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Abstract: Cooperative hunting is a typical task that reflects the intelligence level of a swarm. For
the complex underwater weak information environment with obstacles, a problem description of
the multi-autonomous underwater vehicle (AUV) cooperative hunting task is given, considering the
influencing factors, including underwater obstacles, AUV sensing interaction range, and target escape
strategy. A hybrid adaptive preference method based on improved artificial potential fields (HAP-
IAPF) is proposed. Then the strategies of obstacle avoidance and hunting are designed separately
according to the task requirements. The adaptive weight control unit is used to adjust the preference
strategy. The multi-AUV cooperative hunting in dynamic obstacle underwater environments under
weakly connected conditions are achieved. In order to prove the effectiveness of the proposed
algorithm, simulation results compared with the traditional artificial potential field method and the
optimized artificial potential field method are given in this paper. The results show that the proposed
method is robust and effective in different environments.

Keywords: multi-AUV; cooperative hunting task; obstacle avoidance; dynamic environment

1. Introduction

Swarm intelligence behaviors in nature, such as ant swarm [1], bird swarm [2], and fish
swarm [3], have attracted the attention of researchers. The multi-agent system composed
of intelligent agents represented by intelligent robots [4] is an important research platform
for people to study the emergence of intelligent swarm behavior in nature. Multi-agent
cooperative hunting is a representative mission that reflects the intelligence of multi-agent
systems. Technologies for cooperative hunting missions can provide support for other
missions such as search [5], interception, formation change [6], and cooperative trans-
port [7]. It can be widely used in counter-terrorism, security, military, and other fields. The
research content involved in the cooperative hunting task includes mathematical modeling
of swarms, individual movement modes, information interaction between individuals,
intelligent decision-making, task evaluation indicators, etc. The technology involved in
robot swarm intelligence is various and complex. Therefore, researchers often evaluate the
performance of swarm systems by the completion of the cooperative hunting task [8].

There have been many researchers completing some remarkable studies on some key
technologies in the cooperative hunting problem. In geometry-based methods, [9] designed
a rigid formation control law using relative position estimates obtained from distance
information, and [10] performed formation control based on more readily available azimuth
information. But these approaches perform well in some specific static environments rather
than dynamic environments. Many studies [11–13] have used grid-based methods to solve
the problem of swarm cooperation. Although the solving process is fast and the simulation
is easy to approach, the resulting path is discontinuous, and because of the heavy reliance
on global information, it is usually not easy to find the heuristic rule in a real-world
environment. Sampling-based algorithms are popular in multi-agent motion planning. A
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local sampling-based motion planner with a Bayesian learning scheme is studied in [14].
By learning from past observed information, this method can sample regions with a higher
probability to form trajectories in narrow areas. However, the method may not produce
available paths in a complicated environment because of limited state sampling space. A
multi-path planning method for a robot swarm named adversarial RRT* is presented in [15].
The proposed method considers both path cost and a measure of predicted deceptiveness
in order to produce a trajectory with a low path cost that still has deceptive properties.
However, the resulting trajectory is suboptimal and not curvature continuous. Recently,
methods based on artificial intelligence (AI) algorithms have attracted a lot of attention
from researchers, ref. [16] proposed a proximal policy optimization (PPO)-based algorithm
by taking advantage of reinforcement learning features to reduce computational cost in the
reinforcement learning method. Other research [17] studied cooperative control problems
of swarming systems in unknown dynamic environments. The swarm agents are required
to move in distributed manners with the reference trajectory, which is determined by a
virtual dynamic leader. The control policy is modeled by neural networks and updated
online. The AI-based methods can usually get a solution quickly, but training a neural
network requires a lot of learning data, which is not effective in the case of limited data
samples, and may also lead to poor robustness of the obtained strategy. In addition, the
artificial potential field (APF)-based methods [18–20] are widely used in distributed swarm
tasks because of its advantages in avoiding obstacles and generating paths in real time;
however, the solutions may be trapped in a local minimum point sometimes. For the path
oscillation caused by the local minimum point problem, ref. [21] proposed an optimized
artificial potential field (OAPF) method to ensure the global minimum point is near the
target point. Furthermore, the path is smoothed by a step length adjustment unit.

All the strategies discussed above have been studied for swarm robots on the ground
or above the water level, which provides stable communication and easy access to informa-
tion. Little research has been conducted on the problem of swarm cooperative hunting task
underwater. Autonomous surface vehicles (ASVs) have attracted a lot of attention as repre-
sentatives of surface vehicles. The literature [22,23] investigated the ASVs formation path
planning problem using the angle guidance fast marching square method developed for op-
eration in dynamic and static environments. A formulation based on closed metric graphs
and the application of a multi-objective genetic algorithm was proposed in [24] to provide
monitoring solutions for a variable number of ASVs. Based on the constructed bionic
swarm pattern and potential function, the swarm velocity guidance with self-organization
and collision avoidance was developed in [25] to guide ASVs. As one of the representative
platforms of intelligent underwater vehicles, autonomous underwater vehicles (AUVs)
are widely used in underwater operations because of their functions of detection, commu-
nication, intelligent decision-making, and control. Although AUVs operating in shallow
water are close to ASVs operating on the surface in terms of motion models, they are
under different environmental communication conditions, and thus the AUV cooperative
hunting problem has more constraints. In the multi-AUVs cooperative hunting problem,
the multi-AUV system works in an unknown underwater environment, which brings a
new challenge for detection, communication, and control of the underwater swarm. Due to
the complexity of the underwater environment, the AUV sensing range is very limited and
accurate global information cannot be obtained; moreover, obstacle avoidance behavior
must be considered in cooperative hunting. Study [26] modeled the AUV hunting prob-
lem and used a method to construct a map with complete information to accomplish the
hunting, enabling simulation validation of the underwater hunting strategy. However, the
strategy requires too much a priori information. Study [27,28] investigated the multi-AUV
hunting problem using a bio-inspired neural network (BNN)-based model and proposed
a distance-based negotiation method to assign hunting tasks. Simulation studies were
conducted in 2-D and 3-D environments, respectively. The proposed algorithm can capture
targets relatively quickly. However, it requires global map information for modeling and
has limited practical application. Ni [29] presented a dynamic alliance method based on
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bidirectional negotiation strategy and a pursuit direction assignment method based on
an improved genetic algorithm. Hunter AUVs will negotiate before action, which can
effectively improve the navigation efficiency of hunter AUVs. Cao [30] used a method of
negotiation to allocate appropriate desired hunting points for each AUV. The hunter AUVs
can surround the moving target as expected, however, in studies [24,25], the hunting teams
were formed by negotiation, and due to the difficulty of underwater communication, the
amount of information interacted by each vehicle was very limited and a large amount of
communication was not possible; therefore, this method is difficult to apply in practice.
The paper [31] used generative adversarial network (GAN) iterative training to generate a
control law suitable for underwater 3D and jamming environments to achieve the success-
ful hunting of noncooperative targets. Liang [32] proposed a behavior-driven coordination
control method for multi-AUV hunting problem based on immune mechanism. The hybrid
non-central topology is developed with self-organizational and fault-tolerance features.
However, studies in [31,32] are based on simple environments without complex situations
such as obstacles in the environment, and the control law obtained by training the control
relationship in a specific environment as input to the generated model cannot be applied to
other broader situations.

The above methods solve the corresponding problems presented in the literature, but
they are not applicable to the multi-AUV swarm cooperative hunting problem under a weak
information underwater environment due to the large amount of the a priori information
required, the high demand for real-time computational resources, or the poor adaptability
to different environments.

The main contributions of this work are summarized below:

(1) In order to apply the proposed method in a real underwater environment, the actual
constraints of underwater cooperative hunting tasks are considered. An underwater
cooperative hunting task model including underwater static and dynamic obstacles,
AUV sensing interaction distance limitation, AUV speed variation, target confronta-
tion strategy, and other influencing factors is established.

(2) In order to achieve the stability of the final formation of AUVs, the formation control
function of the encirclement process is proposed, which realizes the effective usage
of all the AUVs and improves the stability of the final formation. To solve the local
oscillation problem during obstacle avoidance, based on the APF-based method, an
obstacle avoidance preference motion control function is proposed to realize the
smoothing path of the obstacle avoidance and shorten the path length.

(3) To adapt to the requirements of different stages in the cooperative hunting process,
an adaptive weight control unit is designed to adjust the collision-free and hunting
strategy weights.

The rest of this paper is organized as follows. In Section 2, the problem statement
is described. Later, the strategy of multi-AUV cooperative hunting is put forward in
Section 3. Section 4 presents the simulation and analysis. Finally, the conclusions are given
in Section 5.

2. Problem Statement

This paper studies the cooperative hunting task of multi-AUV in an underwater
weak information environment with obstacles. The shallow water environment has more
obstacles and other disturbances compared to the deep-sea environment. Therefore, this
topic is of research value. Since the two-dimensional plane distance variation between
the target and the hunter AUV is much larger than the depth variation of each vehicle in
most cases in the actual shallow water region, this paper considers the motion in the two-
dimensional plane. The cooperative hunting task is described as follows. In the unbounded
two-dimensional space, there exists a hunting swarm consisting of n hunter AUVs and a
confrontational target with the same intelligence as a hunter AUV, the initial situation of
both sides is shown in Figure 1a. Each hunter AUV starts from the initial position, and
after several time steps, the hunting task is completed when all hunter AUVs reach around
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the intelligent adversarial target and form an encircling formation; the end state of the task
is shown in Figure 1b.
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2.1. Assumption for Hunter AUV

An omnidirectional mobile AUV platform studied in this paper is shown in Figure 2.
The horizontal and vertical propellers provide omnidirectional movement capability for
the AUV. The control and sensing cabin include electric field communication and visual
detection modules. As a result, the AUV can acquire information within a certain range
of its surroundings. In this subsection, some assumptions about the hunter AUVs are
listed below, which are necessary to describe the AUV characteristics and the cooperative
hunting process.
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Assumption 1. Kinematics: The AUV has omnidirectional movement capability. For the conve-
nience of description and calculation, the AUV shape is neglected and reduced to a moving mass
during the study. Its kinematics is described as:

.
ρi(t) = Vi(t).
Vi(t) = ai(t) + fi(t)
|ai(t)| ≤ amax
Vi(t) ∈ [Vmin, Vmax]

(1)
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where,
.
ρi(t) ∈ R denotes the two-dimensional coordinate of the ith AUV in the coordinate system

at time t, and
.

Vi(t) ∈ R2 denotes the velocity of its corresponding position with a value between the
maximum velocity Vmax and the minimum velocity Vmin of the AUV. ai(t) denotes the acceleration
control variable input by the motion controller, whose absolute value is less than or equal to the
maximum acceleration amax. fi(t) ∈ R2 denotes the external disturbance, which is a bounded
function with an unknown boundary.

Assumption 2. Priority information: Since the target search problem belongs to another study,
the target search is considered to be completed in the roundup problem discussed in this paper,
which means that the hunter AUV has a priori information about the initial position (XT0, YT0) of
the target. The target location information (XT , YT) can be broadcast through the communication
system within the communication distance. The number of all AUVs involved in the mission
is known.

Assumption 3. Sensory information: A single AUV can only obtain position information within
a circular area of radius L around it through the electric field-WIFI detection and communication
system as follows.

Friendly neighboring AUV location information:

Ωi(t) =
{

j ∈ [1, n]
∣∣‖ρi − ρj‖ ≤ L

}
(2)

where, n denotes the number of all hunter AUVs, and ρj denotes the position coordinate of
the friendly AUV at the current moment.

Obstacle information available is:{
ρo(t) = (Xo, Yo).
ρo(t) = Vo(t)

(3)

where ρo(t) and Vo(t) denote the position and velocity of the obstacle O at
moment t, respectively.

Target information available is:{
ρT(t) = (XT , YT).
ρT(t) = VT(t)

(4)

where ρT(t) and VT(t) denote the position and velocity of the target at
moment t, respectively.

2.2. Strategy for Intelligent Target

In this subsection, some assumptions about the adversarial targets are listed below,
which are used to characterize the intelligent targets.

Assumption 1. Only one intelligent target is hunted by multi-AUV in the paper. The target has
similar decision-making and perception capabilities as the hunter AUV, and the target perceives a
circular area of radius rT around it.

Assumption 2. When the target finds himself being attacked by AUVs, it will immediately start
to escape. Its speed and movement direction will be affected due to the hunting influence of AUV.
The target’s motion strategy is: when there is no enemy target within the sensing range, it moves in
a random direction with the cruising speed VT1 < VT2. When there is a threat, such as a hunter
AUV within the sensing range of the target, it escapes in the direction away from the threaten with
the fleeing speed VT2. The maximum velocity VT2 of the moving target is less than the maximum
velocity of the AUV.
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3. Methods

The APF-based method is a common method for AUV local path planning problem,
which requires low communication and detection information for hunter AUV, with less
computational complexity and high real-time performance. However, the traditional APF-
based method lacks the distinction between cooperative friendly neighbors when applied
to multi-AUV cooperative hunting task, and it is easy to fall into local optimum leading to
path oscillation or even not reachable to expected area. In this section, we propose a hybrid
adaptive preference method based on the improved artificial potential fields (HAP-IAPF)
method to solve the problem of multi-AUV cooperative hunting in an underwater weak
information environment with obstacles. The flow of the multi-AUV hunting process based
on HAP-IAPF is shown in Figure 3.
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3.1. APF-Based Method

In the traditional APF-based method, the agent is influenced by the potential field
of the current position to decide the next movement plan, usually from a high potential
energy region to a low potential energy region. The potential field U(X) of position X in
the environment is defined as follows:

U(X) = Ua(X) + Ur(X) (5)
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where Ua(X) denotes the attractive potential field generated by the target at position XT ,
and Ur(X) denotes the repulsive potential field generated by the obstacle. The combined
potential field at this point is generated by the superposition of the attractive and repulsive
fields, and the negative gradient vector of the combined potential field is taken to control
the motion of the AUV.

The attractive potential field is expressed as:

Ua(X) =
1
2

k1ρ2(X, XT) (6)

where k1 denotes the gravitational gain parameter and ρ(X, XT) denotes the Euclidean
distance from the current coordinate X to the target position XT .

The attractive force at the corresponding coordinates is:

Fa(X) = −∇Ua(X) = k1ρ(X, XT) (7)

The repulsive potential field is expressed as:

Ur(X)

{
1
2 k2(

1
ρ(X,Xo)

− 1
ρ0
)

2
0 ≤ ρ(X, Xo) ≤ ρ0

0 ρ(X, Xo) > ρ0
(8)

where k2 denotes the gravitational gain parameter, ρ(X, Xo) denotes the Euclidean distance
from the current coordinate X to the obstacle position Xo, and ρo is a positive number that
represents the safe distance between the AUV and the obstacle.

The repulsive force at the corresponding coordinates is:

Fr(X) = −∇Ur(X)


k2(

1
ρ(X,Xo)

− 1
ρ0
)

· 1
ρ2(X,Xo)

∂ρ2

∂X 0 ≤ ρ(X, Xo) ≤ ρ0

0 ρ(X, Xo) > ρ0

(9)

3.2. Strategy of Hunting Preference

The attraction of the target to the hunter AUVs in the traditional APF-based method
decreases linearly and tends to zero with decreasing distance, which may lead to the fact
that the hunter AUVs are only influenced by the repulsive force between agents at last,
which is unfavorable to the stability of final formation. In order to solve this problem and
to make the swarm of hunter AUVs quickly and stably surround the target in the final
stage, a hunting preference strategy is proposed.

The target attractive function is:

FT(Xi) = [RT − ‖ρ(Xi, XT)‖]·
1

‖ρ(Xi, XT)‖
·ρ(Xi, XT) (10)

where, RT is the hunting convergence parameter and ρ(Xi, XT) is the Euclidean distance
between the target and the ith AUV.

The force function of ith AUV generated by all friendly neighbor AUVs is:

F1
ij(Xi) =



n
∑

j = 1
j 6= i

[(
1

‖ρ(Xi ,Xj)‖
− 2 sin( π

n )
L

)

· 1
‖ρ(Xi ,Xj)‖2 ·ρ(Xi, Xj)

]
ρ(Xi, Xj) ≤ L

0 ρ(Xi, Xj) > L

(11)

where n is the number of all hunter AUVs, and ρ(Xi, XT) is the Euclidean distance between
ith AUV and a friendly neighbor jth AUV within the sensing range.
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3.3. Strategy of Obstacle Avoidance Preference

In the traditional APF method, when an individual is affected by both attractive and
repulsive forces around an obstacle, there may be a positive or negative change in the
combined force at the next moment as the AUV moves. Therefore, the path planned by the
AUV may have repeated oscillations, resulting in wasted energy and time. In order to solve
this problem and make the multi-AUV swarm pass the obstacle area quickly and stably, an
obstacle avoidance preference strategy with improved virtual force is proposed.

The target attractive force is the same as Equation (10), and the force function of ith
AUV generated by all friendly neighbor AUVs is:

F2
ij(Xi) =



n
∑

j = 1
j 6= i

[(
1

‖ρ(Xi ,Xj)‖
− 2 sin( π

n )
L

)

· 1
‖ρ(Xi ,Xj)‖3 ·ρ(Xi, Xj)

]
ρ(Xi, Xj) ≤ L

0 ρ(Xi, Xj) > L

(12)

Suppose there are m obstacles or equivalent obstacles within the detection range of
the ith AUV, the obstacle repulsion is:

Fo(Xi) =



m
∑

j=1

[(
1

‖ρ(Xi ,Xoj)‖
− 1

R

)
· 1
‖ρ(Xi ,Xoj)‖2 ·ρ(Xi, Xoj)

]
ρ(Xi, Xoj) ≤ R

0 ρ(Xi, Xoj) > R

(13)

where ρ(Xi, Xoj) is the Euclidean distance between ith AUV and the jth obstacle within the
detection range of the ith AUV. R denotes the obstacle rejection action range.

3.4. Adaptive Weight Control Unit

The adaptive weight control unit is designed to select the current best strategy based
on the state of a hunter AUV. ρ(Xi, Xomin) is the Euclidean distance between the current
AUV and the nearest obstacle within the effective distance. The input of the control unit is:

cIn

{
ρ(Xi ,Xomin)

R ρ(Xi, Xomin)exist
1 otherwise

(14)

The output is the matrix C = [ka kb kc].
Introduce the function:

µ(x) =
1
2
[− tan

(
x·π

2
−π

4
)+1] x ∈ [0, 1] (15)

where, 
ka = 2µ(cIn)
kb = h0
kc = kbµ(cIn)

(16)

where, h0 is a positive constant.
Eventually, the combined force on the hunter AUV is

Fi =

 C·
[

FT F1
ijFO

]T
cIn = 1

C·
[

FT F2
ijFO

]T
otherwise

(17)
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When the gravitational force and repulsive force on the individual just cancel, it may
cause the AUV to fall into the local optimal value point and cannot move further. Therefore,
the rule is set when Fi(t) = 0, a small random perturbation ω that is perpendicular to the
direction of the target linkage is added.

4. Simulation Results

In order to verify the feasibility and effectiveness of the proposed algorithm, simu-
lations and analyses in a static obstacle environment and dynamic obstacle environment
are given, respectively. The performance of the proposed algorithm is compared with
the APF-based algorithm and the OAPF method. The simulation platform is a computer
with Intel(R) Core(TM) i7-8700 CPU 3.20 GHz which was developed by Intel Inc. in Santa
Clara, California, USA, 16 GB memory, and the software is MATALAB R2020a which was
developed by MathWorks, Inc. in Natick, Massachusetts, USA.

The general parameters of the simulation are listed in Table 1. The maximum speed of
the hunter AUV is set to be greater than the target escaping speed VT2. The sensing distance
L of the hunter AUV is less than the target sensing distance rT. The obstacle action radius R
is smaller than the perception distance of the hunter AUV, which ensures that the hunter
AUV can respond to existing obstacles. The values of other parameters were adjusted by
observing the system behavior during simulations. We verified that these parameters could
possibly influence the AUVs during the task execution but were definitely not decisive in
the accomplishment of the task.

Table 1. Parameters for simulation.

Symbol Description Value Units

t Steps of time 1 s
n Number of hunter AUVs 8 -
T Maximum steps of simulation 100 s
L AUV sensing range radius 10 m

VT1 Target cruising speed [−0.3, −0.5] m/s
VT2 Target escaping speed 1.697 m/s

Vmax Maximum speed of hunter AUVs 3 m/s
Vmin Minimum speed of hunter AUVs 0.1 m/s

Xt Target initial coordinates [100, 110] m
rT Target sensing range radius 20 m
R Obstacle influence range 8 m

RT Hunting convergence parameters 10 m
h0 Friendly neighbor repulsion constant 1 -
ω Perturbation 0.1 -

4.1. Static Obstacle Environment Simulation

In order to verify the effectiveness of the proposed method, a simulation study is
performed in a static obstacle environment. The two circular static obstacles with center
location coordinates of [80, 70], [80, 90] and a radius of 2 m are near the path that the AUV
swarm is expected to pass through. The safety distance between AUV and the center of the
obstacle is 3 m.

The HAP-IAPF simulation results are shown in Figures 4 and 5. It is considered that
the task is completed when the error between the geometric center position of the formation
composed of the hunter AUVs and the target position is less than 1 m.
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Figure 5. HAP-IAPF method in static environment: (a) The initial position of hunter AUV; (b) 
process of passing obstacles; (c) position distance between formation center and the target; (d) 
distances between each agent and obstacle 1 and 2. 
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Figure 5. HAP-IAPF method in static environment: (a) The initial position of hunter AUV; (b) process
of passing obstacles; (c) position distance between formation center and the target; (d) distances
between each agent and obstacle 1 and 2.

As shown in Figure 4, after starting from the initial position located near the origin (see
Figure 5a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see Figure 5b)
and finally successfully surround the target. A stable and regular circular formation is
formed around the target finally. In Figure 5c, it is shown that the cooperative hunting
process is convergent. After 64 steps, the target has been completely surrounded. In
Figure 5d, it is shown that the AUV swarm passes through the obstacle-influenced area
with a smooth avoidance path, and the closest distance of AUV from the obstacle is 3.24 m,
which is successfully kept above the safe distance.

The APF simulation results are shown in Figures 6 and 7.



J. Mar. Sci. Eng. 2022, 10, 1266 11 of 17

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 11 of 18 
 

（a） (b)

(c) （d）  
Figure 5. HAP-IAPF method in static environment: (a) The initial position of hunter AUV; (b) pro-
cess of passing obstacles; (c) position distance between formation center and the target; (d) distances 
between each agent and obstacle 1 and 2. 

As shown in Figure 4, after starting from the initial position located near the origin 
(see Figure 5a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see Figure 
5b) and finally successfully surround the target. A stable and regular circular formation is 
formed around the target finally. In Figure 5c, it is shown that the cooperative hunting 
process is convergent. After 64 steps, the target has been completely surrounded. In Figure 
5d, it is shown that the AUV swarm passes through the obstacle-influenced area with a 
smooth avoidance path, and the closest distance of AUV from the obstacle is 3.24 m, which 
is successfully kept above the safe distance. 

The APF simulation results are shown in Figures 6 and 7. 

 
Figure 6. Cooperative hunting process in static obstacle environment based on the APF-based 
method. 

Figure 6. Cooperative hunting process in static obstacle environment based on the APF-based
method.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 18 
 

 
Figure 7. APF-based method in static environment: (a) The initial position of hunter AUV; (b) 
process of passing obstacles; (c) position distance between formation center and the target; (d) 
distances between each agent and obstacle 1 and 2. 

As shown in Figure 6, after starting from the initial position located near the origin 
(see Figure 7a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see Figure 
7b) and surround the target finally. The final formation formed around the target is an 
irregular polygon, and the final formation has a lot of randomness. Figure 7c shows that 
after 75 steps, the target has been completely surrounded. Figure 7d shows that when the 
AUV swarm passes through the obstacle-influenced area, there is some oscillation in the 
avoidance path, which leads to an increase in the avoidance path length. The closest 
distance of the AUV from the obstacle is 4.30 m, which is successfully kept above the safe 
distance. 

The AUV swarm enters the obstacle influence area at about 20–40 steps. The path 
length of each AUV during this period is given in Table 2. The average path length of the 
HAP-IAPF is 57.4 m, and that of the APF method is 60.4 m. Referring to Figure 5d, Figure 
7d and Figure  the HAP-IAPF method can plan a smoother and shorter path when 
avoiding obstacles. Both methods successfully surround the target at 64 steps and 75 steps, 
respectively, while the proposed method in this paper has a shorter completion time. 

Table 2. Path length of each AUV during 20–40 steps (unit: m). 

AUV Number 1 2 3 4 5 6 7 8 Average 
HAP-IAPF 56.4 62.8 60.8 52.0 62.5 50.8 62.9 50.7 57.4 
APF based 61.1 62.2 62.0 61.6 59.7 61.1 61.2 54.5 60.4 

  

（a） (b)

(c) （d）

0 5 10 15 20 25 30 35 40 45 50

x/m

5

10

15

20

25

30

35

40

y/
m

Initial position of hunter AUV

AUV1

AUV2

AUV3

AUV4

AUV5

AUV6

AUV7

AUV8

0 10 20 30 40 50 60 70 80

t/s

0

20

40

60

80

100

120

140

x/
m

Position distance between formation center and target

50 60 70 80 90 100

x/m

60

65

70

75

80

85

90

95

100

105

y/
m

Obstacle2

Process of passing obstacles

Target

Obstacle 1

H5

H8
H3

H1

H2

H4

H6

H7

10 20 30 40 50 60 70 80

t/s

0

50

100

x/
m

Distances between each agent and obstacle 1

AUV1

AUV2

AUV3

AUV4

AUV5

AUV6

AUV7

AUV8

0 10 20 30 40 50 60 70 80

t/s

0

50

100

x/
m

Distances between each agent and obstacle 2

AUV1

AUV2

AUV3

AUV4

AUV5

AUV6

AUV7

AUV8

Figure 7. APF-based method in static environment: (a) The initial position of hunter AUV; (b) process
of passing obstacles; (c) position distance between formation center and the target; (d) distances
between each agent and obstacle 1 and 2.

As shown in Figure 6, after starting from the initial position located near the origin (see
Figure 7a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see Figure 7b)
and surround the target finally. The final formation formed around the target is an irregular
polygon, and the final formation has a lot of randomness. Figure 7c shows that after 75 steps,
the target has been completely surrounded. Figure 7d shows that when the AUV swarm
passes through the obstacle-influenced area, there is some oscillation in the avoidance path,
which leads to an increase in the avoidance path length. The closest distance of the AUV
from the obstacle is 4.30 m, which is successfully kept above the safe distance.

The AUV swarm enters the obstacle influence area at about 20–40 steps. The path
length of each AUV during this period is given in Table 2. The average path length of the



J. Mar. Sci. Eng. 2022, 10, 1266 12 of 17

HAP-IAPF is 57.4 m, and that of the APF method is 60.4 m. Referring to Figures 5d and 7d,
the HAP-IAPF method can plan a smoother and shorter path when avoiding obstacles.
Both methods successfully surround the target at 64 steps and 75 steps, respectively, while
the proposed method in this paper has a shorter completion time.

Table 2. Path length of each AUV during 20–40 steps (unit: m).

AUV Number 1 2 3 4 5 6 7 8 Average

HAP-IAPF 56.4 62.8 60.8 52.0 62.5 50.8 62.9 50.7 57.4
APF based 61.1 62.2 62.0 61.6 59.7 61.1 61.2 54.5 60.4

4.2. Dynamic Obstacle Environment Simulation

To verify the effectiveness of the proposed method, a simulation study is performed
in a dynamic obstacle environment. The initial center position coordinates of two circular
dynamic obstacles are [75, 95], [100, 40], respectively, Obstacle 1 and Obstacle 2 make a
uniform linear motion with velocities of 0.3 m/s and 1.2 m/s, respectively, and the motion
trajectory is shown in Figure 8.
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environment.

The HAP-IAPF simulation results are shown in Figures 8 and 9.
As shown in Figure 8, after starting from the initial position located near the origin (see

Figure 9a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see Figure 9b)
and finally successfully surround the target. A stable and regular circular formation is
formed around the target at last. In Figure 9c, it is shown that the target is completed to
be surrounded after 63 steps. Figure 9d, shows that the AUV swarm passes through the
obstacle-influenced area with a smooth avoidance path, and the closest distance of AUV
from the obstacle is 3.11 m, which maintains a safe distance.

The APF simulation results are shown in Figures 10 and 11.
As shown in Figure 10, after starting from the initial position located near the origin

(see Figure 11a), the 8 hunter AUVs smoothly pass the area affected by obstacles (see
Figure 11b) and surround the target finally. The final formation is an irregular polygon. In
Figure 11c, it is shown that the target is completed surrounded after 75 steps. Figure 11d
shows that the AUV swarm passes through the obstacle-influenced area with some oscil-
lations in the avoidance path, resulting in an increase in the avoidance path length. The
closest distance of the AUV from the obstacle is 4.82 m, which successfully maintains a safe
distance or more.
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Figure 9. HAP-IAPF method in dynamic environment: (a) The initial position of hunter AUV; (b) 
process of passing obstacles; (c) position distance between formation center and the target; (d) 
distances between each agent and obstacle 1 and 2. 
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Figure 9. HAP-IAPF method in dynamic environment: (a) The initial position of hunter AUV;
(b) process of passing obstacles; (c) position distance between formation center and the target; (d)
distances between each agent and obstacle 1 and 2.
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process of passing obstacles; (c) position distance between formation center and the target; (d) 
distances between each agent and obstacle 1 and 2. 
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Figure 11. APF-based method in dynamic environment: (a) The initial position of hunter AUV;
(b) process of passing obstacles; (c) position distance between formation center and the target;
(d) distances between each agent and obstacle 1 and 2.

The AUV swarm enters the obstacle impact area at about 20–60 steps, and the path
length of each AUV is given in Table 3. The average path length is 111.7 m for HAP-IAPF
and 118.4 m for APF method, referring to Figures 9d and 11d, it can be concluded that
the HAP-IAPF method has a smoother and shorter path during obstacle avoidance. Both
methods successfully surround the target at 63 steps and 75 steps, respectively, while the
proposed method in this paper has a shorter completion time. Thus, the simulation results
indicate the adaptability of the HAP-IAPF method in an unknown dynamic environment.

Table 3. Path length of each AUV during 20–60 steps (unit: m).

AUV Number 1 2 3 4 5 6 7 8 Average

HAP-IAPF 111.8 98.2 119.6 107.0 107.2 117.7 118.8 113.6 111.7
APF-based 115.4 121.0 121.5 113.6 120.0 122.2 123.0 110.4 118.4

4.3. Analysis

The comparison of HAP-IAPF, APF-based, and the OAPF algorithms proposed in [21]
is shown in Table 4. After 100 times Monte Carlo simulations, the total calculation time
of HAP-IAPF, APF-based, and OAPF are listed. The computation time of the HAP-IAPF
method increased by 6.71% and 7.04% compared to APF-based algorithm. It can be seen
that both algorithms had a fast response time and similar computation time. The computa-
tion time of the OAPF method increased by 44.88% and 50.64% compared to APF-based
algorithm. The result shows that the computation time of OAPF algorithm increased signif-
icantly. Thus, the OAPF algorithm is not good in real-time, which affects its application in
an underwater environment. The average lengths of obstacle avoidance paths in 20–40 s
for each algorithm are 57.4 m, 60.4 m, and 59.4 m in the static environment. The average
lengths for 20–60 s in the dynamic environment were 111.7 m, 118.4 m, and 108.1 m. HAP-
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IAPF decreased by 4.97% and 5.32% in the different environments relative to APF-based,
respectively. OAPF decreased by 1.66% and 8.69% in the different environments relative
to APF-based, respectively. The path of the OAPF algorithm was the shortest path in the
dynamic environment. Because of the local minimum problem, the OAPF algorithm prefers
to approach the target point quickly and ignores the effect of moving obstacles. This may
lead to an unsafe obstacle avoidance process, therefore, the OAPF is not very adaptable
to dynamic environments. Define a change in heading angle of more than 90 degrees as a
large deflection. By comparing the changes in headings for each AUV, the average number
of large deflections occurred by HAP-IAPF was reduced by 23.42% and 41.94% relative to
APF-based in the static and dynamic environments, respectively. It was reduced by 8.44%
and 18.18% relative to OAPF in the static and dynamic environments, respectively. The
step length adjustment unit in the OAPF algorithm can achieve a certain degree of path
smoothing, while the algorithm proposed in this paper is more effective. The completion
time of HAP-IAPF was 14.67% and 16% shorter than APF-based in different environments,
respectively. It was reduced by 4.48% and 24.10% compared with the OAPF algorithm.
This was further evidence that the OAPF algorithm was not quite suitable for cooperative
hunting problems in dynamic environments. The computational cost of the method in this
paper was low, and the average path length and average time were shorter. Moreover, the
formed formation was stable. Therefore, the method proposed in this paper is suitable for
cooperative hunting tasks in unknown underwater environments.

Table 4. Comparison of algorithms.

Simulation
Environment Algorithm Calculation

Time (s)
Path Length

(m)

Heading
Deflections

(Times)

Completion
Time (s)

Static
Environment

HAP-IAPF 119.78 57.4 4.12 64
APF-based 112.25 60.4 5.38 75

OAPF 162.63 59.4 4.50 67

Dynamic
environment

HAP-IAPF 126.00 111.7 4.50 63
APF-based 117.71 118.4 7.75 75

OAPF 177.33 108.1 5.50 83

5. Conclusions

In this paper, we propose a HAP-IAPF method to accomplish a cooperative hunting
task in an unknown underwater environment. First, we propose a task model that includes
underwater static and dynamic obstacles, AUV sensing interaction distance limitation,
AUV speed variation, and target confrontation strategy to be as close as possible to the real
underwater environment. Then, the final formation stabilization is achieved by designing
a hunting preference strategy. By designing the obstacle avoidance preference strategy, the
path is smoothed, and the efficiency is improved. Finally, to adapt to the requirements
of different stages in the cooperative hunting process, an adaptive weight control unit is
designed to adjust the collision-free and hunting strategy weights. We simulated in static
obstacle environment and dynamic obstacle environment, respectively. The results show
that the proposed method has a low computational cost, shorter average path length, and
average time than APF-based and OAPF method. Moreover, the formed formation is stable.
Thus, the effectiveness of the proposed method in an unknown underwater environment
is proven.

In the future, on the one hand, the influence of distinguishing different speed obstacles
or friendly individuals is considered, thus allowing the AUV to adjust its speed and heading
autonomously according to different types of obstacles to further improve the adaptability
of the strategy. On the other hand, the proposed method is validated experimentally in a
real environment using the designed AUV.
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