel alloca-

tion scenarios [43]. In this paper, we demonstrate the proposed algorithm through dealing 

with the large-scale berth allocation problem. 

5.1.1. Scenario Introduction 

In the large-scale time-critical berth allocation scenarios, the number of vessels to be 

allocated and the number of available berths may be in the hundreds. We anticipate there 

are 138 available berths. The information of available berths is shown in Table 1. 
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Table 1. Information of available berths. 

Types Of Berths Number ID Range 

1 29 B1~ B29 

2 40 B30~B69 

3 41 B70~B110 

4 28 B111~B138 

There are different types of vessels to be loaded. Each type of vessel has different 

features in loading time and tonnage type, which are shown as Table 2. 

Table 2. The information of vessels to be loaded. 

Vessel Type v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 

Number 76 23 17 63 13 10 1 1 31 12 10 200 36 8 8 13 2 17 213 

Loading 

time 
6 5 5 5 5 4 4 4 4 3 3 3 1 1 10 15 18 5 4 

Tonnage 

type 
2 3 3 3 3 3 3 3 3 3 3 4 4 4 2 1 1 3 3 

The tidal condition is considered in this complex scenario. We set the v1, v15, v16, and 

v17 type vessels as tidal-condition-dependent vessels. In this scenario, we set the harbor as 

a diurnal tide harbor. We set the low-water time period to be [0:00–5:00] and high-water 

time period to be [5:00–24:00]. 

We set the value of   to be 0.01. It guarantees that the value of lth
ln  does not affect 

the evaluation of the loading time of each berth. 

5.1.2. Parameters’ Validation 

To guarantee the computational efficiency, the vessels and berths should be allocated 

to each subgroup as evenly as possible. Therefore, the number of berths in one subgroup 

is correlated to the number of vessels belonging to this subgroup. Two main parameters 

should be determined, namely the number of vessels in each subgroup and the value of 

en . 

To determine the optimal parameters, we validated the performance of the genetic 

algorithm in different combinations of the number of vessels, and we set the value range 

of the number of vessels in each subgroup to be (30, 40, 50, 60, 70, 80, 90, 100) and the 

value range of en  to be (1, 2, 3, 4, 5, 6, 7, 8 ). The minimum values that were generated in 

four samples are shown in Figure 7. 

As the number of vessels and berths is correlated in each subgroup, when the number 

of vessels is set to a small value, the number of berths that belong to the same subgroup 

would also be limited. This would lead to obvious differences in the {vessels, berths} data 

in different subgroups. The IVGGA would be inefficient to generate the ideal berth allo-

cation plan in that situation. On the other hand, when the number of vessels in each sub-

group is too large, the GA would be inefficient in generating the optimal berth allocation 

plans. According to Figure 7, we find that when the number of vessels is set to 50, and the 

value of en  is set in the range (3, 4, 5, 6, 7, 8), the IVGGA has better performance. We 

consider that if the value of en  is set too high, the algorithm may be prematurely con-

verging the solution to a local minimum. Therefore, we define the vessels in each sub-

group to be about 50, and the value of en  to be 4. The berths and vessels are, therefore, 

grouped into 15 subgroups. According to the initial grouping strategy, the number of ves-

sels in each subgroup would be in the range (49, 52), and the number of berths would be 

in the range (9, 10). The numbers of each type of vessel and berth are evenly distributed 

into each subgroup as possible. 
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Figure 7. The maximum loading time of subgroups when applying different values on two param-

eters. (a) subgroup one; (b) subgroup two; (c) subgroup three; (d) subgroup four. 

5.1.3. Performance Evaluation  

The IVGGA was applied to search the approximate optimal berth allocation solution. 

Firstly, the initial local optimal solutions were obtained based on the initial grouping in-

formation, as shown in Figure 8. It shows that in some subgroups, the maximum loading 

time was 26 h, and the berths in some other subgroups could fulfill the loading tasks 

within 23 h. To reduce the maximum loading time of all the available berths, the vessels 

should be reallocated among the subgroups. 

 

Figure 8. The loading time of each berth according to the initial grouping strategy. 
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After the iterative reallocation of vessels between subgroups, the differences of max-

imum loading time between each subgroup reached 0. The loading time of each berth is 

shown in Figure 9. It shows that the maximum loading time was 24 h. 

 

Figure 9. The loading time of each berth according to the berth allocation plan generated by the 

Iterative Variable Grouping GA. 

The changes in vessels of each subgroup, from using the proposed vessel reallocation 

policy, are shown in Table 3. 

Table 3. The vessel reallocation results. 

Subgroup ID 
Number of Vessels 

after Adjustment 
Added Vessels Removed Vessels 

1 52 v13:1,v15:1 v12:2 

2 52 v2:1,v14:1,v19:1 v1:1,v13:2, 

3 52 v1:1,v2:1,v15:1 v13:2,v16:1 

4 52 v1:1 v16:1 

5 46 
v3:1, 

v10:1,v13:1,v16:1,v18:1 
v4:1,v5:1,v12:7,v15:1 

6 46 v1:1,v12:1 v4:1,v9:1,v13:2,v18:1,v19:2 

7 53 v12:2,v13:1,v19:1 v16:1 

8 52 v4:1,v5:1,v9:1,v12:2,v19:1 v1:3,v15:1 

9 52 v1:1,v9:1,v12:2,v13:1 v3:1,v15:1,v19:1 

10 51 v4:1,v12:1,v13:1,v15:1 v2:1,v9:1 

11 49 v12:1,v13:1,v16:1 v2:1,v10:1,v14:1 

12 50 v1:1  

13 49 v16:1 v1:1 

14 49   

15 49   

In addition, the IVGGA shows the capability of guaranteeing the robustness of the 

berth allocation plan. Figure 10 shows that the medium-tonnage vessels are mainly served 

by the Type 2 and Type 3 berths, and the small-tonnage vessels are mainly served by the 

Type 4 berths. As shown in Figure 9, the blue bars depict the overall loading times of type 

1 and type 2 berths. The yellow bars and red bars depict the overall loading times of type 

3 and type 4 berths, respectively. It shows that there are idle times for most high-tonnage 

berths. Therefore, the type 1 and type 2 berths could be used to deal with unexpected 

events as these berths could serve most vessels. In instances when some vessels arrive 

later than the predefined start time, or the loading tasks of some vessels are not finished 
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in the scheduled time, the idle berths could be used to load the follow-up vessels (the 

detailed berth allocation plan is recorded in Supplementary Materials). 

 

Figure 10. The allocations of small and medium vessels to different types of berths. 

5.2. Comparison with Original Genetic Algorithm 

In this computational experiment, we compared the proposed algorithm with the 

original GA. We considered that there were 19 types of vessels to be loaded, and the load-

ing time and tonnage type of these vessels are listed in Table 2. These vessels are classified 

as four types according to their tonnage data. The available berths could also be classified 

into four types according to their loading capabilities, as recorded in Table 1. We devised 

various scenarios for different numbers of vessels and available berths, as shown in Table 

4. We created many instances for each scenario, and the number of available berths varied 

in a certain range. We assert that the number of vessels in each subgroup should be no 

more than 50. In addition to that, to guarantee the consistency of the original GA and the 

IVGGA, we assert that the length of the chromosome is linearly correlated with the num-

ber of vessels in each subgroup. Therefore, the number of genes increase with the number 

of vessels. Figure 11 shows the maximum loading time of available berths according to 

the optimization berth allocation results generated by the original GA and the IVGGA 

algorithm. 

Table 4. The information of vessels and berths in each scenario. 

Scenario Type Number of Vessels The Range of Number of Available Berths 

1 77 (15, 16) 

2 151 (29, 31) 

3 228 (43, 45) 

4 302 (56, 58) 

5 379 (70, 72) 

6 453 (84, 86) 

7 530 (97, 99) 

8 604 (111, 113) 

9 681 (125, 127) 

10 755 (140, 141) 
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Figure 11. The results obtained by using the original genetic algorithm and the iterative variable 

grouping genetic algorithm. 

According to the results shown in Figure 11, we find that the IVGGA outperforms 

the original GA. When the number of vessels increases to 100, the original GA becomes 

inefficient in generating near-optimal solutions. On the other hand, the IVGGA can gen-

erate good results even when the number of vessels reaches 700+. Therefore, we can reach 

the conclusion that the proposed algorithm can deal with large-scale BAPs. 

6. Discussion and Conclusions 

Large-scale maritime transport is the main transportation method in humanitarian 

aid and disaster relief (HADR) actions. As transporting the supplies and relief teams 

timely is very important for lifesaving and alleviating the disaster impact in the affected 

areas, to make full use of the available vessels and berths is critical in HADR actions. This 

paper demonstrated an iterative variable grouping genetic algorithm (IVGGA) for dealing 

with the static large-scale berth allocation problem (BAP). The optimal berth allocation 

plan should minimize the time to load all the vessels, and guarantee that the plan is robust 

to unexpected events. The effect of the tidal condition was considered. 

When there are a great number of vessels to be loaded, the original genetic algorithm 

(GA) would be inefficient in generating near-optimal berth allocation plans. According to 

the characteristics of the static large-scale BAPs, we found that it was partially separable. 

Therefore, we propose using the “divide and conquer strategy”. We divided the vessels 

and berths into subgroups, and the GA was applied to search the near-optimal berth allo-

cation plans in subgroups. With consideration of the unbalance of loading tasks among 

subgroups, we propose iteratively reallocating the vessels between the subgroups with a 

larger fitness value and a minor fitness value. To improve the computational efficiency, 

we propose the vessel reallocation policy. Our approach proved to be of high performance 

in generating a near-optimal berth allocation plan in the complex scenario involving more 

than 700 vessels to be loaded. According to the results of the computational experiments, 

we found that our method is highly scalable. 

As we mainly focused on the marine-loading problem in large-scale time-critical mis-

sions, what we considered the most is to maximize the utilization of available berths, and 

to fulfill the overall loading tasks in the minimum time. Therefore, we focused on the static 

large-scale BAP in this study. However, as this problem is partially separable, the near-

optimal solution generated by using the proposed method would not fix the assignment 

of each specific vessel to each berth. On the contrary, we could determine the detailed 

allocation plan for vessels considering the position of vessels and berths. Furthermore, 

when the detailed allocation plan was determined, the order of loading could be deter-

mined according to the arrival times of related vessels. In our future research, we will 

study the online vessel–berth allocation problem based on the static berth allocation plans. 
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In addition to that, as we have considered the robustness in the proposed algorithm, 

small-tonnage vessels and medium-tonnage vessels are preferred to be allocated to the 

shallower and smaller berths. The berths that could serve the high-/heavy-tonnage vessels 

would be reserved for unexpected events rather than loading the small-/medium-tonnage 

vessels. Therefore, these berths could be used to load the additional vessels or the vessels 

that arrive late. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/jmse10091294/s1. Table S1: The detail berth allocation plan. 
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