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Abstract: Identification of parameters involved in the linear response model with high precision is a
highly cost-effective, as well as a challenging task, in developing a suitable model for the verification
and validation (V+V) of some key techniques for autonomous vessels in the virtual testbed, e.g.,
guidance, navigation, and control (GNC). In order to deal with this identification problem, a novel
identification framework is proposed in this paper by introducing the extended state observer (ESO),
and the well-evaluated robust weighted least square support vector regression algorithm (RW-LSSVR).
A second-order linear response model is investigated in this study due to its wide use in controller
designs. Considering the highly possible situation that only limited states could be measured directly,
the required but immeasurable states in identifying parameters contained in the response model are
approximately estimated by the ESO. Theoretical analysis of the stability is given to show and improve
the applicability of the ESO. Simulation studies based on linear response models with predefined
parameter values of a cargo vessel and a patrol vessel maneuvering in an open water area are carried
out, respectively. Results show that the proposed approach not only estimates immeasurable states
with high accuracy but also ensures good performance on the parameter identification of the response
model with very close values to the nominal ones. The proven identified approach is economic
because it only requires limited kinds of low-cost sensors.

Keywords: autonomous vessels; linear response model; parameter identification; extended state
observer (ESO); robust weighted least square support vector regression algorithm (RW-LSSVR)

1. Introduction
1.1. Motivation

As a multi-billion industry controlling 90% of all world trade, the shipping community
is continuously striving for improved operational margins while preserving and enhancing
human and environmental safety standards. Technology availability implies that autonomy
concepts could prove useful in terms of tackling challenges associated with ocean-based
transportation by 2030 or earlier. Autonomous vessels could reduce challenges due to
human error and increase profit margins assuming that risks associated with security,
operations, and the emergence of technologies (e.g., machine learning, artificial intelligence,
sensors) are well mitigated by sound performance-driven standards. The well-known lead-
ing three autonomous vessel technology development projects include MUNIN (Maritime
Unmanned Navigation through Intelligence in Networks), DNV GLReVolt, and YARA
Birkeland [1]. These projects are significantly dedicated to developing autonomous ves-
sels mainly due to the economic and service-related benefits. For instance, autonomous
vessels contribute significantly to improving maritime safety by reducing the number of
fatalities [2], the likelihood of collision [3], and the vulnerability to piracy [4]. On top of the
profit of autonomous vessels, the major contribution is the reduction of the environmental
impacts of shipping both directly and indirectly [1].
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Many technical tasks involving for example guidance, navigation, and control (GNC)
relevant to the development of autonomous vessels are required to be tested effectively
before final field applications [5]. For the design of the controller and corresponding tests,
it is of significant importance to adopt a suitable dynamic model under the consideration of
the trade-off between model accuracy and model complexity [6]. The data-fitting accuracy
depends on the model selection. The involvement of complex higher-order terms and more
coefficients improves the description reality of ship dynamics. However, it results in the
coupling and nonlinearity of the parameter drift becoming more serious. Additionally,
the computational costs would be increased, making the identification more difficult.
Therefore, a suitable model should well present the system dynamics and keep a satisfactory
computational speed by neglecting the unnecessary high-order terms and coefficients.

1.2. Related Work

Up to date, four kinds of such models are able to be applicable for model-based control
design, i.e., the holistic version, also called the Abkowitz model, the modular type named
the mathematical modeling group (MMG) model, the vectorial representation model, and
the response model or the Nomoto model [7]. In reality, it is much more effective to operate
a response system instead of adjusting the vessel thrust system to control vessels according
to the practical sailing experience of crews and captains. The high inertia of vessels leads to
a faster reaction of the response system than the thrust system. Therefore, the control task
is usually tracked by adjusting the vessel heading with the use of a suitable response model
under the assumption of constant vessel speed [8]. Apart from the determination of the
structure of the response model, an additional key aspect is the estimation of parameters
involved in the response model.

A variety of techniques regarding parameter estimation of vessel dynamic models,
which are also applicable for the response model issue, have been studied [6,9–13], and can
be classified into three typical techniques, i.e., the captive model tests technique [12], the
computational fluid dynamics (CFD) based method [11,13], the system identification with
full-scale model trails, and free-running tests including parametric and non-parametric
tricks [6,10]. The captive model tests technique can be applied with the requirement of
a set of large facilities and professional operators. The computational fluid dynamics
(CFD)-based method can be treated as an effective way but it has a high computational
cost. Comparatively, the system identification technique can always ensure superior
performance on model parameter estimation due to its highly attractive cost-effectiveness
and satisfactory identification results with relatively low efforts committed to carrying out
vessel maneuver trails and data measurements.

In terms of implementing parameter identification for autonomous vessels based on
system identification techniques, attention should be paid to completing four correlated
procedures i.e., data collection, model determination, identification method development,
and model validation [14]. Data extracted from optimal experiments should be sufficiently
informative to guarantee the convergence and robustness of the identification approach [15].
Some researchers have studied the design of experiment (DOE) for setting up optimal
experiments [16]. For instance, ref. [16] proposed an optimization idea by combining a
multi-level pseudo-random sequence, the D-optimality criteria, and ant colony optimization
algorithm to obtain optimized excitation signals used to determine the training data.
Compared to widely used zigzag maneuver signals, the application of optimized signals can
reduce the variance of parameters and improve the generalization ability of the identified
model, especially in presence of environmental disturbances and measurement noises, but
the efficiency of the designed approach in particular in terms of the convergence rate is not
so satisfactory. In the case of model determination, the above classification of four typical
dynamic models is a potential selection.

This paper focuses on the identification of the response model, which is significant
to controller designs for autonomous vessels. A number of identification methods have
been investigated. Table 1 gives the comparative analysis of these methods, for instance,
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the least square (LS) method [17], Kalman filter (KF) method [18], support vector machines
(SVM) [19], Gaussian process regression algorithm (GPR) [20], beetle antenna search (BAS)
algorithm [21], covariance matrix adaptation evolution strategy (CMA-ES) [22], and non-
linear innovation algorithm (NI) [23]. Moreover, some relevant modified approaches are
further developed to overcome their underlying deficiencies. For example, the nonlinear LS
(NLS) method is proposed to handle the ill-conditioned problem of the LS [24]. To alleviate
the impact of noise-induced problems, such as parameter drift or over-fitting, on the model
reliability, the ν-SVM method is developed to identify the ship maneuvering model [25].
This method can automatically control the number of support vectors to ensure the sparsity
of the solution. The robust weighted least square support vector regression algorithm (RW-
LSSVR) advanced with the purpose of particularly setting structural parameters involved
in the least square support vector regression algorithm (LS-SVR) and reducing the impacts
of noises on identification results [6].

Table 1. Comparative analysis of the identification methods.

Method Advantage Disadvantage Typical Study

LS 1. easy to implement 1. sensitive to outliers [17]2. wide applications 2. inconsistent estimates

NLS
1. approximate linearization of the objective
function

1. identification value is unstable
[24]

2. fast convergence, easy to implement 2. local optimum

KF

1. has a certain robustness 1. external excitation is needed to be known

[18]2. strong versatility 2. linearized dynamic systems make it difficult
to apply to nonlinear systems
3. initial value dependence

GPR
1. working well on small datasets 1. low sparsity

[20]2. provide uncertainty measurements on
the predictions

2. suitable initialization is required

BAS simple and efficient not stable [21]

CMA-ES applicable to nonlinear or non-convex continu-
ous optimization problems

reasonable initialization is required to ensure its
optimization performance, but hard to do

[22]

NI
1. has a certain robustness multi-innovation matrix inversion results in a

large amount of computation [23]
2. converges faster for a certain input dimension

SVM
1. has satisfactory robustness 1. low sparsity of the solution

[19]2. guarantees global optimum 2. some parameters need to be optimized rea-
sonably

ν-SVM 1. suitable for the nonlinear dynamic systems 1. parameter drift problem [25]2. easy to perform parameter optimization 2. lowly applicable to strong nonlinear systems

RW-LSSVR 1. robust to the condition with disturbance low sparsity of the solution [6]2. optimal initialization

The training data and validation data extracted at the data collection stage have
conclusive effects on the success of the identification results [26,27]. Correspondingly, the
prominent issue mainly concerning the DOE to obtain maximum informative excitation,
which has been investigated in the literature [15,16], deserves careful attention. However,
these works are carried out with the assumption that all states required for identification
are available in two ways, i.e., directly measuring, and indirect differentiation using direct
measurements. It is noticeable that the latter way could introduce accumulative errors
if some high-order states existed, which is not expected in the identification procedure.
Therefore, one major focus of this study is how to overcome this tough problem, i.e., how
to effectively acquire the states, especially the indirectly measured ones for parameter
identification using low-cost sensors.
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One inspiration to deal with this concern is derived from the active disturbance
rejection control direction, in which the total disturbances are considered as an additional
state variable that is estimated by an observer from the measured input/output data and
compensated in real time [28–32]. Many methods can be used as the observer, such as the
extended state observer (ESO) [29,30,33], Luenberger observer (LO) [34,35], sliding mode
observer (SMO) [36], distributed event-triggered observer (DETO) [37], high-gain observer
(HGO) [38], fuzzy state observer (FSO) [39], and the Kalman filter (KF) and its related
modified versions [40]. Table 2 illustrates the comparative analysis of the observers. The
studies point out that the ESO is the most suitable for observing systems with unknown
rates of state change while comparing to the other observers. In addition, the ESO is
also able to construct the correction term with the use of the reaching laws of LO or
SMO. Therefore, the ESO is comparatively more suitable for this study due to its superior
characteristics which can be summarized as follows. (1) It has little dependence on the
exact mathematical model of the system [33]. (2) It is straightforward to implement [29].
(3) The performance of the controller with ESO can be greatly improved [30]. The observer
can estimate the immeasurable states under the condition of various disturbances.

Table 2. Comparative analysis of the observers.

Observer Advantage Disadvantage Typical Study

ESO straightforward to implement suitable settings of gains are required [29,30,33]
LO simple design restricted to the deterministic case [34,35]
KF used for the stochastic case not all states can be estimated [40]
SMO has a strong robustness suffers from the chattering problem. [36]
HGO simple structure and easy tuning sensitive to existing measurement noise [38]
FSO flexible design the gain vector requires strict setting [39]
DETO applicable to the high-order uncertain non-

linear systems
relatively high computational cost [37]

1.3. The Overview of the Framework Regarding the Proposed Identification Approach

In this paper, the ESO incorporated with RW-LSSVR is proposed for the parameter
identification of the response model for autonomous vessels. The response model of au-
tonomous vessels expressed in the linear second-order form is regarded as the investigated
model. Some immeasurable states are estimated by the ESO with direct measurements
such as the rudder angle logged by the rudder sensor and the heading angle recorded by
the compass. The RW-LSSVR method developed and effectively evaluated in our previous
study [6] is applied in this work as a response model parameters identifier. In the end,
the samples stemmed from dynamic simulations using a linear response model with pre-
determined parameter values and persistent activation are utilized for verification and
validation of the proposed parameter identification approach. Figure 1 shows the overview
of the framework of the proposed hybrid identification approach.

1.4. Contribution

The main contributions of the present paper are: (1) a novel identification framework is
proposed by benefiting from the extended state observer (ESO) for tackling immeasurable
states and the previously well-evaluated robust weighted least square support vector
regression algorithm (RW-LSSVR). (2) With the limitations of financial support as well as
available sensors, it is not always guaranteed to acquire all required states directly and
accurately. Some states required for identification are logged using low-cost sensors directly.
Other immeasurable states are calculated by the ESO only employing the measured states
with low cost. To the best of the authors’ knowledge, this issue highly associated with the
parameter identification technique is seldom addressed in related research.
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Figure 1. Framework of the proposed hybrid identification approach.

1.5. Structure of the Paper

The outline of the paper is as follows. The generalized linear response model and
its state-space version for autonomous vessels are illustrated in Section 2. The research
methodology for the hybrid identification approach is given in Section 3. Section 4 shows
the comparative results through simulations. Some remarkable conclusions and future
works are given in Section 5.

2. Linear Response Model

In general, four categories of Nomoto models, including the first-order linear and
nonlinear versions and the second-order linear and nonlinear versions, are commonly used
to describe the heading dynamics with respect to rudder command. The linear models are
straightforward for applications in controller design. Comprehensively considering that
the response model would be further applicable to design controller with expected high
accuracy for complicated autonomous vessel motions [8,41,42], the second-order linear
Notomo model is investigated, which is presented with respect to the heading angle (ψ(t))
of autonomous vessels.

...
ψ(t) +

(
1
T1

+
1
T2

)
ψ̈(t) +

1
T1T2

ψ̇(t) =
KR

T1T2

(
T3δ̇R(t) + δR(t)

)
(1)

in which δR donates the rudder angle, T1, T2, T3, KR are vessel response system parameters.
State space model. As the ESO will be used to estimate some states based on the

above introduced nonlinear response model, Equation (1) is converted into a state-space
expression given by {

Ẋss = AXss + Buss
Yss = CXss + Duss

(2)

where the system state vector is Xss = [xss1 xss2 xss3]
T = [ψ(t) ˙ψ(t) ψ̈(t)]T , the system

output vector is Yss = [yss] = [xss1], the system input vector is uss = [uss1 uss2]
T =

[δ̇R(t) δR(t)]T , the system state matrix is A =

0 1 0
0 0 1
0 −a1 −a1a2

, the system input matrix

is B =

 0 0
0 0

a1a3a4 a1a3

, and the system output matrix is C = [1 0 0], and D = [0 0], where

a1 =
1

T1T2
, a2 = T1 + T2, a3 = KR, a4 = T3.
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With the consideration of the response characteristics of autonomous vessels, the
following assumption is made.

Assumption 1. The steering gear system of autonomous vessels satisfies the first-order linear
response relationship with the response time of Tm, which can be formulated as

δ̇R(t) =
1

Tm
δR(t) +

1
Tm

δRset(t). (3)

To construct a reasonable state-space model for autonomous vessels, the combination
of the steering gear system with the original state-space model in Equation (2) is done.
The time-continuous rudder angle is regarded as a state. For the sake of convenience of
applying ESO, the original state vector is renewed to be X with states x1 = ψ(t), x2 = ψ̇(t),
x3 = δR(t), x4 = ψ̈(t), and the input is utemp = δRset(t). Therefore, the state-space formulate
in Equation (2) is rewritten to be

ẋ1 = x2
ẋ2 = x4

ẋ3 = − 1
Tm

x3 +
1

Tm
utemp

ẋ4 = −a2x2 − (a1a2 +
a1a3a4

Tm
)x3 + a1a3x4 +

a1a3a4

Tm
utemp

. (4)

After analyzing the steering gear system, it can be found that the system is unsta-
ble. Hence, the basic proportional (P) control obtained by briefing conventional propor-
tional–integral–derivative (PID) control is employed to adjust the system to generate a
stable response. Afterward, the input in Equation (4) is updated with the gain kp of the P
control as follow

utemp = kp(ψset(t)− x1), (5)

where ψset(t) is the desirable heading angle. Assume that the input is rewritten to be
u = ψset(t). Then the expression of Equation (4) can be given as follows.

ẋ1 = x2
ẋ2 = x4

ẋ3 = −
kp

Tm
x1 −

1
Tm

x3 +
kp

Tm
u

ẋ4 = −
a1a3a4kp

Tm
x1 − a2x2 − (a1a2 +

a1a3a4

Tm
)x3

+a1a3x4 +
a1a3a4kp

Tm
u

. (6)

3. Research Methodology
3.1. State Estimation Based on ESO

The nonlinear ESO has a complex structure and will increase the difficulties of stability
analysis. Moreover, more control parameters need to be adjusted and most of them are
usually selected by the empirical values [33]. Thus, a linear ESO is adopted.

Assuming that p1 = −
a1a3a4kp

Tm
, p2 = −a2, p3 = −a1a2 −

a1a3a4

Tm
, p4 = a1a3,

b =
a1a3a4kp

Tm
, the extended state can be presented as

x5 = p1x1 + p2x2 + p3x3 + p4x4 + (b− 1)u. (7)

Correspondingly, ẋ4 = x5 + u.
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Therefore, the linear ESO can be constructed as follows

ż1 = z2 + l1(x1 − z1)
ż2 = z4 + l2(x1 − z1)

ż3 = −
kp

Tm
z1 −

1
Tm

z3 +
kp

Tm
u + l3(x1 − z1)

ż4 = z5 + u + l4(x1 − z1)
ż5 = l5(x1 − z1)

, (8)

where z1 is the estimated heading angle ψ(t), z2 donates the estimated yaw rate ψ̇(t), z3
presents the estimated rudder angle δR(t), z4 means the estimated acceleration of yaw rate
ψ̈(t), z5 describes the estimated lumped disturbances, and l1, l2, l3, l4, l5 are the observer
gains closely related to the control performance of the observer.

The corresponding state-space model of the ESO can be given as

dZ
dt

= AzZ + Bzuz + L(Xz − Z) (9)

where Z = [z1 z2 z3 z4 z5]
T , uz = [u] = [ψset(t)], Bz = [0 0 kp

Tm
1 0]T , Xz = [x1 x2 x3 x4 x5]

T ,

Az =


0 1 0 0 0
0 0 0 1 0
− kp

Tm
0 − 1

Tm
0 0

0 0 0 0 1
0 0 0 0 0

, L =


l1 0 0 0 0
l2 0 0 0 0
l3 0 0 0 0
l4 0 0 0 0
l5 0 0 0 0

.

Before the stability analysis of the ESO closed-loop system expressed in Equation (9),
a lemma is presented as follows.

Lemma 1. The prerequisite for a system to be stable is that the real part of the eigenvalue of the
state matrix of the system equation is negative and the imaginary part is zero.

Therefore, the system in Equation (9) would be stable and not exhibit overshoot
oscillation if the real part of the eigenvalue of the state matrix (A− L) was negative and
the imaginary part was zero.

Stability analysis. As the authors of [43] pointed out, the ESO has been widely used
in several applications, but the stability analysis is still an open problem since the ESO has
a non-smooth structure, which makes the analysis a difficult task. This part concentrates
on performing a convergence analysis for the ESO used in this study.

With the sake of convenience, we assume that dsys = −
a1a3a4kp

Tm
x1 − a2x2 − (a1a2 +

a1a3a4

Tm
)x3 + a1a3x4 + (

a1a3a4kp

Tm
− 1)u. Consequently, ẋ4 in Equation (6) can be recon-

structed as ẋ4 = dsys + u. Substituting the above new expression into Equation (4), the new
state-space model for the vessel response system is described by

Ẋ = AX + Bu + Fdsys (10)

where X =
[
x1 x2 x3 x4

]T
=

[
ψ(t) ˙ψ(t) δR(t) ψ̈(t)

]T
, u = ψset(t),

B =
[
0 0 kp

Tm
1
]T

, F =
[
0 0 0 1

]T , A =


0 1 0 0
0 0 0 1
− kp

Tm
0 − 1

Tm
0

0 0 0 0

 .

Discretizing Equation (10) with the interval donated as ∆t, the corresponding expres-
sion is obtained as follows
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X(k + 1) = AdX(k) + Bdu(k) + Fddsys(k) (11)

in which Bd = ∆tB, Fd = ∆tF, Ad = I + ∆tA =


1 ∆t 0 0
0 1 0 ∆t

−
∆tkp

Tm
0 1− ∆t

Tm
0

0 0 0 1

.

For the sake of mathematical convenience, we assume that q = z5, which is further
substituted into Equation (9). Then the vector-matrix form of Equation (8) is defined as{

Ż = HZ + Du + Eq + L1(x1 − z1)
q̇ = l5(x1 − z1)

(12)

Then the discretized form of Equation (12) is given as{
Z(k + 1) = HdZ(k) + Ddu(k) + Edq(k) + L1d(x1(k)− z1(k))
q(k + 1) = q(k)− L2d(x1(k)− z1(k))

(13)

where Hd = Ad, Dd = Bd, Ed = Fd, L1d =
[
∆tl1 ∆tl2 ∆tl3 ∆tl4

]T , L2d = ∆tl5.
Let the state error e(k) = X(k)− Z(k). The output error can be calculated through

x1(k)− z1(k) = Cde(k) with Cd =
[
1 0 0 0

]T . Consequently, define

e(k + 1) = X(k + 1)− Z(k + 1)
= AdX(k) + Bdu(k) + Fddsys(k)−HdZ(k)
−Ddu(k)− Edq(k)− L1dCde(k).

(14)

Due to Ad = Hd, Bd = Dd, Fd = Ed, Equation (14) can be modifed into

e(k + 1) = Ad(X(k)− Z(k)) + Fd(dsys(k)− q(k))− L1dCde(k)
= (Ad − L1dCd)e(k) + Fd(dsys(k)− q(k)).

(15)

Let g(k) = dsys(k)− q(k), then the consecutive expression can be described as follows

g(k + 1) = dsys(k + 1)− q(k + 1)
= dsys(k + 1)− q(k + 1) + q(k)− q(k) + dsys(k)− dsys(k)
= g(k)− L2Cde(k) + (dsys(k + 1)− dsys(k)).

(16)

Combine Equation (15) and Equation (16) together to get a form as follows[
e(k + 1)
g(k + 1)

]
=

[
Ad − L1dCd Fd
−L2dCd 1

][
e(k)
g(k)

]
+

[
0

dsys(k + 1)− dsys(k).

]
(17)

Let M =

[
Ad − L1dCd Fd
−L2dCd 1

]
. Now the problem of analyzing the stability of the ESO

can be defined to be the issue of adjusting the sign of the eigenvalues of the continuous
form Mc which is presented as follows

Mc =


−l1 1 0 0 0
−l2 0 0 1 0

−l3 −
kp

Tm
0 − 1

Tm
0 0

−l4 1 0 0 1
−l5 0 0 0 0

. (18)
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Convert the expression of Mc into the form (sI−Mc) by introducing identity matrix
I, then we can calculate the determinant of (sI−Mc) presented as follows

det(sI−Mc) = (s4 + l1s3 + l2s2 + l4s + l5)(s +
1

Tm
)s6. (19)

Let (s4 + l1s3 + l2s2 + l4s + l5)(s + 1
Tm

) = 0, then we can get the following results.

l1 = −λ1 − λ2 − λ4 − λ5
l2 = λ1λ4 + λ1λ5 + λ2λ4 + λ1λ5 + λ1λ2 + λ4λ5

λ3 = − 1
Tm

l4 = −λ1λ4λ5 − λ2λ4λ5 − λ1λ2λ4 − λ1λ2λ5
l5 = λ1λ2λ4λ5

(20)

where λi (i = 1, · · · , 5) are the eigenvalues for Equation (19). The settling time of steering

gear system must be positive, so λ3 = − 1
Tm

is negative real number. To ensure the stability

of the ESO without obvious oscillations, the rest of the eigenvalues, including λ1, λ2, λ4, λ5,
should be negative real numbers, respectively. It is noticeable that the value of l3 has no
obvious impacts on the stability of the ESO observer.

3.2. Parameter Identification Using RW-LSSVR

The RW-LSSVR method is a hybrid identification approach by taking benefits of the
outlier detection method, i.e., the robust σ principle, the adaptive weighting method, and
the LS-SVR. The robust σ principle is responsible for the detection and filtering of outliers
induced by measurements noise, environmental disturbances, etc. To mitigate their effects
on identification results and in turn improve the robustness of the RW-LSSVR. The LS-SVR
is one modified version of SVM for regression applications, which inherits the merits such
as global optimization ability due to the conversion of the optimization function into a
convex optimization and at the same time reduces computational complexity by replacing
inequality constraints with equality constraints. However, it also shows some demerits
such as the elimination of the sparseness and weaknesses of the SVM in handling datasets
contaminated by outliers and non-Gaussian distributions [44]. Therefore, the weighted
LS-SVR is developed to overcome the underlying deficiency of the LS-SVR [45]. The error
variables in RW-LSSVR’s optimization function are respectively incorporated with different
and adaptive weights for the purpose of improving RW-LSSVR’s adaptability.

Outlier detection. Taking a dataset dk(k = 1, 2, · · · , ntotal) with a total number ntotal
as measurements, the procedure on detecting outliers corrupted in dataset can be described
as follows.

1. The median absolute deviation donated as SMAD of the dataset is calculated by adopt-
ing Equation (21). dmed = median(dk) =

d
[

ntotal+1
2 ]:ntotal

+ d
[

ntotal
2 ]+1:ntotal

2
SMAD = 1.4826median(|d1 − dmed|, · · · , |dntotal − dmed|)

(21)

where dmed is the median of the dataset, SMAD is the median absolute deviation of the
dataset, [·] is the function of round-down, and 1.4826 is a constant setting to guarantee
SMAD an unbiased calculation of the standard deviation for Gaussian data [46].

2. The absolute error eabsk of every data contained in the dataset is calculated using
Equation (22).

eabsk = |dk − dmed| (22)
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3. Judge the sign of the difference calculation between eabsk and 3SMAD for every data
dk, i.e., eabsk − 3SMAD. The datum dk is defined as an outlier and deleted from the
dataset if its sign is positive, otherwise move to the next datum and repeat the above
adjustment process until k = ntotal .

Adaptive weighted LS-SVR. The weighted LS-SVR has been investigated by scholars
deeply and it has been demonstrated that it does not significantly increase the computa-
tional burden but provides sparseness and robustness. Meanwhile, it additionally reveals
that the performance of the weighted LS-SVR is highly dependent on the distribution of
data noises. The above-introduced outlier detection method works on noise filtering but
considering that the outliers induced by various factors are not easy to be defined and
cleaned completely. To deal with this point, the adaptive weighting method is proposed to
dynamically adjust the weight of each error variable. The details of adaptive weighted LS-
SVR (also called robust weighted LS-SVR with the abbreviation RW-LSSVR) are presented
as follows.

Assuming the number of outliers detected by the robust 3σ principal is nod so that the
number of the rest of the data in the dataset which will be used for parameter identification
is n = ntotal − nod.

Assumption 2. To identify the parameters involved in the linear response model of autonomous
vessels, the sample pair consisting of d-dimensional inputs and one output is required to feed into
the identification method. The overall number of data for every input is n. The input and output
expressed in vector forms are Xinp ∈ <d, and y = [y1, y2, · · · , yn] ∈ <.

In the weighted LS-SVR, the error variable (defined as ei) denotes the difference
between the prediction and training sample, and it will be weighted using the weighting
factor wi (i = 1, 2, · · · , n). Correspondingly, the optimization problem can be presented as

min
1
2
||W||2 + C

2

l

∑
i=1

wiei
2,

s.t., yi = W ·Φ(Xinpi) + bs + ei

(23)

where W ∈ <d is the weight vector and normal to the hyperplane, bs ∈ < is the intercept,
yi (i = 1, 2, · · · , n) means the output corresponding to Xinpi, Φ(·) is the mapping function
applicable to map the input vector Xinp into the high dimensional feature space so that the
linear transformation can be applied in tackling the optimization problem, and C is the
regularization parameter balancing the trade-off between the achievement of a low error
on the training data and the minimization of the norm of the weights [47].

The optimization problem formulated in Equation (23) can be transferred into a
Lagrangian expression shown as Equation (24) by introducing the positive Lagrange
multipliers α∗i .

L(W, bs, α∗, e) = 1
2 ||W||

2 + C
2 ∑l

i=1 wie2
i −∑l

i=1 α∗i (W ·Φ(Xinpi) + bs + ei − yi) (24)

By conducting the partial differentials of Equation (24) with respect to variables
W, bs, ei and eliminating W, ei, the Karush–Khun–Tucker (KKT) system can be given as[

bs
ff∗

]
=

[
0 11×n

1n×1 Ω + VC

]−1[0
y

]
(25)

where ff∗ = [α∗1 , . . . , α∗n]
T , w = [w1, . . . , wn]

T , the diagonal matrix is presented as

VC = diag
{

1
Cw1

, . . . ,
1

Cwn

}
.
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Weights wi can be further adaptively adjusted by employing the adaptive weighting
method. The concrete calculation of the adaptive weights is given as follows

wi =
2

1 + e
ei
T′

, i = 1, . . . , n (26)

in which 

T′ = mean(t1, t2)

t1 = median(e′1
4 n+1, e′1

4 n+2, . . . , e′1
2 n)

t2 = median(e′1
2 n+1, e′1

2 n+2, . . . , e′3
4 n)

e′i = sort(ei)(i = 1, 2, . . . , n)

(27)

in which ei is the ith sample error, e′i is the sorted error according to the ascending order of
the sample error series, t1 and t2 are the partial robust estimation, and T′ is the pseudo-
median of the sample errors. It is noted that the bigger the error of the sample datum is,
the smaller the weight is.

Therefore, the decision function in regression form can be obtained as follows

y =
n

∑
i=1

α∗i K
(
Xinpi, Xinp

)
+ bs (28)

where K
(
Xinpi, Xinp

)
is the kernel function, bs =

1
n

n

∑
j=1

[
yj −

n

∑
i=1

α∗i K
(
Xinpi, Xinpj

)]
. Af-

terward, the parameters can be calculated once the kernel function was determined in
Equation (28).

Construction of samples for identification. To identify the parameters in Equation (1)
using the RW-LSSVR, the samples estimated and extracted based on maneuvers of au-
tonomous vessels are needed to be constructed, which are able to determine the kernel
function for the RW-LSSVR. The immeasurable and indirectly measured states including

...
ψ,

ψ̈, ψ̇, δ̇R can be estimated using the above mentioned ESO with the use of measurements
i.e., δR and ψ. These state data are prepared as input–output pairs which are further trans-
formed into the RW-LSSVR for parameter identification. Thus, the linear response model
can be rewritten in a vector form as follows

...
ψ(t) = θInp (29)

where parameter vector is θ =
[
− 1

T1
− 1

T2
, − 1

T1T2
, T3KR

T1T2
, KR

T1T2

]
, input vector is

Inp =
[
ψ̈(t), ψ̇(t), δ̇R(t), δR(t)

]T .
By analyzing Equation (29), one can see that the expression is linear with respect to

the parameters required to be identified. Therefore, the linear kernel function denoted as
K
(
Xinpi, Xinp

)
= Φ(Xinpi)

T ·Φ(Xinp) can be selected for the RW-LSSVR. Consequently, the
parameters in the parameter vector θ can be calculated as follows

θ̂ =
n

∑
i=1

α∗i Xinpi. (30)

As the number of the input vectors is five, d can be decided to be four. Meanwhile,
each input item is discretized to be applicable in computer implementation. The interval
between consecutive samples is determined depending on the lower logging frequency of
the sensors. Given that the number of training samples extracted from measurements is
equal to n, the parameters contained in θ are able to be calculated as follows
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

KR = −∑n
i=1 α∗i δR(i)

∑n
i=1 α∗i ψ̇(i)

T1 =
∑n

i=1 α∗i ψ̈(i)
2 ∑n

i=1 α∗i ψ̇(i)
− 0.5

√√√√(∑n
i=1 α∗i ψ̈(i)

∑n
i=1 α∗i ψ̇(i)

)2

+
4

∑n
i=1 α∗i ψ̇(i)

T2 =
∑n

i=1 α∗i ψ̈(i)
2 ∑n

i=1 α∗i ψ̇(i)
+ 0.5

√√√√(∑n
i=1 α∗i ψ̈(i)

∑n
i=1 α∗i ψ̇(i)

)2

+
4

∑n
i=1 α∗i ψ̇(i)

T3 =
∑n

i=1 α∗i
˙δR(i)

∑n
i=1 α∗i δ(i)

. (31)

3.3. Identification Procedure

Taking the above-developed state estimation method and parameter identification
approach into consideration with the objective of identifying the linear response model for
autonomous vessels with high accuracy, the complete identification procedure depicted in
Figure 2 is described in detail as follows.

Figure 2. Identification procedure of the proposed hybrid identification approach.

Step 1: Sample acquirement. Several sets of autonomous vessel maneuvers are
simulated to provide informative data which are further used as samples for identification.
According to the practical situation and commonly available sensors, we assume that the
heading angle ψ and rudder angle δR could be collected directly in the experiments carried
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out with autonomous vessels but the rest items of input vector Inp are immeasurable and
are required to be estimated through Step 2. A time series of samples including δR and ψ is
acquired with the time interval ∆t which is mainly determined by the minimum sampling
frequency between the compass and the rudder sensor.

Step 2: State estimation. Estimate the immeasurable states in Inp including ψ̈, ψ̇, ψ3,
δ̇R by using the ESO method, mainly in Equation (9) based on linear response model
of autonomous vessels in Equation (4). According to the stability analysis results, the
coefficients containing l1, l2, l4, l5 should be positive real numbers. However, there is
no strict restriction on the value of l3. These coefficients will be valued in the following
case studies.

Step 3: Parameter identification. Samples acquired in Step 1 and the states estimated
through Step 2 are divided into two groups. The first 60% samples are extracted and
prepared as a training data group for identifying the linear response model based on the
RW-LSSVR. The remaining samples are regarded as a validation data group which is used
to validate the generalization ability of the identified response model. The training data
are processed by following the outlier detection procedure with three sequential steps to
mitigate the outlier effects. Afterward, the preprocessed training data are transformed
into the weighted LS-SVR and the nonlinear response model. The unknown parameters
involved in the parameter vector θ are able to be calculated via Equation (31). Then the
identified linear response model for autonomous vessels is obtained.

Step 4: Validation process. After acquiring the identified linear response model
with the use of training data, it is essential to validate the generalization ability of the
identified model with the objective to indicate whether its application with validation data
can also produce satisfying predictions, i.e., with a small RMSE (means the error between
predictions and corresponding original item) and large R2. The smaller the RMSE is, the
more accurate the identified model is. Meanwhile, the bigger the R2 is, the more similar
the trend of predictions to the corresponding original item is. If the predictions satisfy the
expected standard, the ultimate identified linear response model is obtained. Otherwise,
one should move back to optimize and repeat the previous three steps from Step 1 to Step 3
until reaching the ultimate identified model.

Based on the prediction ŷi and the desirable output yi with the total number of nval ,
the calculation of RMSE and R2 can be described as follows, respectively.

RMSE =

√√√√ 1
nval

nval

∑
i=1

(yi − ŷi)
2 (32)

R2 = 1− ∑nval
i=1(yi − ŷi)

2

∑nval
i=1

(
yi −

∑nval
i=1 yi

nval

)2 (33)

4. Results

A case study is carried out to demonstrate the effectiveness of the ESO-based state
estimation and RW-LSSVR-based parameter identification approach. Two sets of simula-
tions are conducted. One set is used for approach verification, and the other is used to
validate the generalization ability of the identified model. Simulations are implemented on
the MATLAB software platform.

4.1. Experiment Setup

A linear second-order Nomoto model with predefined parameter values (listed in
Table 3) of a cargo vessel in [48] is applied for simulation tests on the proposed hybrid iden-
tification framework. In order to fully test the performance of the proposed identification
approach, another relatively small vessel, a patrol river vessel, is selected as the research
object [49]. All necessary settings for these two vessels are listed in Table 3, where the
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first column means the different settings for two vessels while the fourth column presents
the same.

Table 3. Settings of the experimental test.

Different Cargo Patrol Same Cargo Patrol
T1 (s) 45.0 2.0875 l1 180
T2 (s) 6.0 0.3179 l2 12,150
T3 (s) 10.0 0.1830 l3 100

KR (s−1) 0.09 −0.1724 l4 364,500
Tm (s) 5 1 l5 4,100,625

kp 0.12 0.7 Employed
bees 30

Simulation
Time (s) 6000 900 Onlooker

bees 30

Total
Samples 300,000 45,000 Sources 30

Limit 35
Max iteration 30

Number of
parameters 1

Search
domain [10−2, 1010]

∆t 0.02 s

∆t is set under the consideration of minimum logging interval between practical
compass for measuring heading angle and rudder sensor for rudder angle. Considering that
the goal of this study is to evaluate the effectiveness of the proposed hybrid identification
approach incorporating the ESO-based state estimator with the RW-LSSVR identification
method, the maximum informative excitation of the input signal is referred to as the
widely used sinusoidal excitation signal which to high degrees matches the requirement of
unbiased identification of the system parameters [42]. The initial heading angle and rudder
angle are zero, respectively.

The observer gains of the ESO are set according to the comprehensive analysis and
experimental results from validating ESO performance in [50], especially regarding the
impacts of the observer bandwidths on estimation results and sensitivity to noises. For
the purpose of good demonstration, the ESO is compared with the EKF on the state
estimate. Moreover, in order to well investigate the effectiveness and robustness of the
proposed hybrid identification approach, the data is noised by corrupted with the simulated
disturbances using a Gaussian distribution.

One issue regarding the RW-LSSVR identification method is the particular setting for
the regularization parameter which is handled by the artificial bee colony algorithm (ABC)
referred to in our previous work in [6]. The ABC is initialized as Table 3 shown. To well
present the performance of the identification method, the LS-SVR method is selected for
comparison, and its parameters are also optimized by the ABC algorithm with the same
initial settings.

4.2. State Estimation Results

The measurements including the heading angle and the rudder angle are given in
Figure 3 for the cargo vessel and Figure 4 for the patrol vessel where the estimations are
also plotted for comparative analysis. Figures 5 and 6 show the estimates and observer
errors for both vessels, respectively. The simulated samples presenting immeasurable states
are also shown. The errors of estimates and measurements or simulated states in terms of
RMSE and R2 are listed in Table 4. From the estimation results, it can be found that the
RMSEs of ESO and EKF are both close to zero. The RMSEs of states from the ESO for the
cargo vessel are smaller than those for the patrol vessel. Comparatively, the RMSEs of the
ESO for both vessels are smaller than these of the EKF. The R2s of ψ, ψ̇, δR related to the
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ESO for the patrol vessel are 1 except for that of ψ̈. For the cargo vessel, the R2s of ψ and
δR from the ESO are 1. The R2s of the left states estimated by the ESO are not 1 but the
trend of the estimated and simulated of each of them is still very similar. The R2s of all
states estimated by the EKF are less than 1. What is more, the R2 of each state estimated
by the EKF is smaller than the corresponding one estimated by the ESO. Therefore, it can
be revealed that the ESO shows superior performance on the state estimate over the EKF.
Estimate results of the ESO are selected to be used in the following identification procedure.

Figure 3. Measurements and estimates of heading angle ψ and rudder angle δR of the cargo vessel.
The data on the left side of the black dotted line are training samples and on the right side are
validation samples.

Figure 4. Measurements and estimates of heading angle ψ and rudder angle δR of the patrol vessel.
The data on the left side of the black dotted line are training samples and on the right side are
validation samples.
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Figure 5. Estimated states of the cargo vessel. The data on the left side of the black dotted line are
training samples and on the right side are validation samples.

Figure 6. Estimated states of the patrol vessel. The data on the left side of the black dotted line are
training samples and on the right side are validation samples.

Notice that the R2 of ψ̈ for the cargo vessel is a little smaller than that for the patrol
vessel due to the larger inertia of the former vessel making a relatively slower reaction.
Following the above calculation and the selections of state estimates from the ESO, i.e.,
x5 = ẋ4 + u, the estimates of

...
ψ of the two vessels are plotted in Figure 7. The estimation

results imply that high-accuracy estimates are able to be utilized in the upcoming parameter
identification process. It is noticeable that the sampling frequency is found to be influential
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on the estimation results of the ESO. If a very low sampling frequency is used, important
information may be missing in the measurement and cause inaccurate state estimation,
resulting in a poorly identified model. This should be considered in the process of selecting
suitable sensors.

(a)

(b)
Figure 7. Estimates of

...
ψ of the two vessels. The data on the left side of the black dotted line are

training samples and on the right side are validation samples. (a) Cargo vessel. (b) Patrol vessel.

Table 4. Error of estimations and measurements or simulations for vessels.

Index State ESO EKF
Cargo Patrol Cargo Patrol

RMSE

ψ(rad) 2.3045× 10−15 2.0021× 10−14 8.9993× 10−9 9.6531× 10−9

ψ̇(rad/s) 2.3045× 10−11 5.0013× 10−10 9.9977× 10−8 8.4211× 10−7

ψ̈(rad/s2) 3.2407× 10−8 7.324× 10−8 6.4298× 10−8 7.0672× 10−8

δR(rad) 2.3266× 10−11 5.2236× 10−11 1.7822× 10−8 2.3266× 10−8
...
ψ(rad/s3) - - - -

R2

ψ 1.0000 1.0000 0.9902 0.9953
ψ̇ 0.9999 1.0000 0.9970 9010...
ψ 0.9732 0.9651 0.9469 0.9341
δR 1.0000 1.0000 0.8919 0.8557...
ψ - - - -
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4.3. Identification Results

Following the identification procedure in Section 3.3, the identified parameters of
the linear response model for the cargo vessel are listed in Table 5. The nominal values
of parameters are presented for comparative purposes. To quantitatively indicate the
identification errors, the relative error for each parameter is calculated by the ratio of error
between the identified and nominal values. It can be observed from the identification
results in terms of the relative errors of both identification methods i.e., RW-LSSVR and LS-
SVR are very small, which implies the identified model is of high accuracy. Comparatively,
the relative errors of the RW-LSSVR are smaller than these of the LS-SVR. So it can be
concluded that the model identified by the RW-LSSVR is much more accurate than that by
the LS-SVR. This is due to the robust ability of the RW-LSSVR on noise detection and filter.

Table 5. Identification results of the linear response model for vessels.

Parameter
Nominal Identified (RW-LSSVR) Identified (LSSVR) Relative Error (%) (RW-LSSVR) Relative Error (%) (LSSVR)

Cargo Patrol Cargo Patrol Cargo Patrol Cargo Patrol Cargo Patrol

T1 (s) 45 2.0875 46.21 2.0896 46.93 2.0231 2.689 0.1006 4.289 −3.085
T2 (s) 6.0 0.3179 5.960 0.3035 6.09 0.297 −0.6667 −4.530 1.5 −6.574
T3 (s) 10 0.1830 9.751 0.1840 9.932 0.1921 −2.49 0.5464 −0.68 4.973

KR (s−1) 0.090 −0.1724 0.095 −0.1837 0.087 −0.189 5.23 6.4721 −3.333 9.629

4.4. Validation of the Identified Model

The prediction results of the identified response models with the use of validation
samples are shown in Figure 8 for the cargo vessel and Figure 9 for the patrol vessel. The
prediction errors in terms of RMSE and R2 are given in Table 6. It can be seen from the
prediction results that the predictions from the identified model by the RW-LSSVR much
better track the validation samples with relatively high accuracy compared with that of the
LS-SVR. Therefore, the performance of our proposed identification approach in identifying
the linear response model is effectively proved to be satisfactory through the simulation
study on a cargo vessel as well as a patrol vessel.

Figure 8. Prediction results of the cargo vessel. (a) Predicted and estimated
...
ψ; (b) error of

...
ψ.
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Figure 9. Prediction results of the patrol vessel. (a) Predicted and estimated
...
ψ; (b) error of

...
ψ.

Table 6. Prediction errors of the identified linear steering model for the two vessels.

Index
RW-LSSVR LSSVR

Cargo Patrol Cargo Patrol

RMSE (×10−11, rad/s3) 9.9232 544.53 17.454 789.04
R2 0.9978 0.9974 0.9961 0.9963

5. Conclusions and Future Work
5.1. Conclusions

In this section, a summary of the research findings of the investigation is presented.
This paper developed a hybrid framework for autonomous vessel linear response model
identification based on the estimated states using the ESO method. The concrete and
logically ordered work on dynamic model parameters identification for autonomous vessels
is a step toward successful implementation of the mathematical dynamic model to describe
vessel dynamic characteristics and support the model application requirements of vessel
control system design.

In the process of parameter identification investigation, the practical situation with
only compass and rudder angle sensors being available is considered. Two vessels using
linear response models with predefined parameters are employed to generate simulated
data for validation of the proposed hybrid identification approach. Based on the directly
measured heading angle and rudder angle, the immeasurable states can be estimated
with almost negligible deviation by the ESO method, mainly due to parts of the model
information being known. It is noticeable that the ESO method outperforms the EKF on
immeasurable state estimation in terms of computational cost and estimation errors. Fur-
thermore, the RW-LSSVR identification method extracted from our previous study [6] also
indicates good identification performance when compared with the typical identification
method, i.e., LS-SVR.
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Unlike the commonly investigated identification-based modeling of vessel dynamics
where the immeasurable states are seldom discussed, the proposed hybrid identification
approach has simultaneously paid attention to the immeasurable state estimation and
vessel dynamic model identification. From the research findings of this work, it can be
concluded that the proposed hybrid identification approach is a novel inspiration and a new
solution for the development of identification-based modeling of vessel dynamics based
on the proven effectiveness and attractive advantages of the approach. In addition, the
approach is relatively “cheap” due to only some data being logged by generally low-cost
sensors being required to feed into the approach, which in turn shows its good potential
applications in shipping.

5.2. Future Work

On the basis of the current findings, several aspects can be future explored to enhance
the performance and applications of the proposed hybrid identification approach for future
work. Three main aspects are listed as follows:

1. Optimize the hybrid identification approach. Although the proposed identification
method has achieved good estimation and identification results, there are some points
that deserved to be addressed for the hyper-parameters in the RW-LSSVR, such as
initial weight and penalty factor significantly impacting the identification performance.
These hyper-parameters are required to be effectively set, which can be regarded as
an optimization problem. Apart from the ABC algorithm used in this work, many
new algorithms can be alternatives, such as the partially coupled nonlinear parameter
optimization algorithm [51], the metaheuristic approach [52], the prairie dog optimiza-
tion algorithm [53], the deep learning algorithm [54], and so on. It is a new attempt to
apply these algorithms to improve identification performance.

2. Expend the scope of evaluation scenarios. In this study, one degree of freedom
(DOF) dynamic concerning the heading response was modeled based on the hybrid
identification approach. The proposed approach can be extended to other kinds
of autonomous vessel dynamic models such as the 3 DOF horizontal model, and 4
DOF dynamic model. Satisfactory evaluation of the proposed hybrid identification
approach comes from the simulation study as well as the field experimental study.
In future research, efforts should be made to carry out experimental studies on the
proposed approach as well as to improve the identification accuracy. Moreover, the
impacts induced by noisy measurements involving real environmental disturbances
and sensor noises will be further studied.

3. Modify the approach to be applicable to online identification. The hybrid identification
approach was proposed mainly for offline identification of the response models for
two autonomous vessels respectively. In the future, more complicated situations can
be considered. According to the Froude number [7,55], vessel motion mode is varied
along with the changes in the vessel speed or the loading condition. Interests in
how these two factors affect vessel motions have been paid with the use of online
identification methods [56,57]. From recent research on SVM issues, the SVM-based
identification method was modified into an online version, e.g., the multi-innovation
gradient SVM studied in [58]. Similarly, the upcoming research point on the proposed
hybrid identification approach could be a suitable modification to make the approach
an online one.
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