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Abstract: Double-curved pipes are widely employed as essential components of subsea pipeline sys-
tems. Considering the layout flexibility and application diversity, there are various spatial structures
for the double-curved combinations. However, few studies have compared the flow characteristics
in different double-curved pipes. The dissipations of the corresponding downstream flow have not
been thoroughly investigated, which are crucial for the measurement accuracy and flow assurance.
In this paper, the turbulent flow in double-curved pipes with different spatial structures (i.e., Z-, U-,
and spatial Z- type) was numerically studied by employing the ω-Reynolds stress model. The major
purpose was to develop an in-depth knowledge on the secondary flow characteristics in different
double-curved pipes and quantify the dissipations of the downstream flow. The effects of the spatial
angle and interval distance of the two curves on the flow fields are taken into consideration, and
the swirl intensity Si is introduced to evaluate the secondary flow dissipation. It is found that the
secondary flows in the Z- and U-type structures are in opposite directions when the interval distance
is short (3D), and the secondary flow in the spatial Z-type exhibits an oblique symmetric form.
Only in the Z-type pipe with a short interval distance the secondary flow exhibits an exponential
dissipation, and the fully developed flow is easier to achieve than the other cases. However, as
the interval distance increases, the directions of the secondary flow in the U- and Z-type structures
are the same, and the flow dissipations in all the structures return to the exponential types. The
obtained dissipation rates for the secondary flow downstream of Z-, U-, and spatial Z-pipes with
the 9D interval distance were 0.40, 0.25, and 0.20, respectively. The results are expected to guide the
design of pipeline layouts and provide a reference for the arrangements of flowmeters in a complex
subsea pipeline system.

Keywords: subsea pipeline; double-curved pipe; secondary flow; swirl intensity

1. Introduction

The subsea pipeline is the main part of the transportation of oil and gas products in
the underwater production system and gained much attention [1,2]. To ensure the safety of
energy transportation, many researchers have focused on corrosion [3], residual stress [4],
buckling [5], and blocking [6] of the straight subsea pipelines. Moreover, the pipelines are
not always straight in the underwater production system. To meet the flexibility of the
spatial layout, they are designed as multicurved structures in which the flow fields are
more complex than those in straight pipes.

In all curved structures, the 90◦ bends are the most basic components and widely
employed in the subsea pipeline system. Different from the straight pipe, the curvatures of
the bends cause the generation of secondary flow superimposed on the main flow. When
passing through a 90◦ bend, the fluid with a high speed near the outer corner turns to
the inner corner along the pipe wall, while the fluid with a low speed near the inner

J. Mar. Sci. Eng. 2022, 10, 1264. https://doi.org/10.3390/jmse10091264 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091264
https://doi.org/10.3390/jmse10091264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-0061-1488
https://orcid.org/0000-0003-4715-8510
https://doi.org/10.3390/jmse10091264
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091264?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1264 2 of 20

corner flows toward the outer corner as a result of the combined effect of the wall pressure
gradient and centrifugal force. This fluid motion is firstly investigated in curved pipes
by Dean and Chapman [7]. Therefore, the induced vortices are called as Dean vortices.
In the decades since, the Dean motion in a curved pipe has been widely studied. The
bifurcation of Dean vortices from a single pair to multipairs induced by the flow conditions
and pipe geometries has been numerically discussed by Nandakumar and Masliyah [8],
Yang et al. [9], and Yanase et al. [10]. Bovendeerd et al. [11] carried out an experiment
to measure the secondary flow field in a bend at a Reynolds number of 700. Moreover,
Sudo et al. [12,13] experimentally investigated the turbulent flow through the bent channels
with square and circle sections. Jurga et al. [14] employed the Explicit Algebraic Reynolds
Stress Model (EARSM) to investigate the turbulent flow in a bent pipe. Li et al. [15] adopted
the computational fluid dynamics with discrete element method (CFD-DEM) to simulate
the solid and liquid phase flow in a bent pipe and evaluated the degree of wall wear.
Ning et al. [16] also used the CFD-DEM to study the solid–liquid flow through the channels
with different curvature ratios. In recent years, the swirl-switching of the turbulent flow
in a bent pipe has attracted increasing interest since this unsteady flow motion may cause
fatigue damage to the pipelines. Hellström et al. [17] obtained that the two characteristic
Strouhal numbers of the swirl-switching are 0.16 and 0.33 through a proper orthogonal
decomposition (POD) method, which are in good agreement with those of Rütten et al. [18]
and Kalpakli et al. [19]. Hufnagel et al. [20] conducted a direct numerical simulation (DNS)
on the bent flow and concluded that the switching phenomenon is intrinsic to the bend
geometry and independent of the upstream flow conditions. In addition, the complex
flow physics in some other types of bending structures such as T-, plugged T-, and Y-
junctions have been investigated. Sakowitz et al. [21] employed a large eddy simulation
(LES) to investigate the turbulent flow mechanisms in a T-type junction. Ong et al. [22] and
Han et al. [23,24] numerically investigated the laminar flow characteristics in the plugged
T-junctions and reported the effect of structural parameters of the structures. Hu et al. [25]
conducted a numerical and experimental study on the motion of particles in the Y-type
bend and revealed that the particle transport is strongly affected by the secondary flow.

Since the pipeline system consists of straight, curved, and multicurved pipes, many
researchers conducted studies on the flow in some kinds of bend combinations. Fiedler [26]
conducted an experiment on the flow in double-curved pipes where the second bend is
perpendicular to the first one and explained the asymmetries of the velocity profiles in
the second bend. Mazhar et al. [27] carried out an experiment on the turbulent flow in
S-shape 90◦ bends and found the higher turbulence kinetic energy near the downstream
bend. In terms of the U-type bend, Sudo et al. [28] conducted an experiment to measure
the flow field in the 180◦ bend. Moreover, some recent efforts have focused on the flow
behaviors in double- [29] and triple-curved [30] pipes when the Reynolds number exceeds
107; the researchers attributed the flow-accelerated corrosion to the unsteady motions of
the secondary flows in the bends. In terms of the multicurved structures, Liu et al. [31]
numerically studied the flow characteristics and mixing conditions along the M-type jumper
tubes with plugged T-junctions. Kim and Srinil [32] numerically studied the slug flows in
the subsea M-type jumpers and evaluated the deformation and stress of the pipe.

In terms of the flow in multicurved pipes, the researchers generally focused on the
specific curved structures such as Z-, S-, and U-type bend combinations. However, the
effects of different spatial structures of the double-curved pipes on the flow behaviors and
secondary flow characteristics have not been thoroughly investigated. Moreover, the sec-
ondary flow dissipation at the downstream of the double-curved pipes with various spatial
structures has not been taken into consideration so far. Mattingly and Yeh [33] pointed
out that the elbow-produced secondary flow will influence the flowmeter measurement
accuracy. Research based on the elbow-produced secondary flow characteristics will guide
the location of the flowmeter in the subsea pipeline system. Hence, in the present study,
the turbulent flow in double-curved pipes with different spatial structures (i.e., Z-, U-, and
spatial Z- type) was numerically studied using the Reynolds stress model based on the
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ω-equation (ω-RSM) to consider the anisotropy of turbulence. In addition, the RSM based
on the ω-equation can provide a more accurate near-wall treatment, which was proved
by Di Piazza and Ciofalo [34] to predict the satisfactory flow field in a coiled tube. The
effects of the spatial angle and interval distance on secondary flow fields were thoroughly
analyzed. The development of the velocity distributions, generations of the Dean vortices,
and the dissipation of the swirl intensity were discussed in detail. The present study was
intended to reveal the turbulent flow behaviors in the double-curved subsea pipelines
and clarify the influence of spatial structures on secondary flow fields. The results are
expected to guide the design of the subsea pipelines and provide a reference for the location
of flowmeters.

2. Methodology
2.1. Governing Equations

In this study, the steady Reynolds–average Navier–Stokes (RANS) equations were
solved, which can be described as

∂Ui/∂xi = 0 (1)

∂
(
UiUj

)
/∂xj =

1
ρ

∂p/∂xi +
∂

∂xj

(
v · ∂Ui

∂xj
− u′iu

′
j

)
(2)

where xi and xj (i, j = 1, 2, and 3) represent the three directions of the coordinate system,
respectively; Ui and Uj represent the corresponding time average velocity component; p
represents the time average pressure; and ρ and v represent the density and kinematic
viscosity of the fluid, respectively. u′iu

′
j is the Reynolds stress tensor, which is the time

average value of the product of the fluctuations of the velocity component. The ω-Reynolds
stress model (ω-RSM) is employed to solve the RANS equations, which avoids using the
Boussinesq assumption employed in the eddy-viscosity model. It has been reported that
the RSM is expected to capture more exact flow details when the secondary flows are
induced by the curvatures [35]. The RSM directly resolves the transport equations of the
Reynolds stress, which can be described as (ignoring the buoyancy)
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where the right-hand side of the equation includes the terms of turbulent diffusion, pressure
strain correlation, dissipation, molecular diffusion, and stress production, respectively.

The ω-equation is defined as

∂(ρω)

∂t
+

∂(Ukρω)

∂xk
= αρ

ω

k
Pk − βρω2 +

∂
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((
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σω

)
∂ω

∂xk

)
(4)

where the coefficients σω = 2, α = 5/9 β = 0.075, µt = ρk/ω, and Pk is the production rate
of turbulence.

The turbulent diffusion term DT,ij, pressure strain correlation term φij, and dissipative
term εij should be modelled to close the equations. The model equations (ω-based) are
as follows:

DT,ij =
∂

∂xk
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ωσk

∂u′iu
′
j
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 (5)

φij = −C1ρβ′ω
(

u′iu
′
j −

2
3 δijk

)
− â0
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εij =
2
3

δijρβ′kω (7)

where the coefficients are β′ = 0.09, â0 = 8+C
11 , β̂0 = 8C−2

11 , γ̂0 = 60C−4
55 , C = 0.52, and

C1 = 1.8.
ANSYS CFX is employed to solve the RANS equations by an element-based finite-

volume method. The total-variation-diminishing (TVD) scheme is employed for spatial
discretization, which is of second-order accuracy. Since the ω-RSM does not use wall
functions, the near-wall grids were densified in this study. The details of the corresponding
meshing strategy will be discussed in Section 2.3.

2.2. Computational Models

The calculation domains of the present study are displayed in Figure 1. The spatial
angles between the upstream and downstream bends in three domains are 0◦, 90◦, and
180◦, which represent the Z-, spatial Z-, and U-type pipes, respectively. The pipe diameter
is defined as D = 1 m. The upstream length is 8D, and the downstream length is 15D.
The curvature radius of the bend is 2D, and the interval distances between the two bends
varied from 3D to 9D. For simplified description, different geometries analyzed in this
paper are named with the double-bend angle and interval distance. As an example, the
double-curved pipe with a spatial angle of 0◦ (Z-type) and an interval distance of 3D (i.e.,
the entity in Figure 1) is named as Case-0◦-3D.
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The zero normal gradient is specified for the inlet pressure condition, and the inlet
velocity condition employs a modified power law profile from Salama [36]:

U =
Ubulk

β(1, 1 + n)

(
1−

( r
R

)2
) 1

n
(8)

where β is the Euler integral of the first kind, n = 0.77ln (Re)-3.47, Ubulk = 10 m/s is the inlet
bulk velocity, r is the distance from the location to the center of the cross section, and R is
the pipe radius.

The reference pressure is zero at the outlet, where the velocity is defined as the zero
normal gradient. The zero normal gradient is specified for the wall surface, and the flow
velocity employs a nonslip boundary condition.
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2.3. Verification and Validation Study

In this section, the mesh convergence study was firstly carried out, and then the
numerical method employed in this study was validated by comparing with the published
results. The verification study was conducted to obtain a suitable mesh for the current
study. The flow in the Z-type double-curved pipe with the interval distance of 3D (i.e., the
entity in Figure 1) at a Reynolds number of 10,000 is provided as an example. Three sets of
structured grids for the computational domain have been generated, and the distributions
of the velocity at the outlets of the upstream and downstream bends (i.e., z = 2D and x = 2D)
are shown in Figure 2. Obvious divergences can be observed between the results in mesh 1
with 757,307 elements and mesh 2 with 1,417,843 elements, while good consistency can be
found between mesh 2 with 1,417,843 elements and mesh 3 with 2,316,733 elements. It is
found that the mean deviations between mesh 1 and mesh 2 at the outlet of the first and
second bends are 2.46% and 2.27%, respectively. However, the mean deviations between
mesh 2 and mesh 3 are 0.11% and 0.23%, respectively. In addition, the max deviations
between mesh 1 and mesh 2 at the outlet of the first and second bends are 11.59% and
17.34%, while the corresponding deviations between mesh 2 and mesh 3 are only 0.498%
and 0.723%, respectively. Hence, mesh 2 (1,417,843 elements), which can provide sufficient
numerical accuracy, was employed in the present study. The contour of y+ and details of
mesh 2 are shown in Figure 3. The average y+ value is calculated as 0.798 (y+ = ∆y · u∗/v,
where u∗ is the friction velocity, and ∆y is the distance from the first grid to the wall).

Then, a validation study was carried out to confirm the reliability of the numerical
method. The turbulent flow through a 90◦ bend with the curvature ratio of 2 at a Reynolds
number of 60,000 has been widely investigated with experiments [12] and numerical
simulations [37,38]. For validation purposes, the numerical study was carried out on the
same bend structure under the same flow condition using the obtained meshing strategy
and ω-RSM. Then, the outlet velocity distribution of the bend obtained by the current
simulation was compared with the published results to validate the numerical method in the
present study. Figure 4 shows the velocity distributions at the elbow outlet obtained by the
experiment and different numerical methods. Except for the region near the inner-side wall,
the numerical results are close to the experiment data. However, the velocity distribution
obtained with the ω-RSM is closer to the results of LES prediction [37] than that of the
RNG k-ε model [38]. It indicates that the ω-RSM can obtain a more accurate result than
the RNG k-εmodel in predicting the curved flow, which is consistent with the conclusion
of Di Piazza and Ciofalo [34]. Furthermore, the ω-RSM with a lower computational cost
can provide a similar near-wall prediction as the LES method. Therefore, comprehensively
considering the advantages on the numerical accuracy and computational cost, the ω-RSM
was validated and employed in the present study. It also shares the same view as Wallin
and Johansson [35] and Pruvost et al. [39].

2.4. Definition of Swirl Intensity

In order to quantitatively evaluate the developments of the secondary flow and
swirling strength, the swirl intensity Si is employed in the following studies, which is
introduced by Sudo et al. [12]. The swirl intensity Si can be described as

Si =
∫ [→

U −
(→

U · n̂
)

n̂
]2

dA/
(

U2
bulk

∫
dA
)

(9)

where n̂ represents the unit vector parallel to the flow direction, and
→
U represents the vector

of the flow velocity.
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3. Results and Discussions

Since the numerical method has been validated in Section 2.3 with the studies of
Sudo et al. [12], Tanaka et al. [37], and Kim et al. [38], the ω-RSM and verified meshing
strategy are employed in the following sections to investigate the turbulent flow in the
double-curved pipes with different spatial structures at a Reynolds number of 10,000. The
effects of the spatial angle and interval distance between two bends have been discussed.

3.1. Effect of Spatial Angle

To provide an intuitive understanding on how the upstream bends at different spatial
angles affect the downstream flow fields, the cross-sectional velocity fields at the outlets
of the first bends, the global streamlines, and the velocity vectors downstream of the first
bends in Case-0◦-3D, Case-90◦-3D, and Case-180◦-3D are shown in Figure 5. The vector
fields are displayed in the symmetric plane of the second bend (i.e., the x-z plane) in all the
structures to compare the effect of the spatial angle on the flow fields in the downstream
bends. For the first bend, the flow conditions in different structures are the same as shown
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in Figure 5a. However, the vector field in the x-z plane changes with the variation of the
spatial angle from 0◦ to 180◦, leading to different inlet conditions of the downstream bends.
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In addition, the velocity vectors downstream of the first bends show significant differ-
ences with the spatial angles between two bends varying from 0◦ to 180◦. A high-velocity
region appears near the +x direction in the intermediate pipe of Case-0◦-3D, while the re-
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gion appears near the −x direction in Case-180◦-3D. In addition, the velocity vectors in the
intermediate pipe of Case-90◦-3D display an asymmetrical distribution. The high-velocity
region appears near the pipe wall, while the low-velocity region appears at the center of
the cross-section. At the downstream of the second bend, the flow becomes quite uniform
in Case-0◦-3D. However, as the spatial angle increases, the velocity near the outer corner of
the downstream bend increases. The result indicates that it is easier for the flow to achieve
full development when the spatial angle is 0◦ as compared with the other cases. Since
the low-velocity areas near the inner corner of the second bend (black-dotted rectangles)
are hard to be observed in the whole vector fields, the velocity vectors in these areas are
magnified alongside. It can be found that the velocity gradient in Case-0◦-3D is higher than
the other cases. In addition, the flow separation can be clearly observed in Case-0◦-3D,
while it greatly reduces in Case-180◦-3D.

Figure 6 illustrates the developments of the flow distribution in the (a) first bends,
(b) intermediate pipe between two bends, (c) second bends, and (d) downstream of second
bends in Case-0◦-3D, Case-90◦-3D, and Case-180◦-3D. The locations of the selected profiles
are shown in Figure 6e. It is found that the velocity distributions in the first bends are
very similar to each other, which is physically sound. In the intermediate pipe, the velocity
profiles of Case-90◦-3D display symmetric bimodal distributions since the upstream bend is
perpendicular to the x-z plane. The velocity profiles in Case-0◦-3D and Case-90◦-3D show
the contrary unimodal distributions due to the opposite directions of the upstream bends. It
is worth noting that the divergences in Figure 6b are due to the different spatial angles and
same selected coordinates. When the fluid enters the second bend, as shown in Figure 6c,
the symmetries of velocity distributions are broken, and the velocity near the inner corner
increases in Case-90◦-3D. In addition, the peak velocity gradually moves toward the center
of the pipe as the bending angle θ increases. A similar phenomenon can be observed in
Case-0◦-3D; however, the velocity near the inner corner is lower than that in Case-90◦-3D. In
Case-180◦-3D, the velocity peaks appear in both inner and outer corners. More specifically,
the outer-corner peak is due to the upstream flow distribution, and the inner-corner peak is
induced by the bend curvature. At the outlet of the second bend, velocity fluctuations are
found near the inner corner at x/D = 2 and 2.5 in Case-0◦-3D, implying the flow separation
area. However, the separation area can hardly be seen in Case-90◦-3D and Case-180◦-3D,
which is consistent with the qualitative analysis in Figure 5. As the downstream distance
increases, the flow in Case-0◦-3D more rapidly restores uniformity than the other cases.
High-velocity gradients can still be observed near the inner corner at x/D = 4.5 in Case-0◦-3D,
Case-90◦-3D, and Case-180◦-3D. It is concluded that, for structures with a short interval
distance, the flow downstream the first bend is not fully developed before the second bend.
Therefore, the downstream flow is deeply influenced by the upstream bend with different
spatial structures, and the flow fields downstream of the second bend are more complex
than those of the first bend.
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Furthermore, the effect of different spatial structures on the secondary flow character-
istics downstream of the double-curved pipes was investigated. Figures 7–9 display the
streamlines on the selected positions (i.e., x/D = 2, 2.5, 3, 3.5, 4, 4.5, and 5) at the downstream
of Case-0◦-3D, Case-180◦-3D, and Case-90◦-3D, respectively. The streamlines are colored

with dimensionless tangential velocity Utx /Ubulk =
√

U2
z + U2

y/Ubulk, where Uz and Uy

represent the velocity components in the z and y directions, respectively. As shown by
Case-0◦-3D in Figure 7, the fluid near the inner corner rushes to the outer corner at a high
tangential velocity owing to the influence of centrifugal force at x = 2D. Then, the outer-
corner fluid turns back through the center line and finally forms a pair of vortices, which
is called the Base vortices defined by Bhunia and Chen [40]. In addition, an extra pair of
vortices can be observed near the inner corner and finally disappears in 1.5D downstream
(i.e., x = 3.5D). This pair of vortices characterizes the same motion as the inner-corner Dean
vortex described by Bhunia and Chen [40] and Dutta and Nandi [41]. However, a branching
generates near the inner corner and leads to another pair of vortices near the inner-corner
Dean vortex at x = 2.5D, which has not been reported in the single bend so far. Hence, this
branching is considered to be caused by the upstream bend.
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Figure 8 displays the secondary flow fields in Case-180◦-3D. The secondary flow
motion in Case-180◦-3D is contrary to that in Case-0◦-3D. The fluid near the inner corner
rushes to the outer corner through the center line, while the outer-corner fluid turns to
the inner corner along the pipe wall on both sides. It is found that there is no vortex
generation at x = 2D. However, as the downstream distance increases, two pairs of vortices
first generate near the inner corner at x = 2.5D. Subsequently, the vortices near the inner
corner split, and an extra pair of vortices generates near the pipe center at x = 3D. As
the downstream distance increases from 1.5D (i.e., x = 3.5D) to 3D (i.e., x = 5D), the split
vortices merge by degrees and eventually form one pair of large vortices at x = 5D. In terms
of the velocity distribution, the high tangential velocity areas appear near the inner corner
in Case-180◦-3D, whereas they appear near the pipe center in Case-0◦-3D. Then, as shown
by the streamlines in Figure 9, the inclined secondary flow motion in Case-90◦-3D can be
found, which is induced by the vertical upstream bend. A high tangential velocity area
occurs at one side of the inner corner and forms a main vortex. As the downstream distance
increases, the other three vortices generate and eventually form a tilt symmetric four-vortex
structure. It is found that the directions of the adjacent vortices are opposite, and the main
vortex near the inner corner occupies the most tangential momentum. According to the
above discussion, it is revealed that changing the spatial angle between the upstream and
downstream bends in the double-curved pipe will redistribute the velocity field, reverse the
flow direction, and break the central symmetry of the secondary flow at the downstream.

Subsequently, to quantify the intensities of the secondary flow in Case-0◦-3D, Case-
90◦-3D, and Case-180◦-3D, the swirl intensity Si introduced in Section 2.4 is employed.
Figure 10 shows the developments of the swirl strengths along Case-0◦-3D, Case-90◦-3D,
and Case-180◦-3D. It is worth noting that the swirl strengths are selected every 0.5D length
in the straight pipe sections and every 15◦ from 0◦ to 90◦ in the bends. The shaded sections
represent the upstream and downstream bends. It is found that Si has slightly increased
before the first bend and then increases by a wide margin in the first bend. Subsequently,
Si shows a sharp decline at the intermediate pipe after outflowing from the first bend. The
developments of Si in Case-0◦-3D, Case-90◦-3D, and Case-180◦-3D are quite similar in the
above process. However, significant differences can be observed inside and downstream of
the second bends. Si increases in the second bend of Case-0◦-3D and Case-90◦-3D, whereas
it decreases in the second bend of Case-180◦-3D. The phenomenon indicates that the effect
of the downstream bend on Si is strongly related to the spatial structure of the bend. At the
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outlet sections of the double-curved pipes, the dissipation rate of Si in Case-90◦-3D is larger
than that in Case-0◦-3D, although their initial values are almost the same. In addition, the
dissipation rate of Si in Case-180◦-3D is the highest.
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In order to further analyze the dissipation trends of the swirl intensities, the values
of Case-0◦-3D, Case-90◦-3D, and Case-180◦-3D obtained with Equation (9) are displayed in
Figure 11 with a logarithmic ordinate and compared with the result of a traditional single
bend reported by Kim et al. [38]. The dissipation of swirl intensity Si in the single bend is
an exponentially decreasing function given as follows [38]:

Si = Si0 · e
−βs Ls/D (10)

where Si0 represents the swirl intensity at the bend outlet, βs represents the dissipation
rate, Ls represents the downstream distance from the outlet of the second bend, and D
represents the diameter of the pipe.
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The value of βs is reported as 0.21, and the dissipation is weakly related to the Reynolds
number [38,42]. However, as shown in Figure 11, the dissipations of swirl intensities are
not exactly exponential in double-curved pipes. Only the swirl intensity in Case-0◦-3D can
be considered to express as exponential dissipation (exclude the initial value), and the βs is
fitted as 0.30. In addition, it is found that the swirl intensity of Case-90◦-3D is stronger than
that of Case-180◦-3D when Ls/D ≤ 4 and becomes weaker when Ls/D > 4. Hence, the
different spatial structures of the double-curved pipes can greatly influence the secondary-
flow strength and break the exponential dissipation at the downstream of the pipes. Only
the downstream flow in Case-0◦-3D approximately conforms the exponential dissipation.

3.2. Effect of Interval Distance

In this section, the interval distance is increased to 9D, and the corresponding velocity
profiles, secondary flow characteristics, and dissipations of the swirl intensity have been
investigated and compared with the results in Case-3D. Figure 12 shows the comparisons
of velocity profiles at the inlets and outlets of the downstream bends in (a) Case-0◦-3D
and Case-0◦-9D; (b) Case-90◦-3D and Case-90◦-9D; and (c) Case-180◦-3D and Case-180◦-9D.
As the interval distance increases, the velocity profiles at the inlets of the downstream
bends become gentler, which is physically sound. The high-velocity areas near the outer
corner become smaller, and the velocities decrease near the center lines in all configurations
when the interval distances increase to 9D. The velocity profiles at the bend outlet in the
double-curved pipe approach to the single-bend distributions when the interval distance
increases. In addition, the separation area in Case-0◦-3D disappears when the distance
between the two bends increases to 9D. It implies that the flow before the second bend
starts to be developed with the increase in the interval distance, resulting in a more stable
flow condition near the inner corner of the second bend.

To further compare the secondary flow characteristics in the double-curved pipe with
interval distances of 3D and 9D, the streamlines at the outlets of the downstream bends
(i.e., x = 2D) in Case-0◦-9D, Case-90◦-9D, and Case-180◦-9D are displayed in Figure 13 and
compared with the streamlines of Case-3D in Figure 9. The downstream tangential velocity
in Case-9D is higher than that in Case-3D, indicating that the too short interval distance (3D)
will limit the tangential momentum exchange in the double-curved pipe. Moreover, the
high-velocity area appears near the pipe center in Case-0◦-3D and forms a pair of vortices,
while the area is near the inner corner of the pipe in Case-0◦-9D. A similar phenomenon can
be observed in Case-180◦-3D and Case-180◦-9D. It has been mentioned that the secondary
flow motions are greatly influenced by the spatial angle of the upstream bend when the
interval distance is short (3D). However, when the interval distance increases to 9D, the
fluid rushes to the outer corner from the center line and turns back from the pipe wall
in all configurations, showing similar secondary flow motions. In addition, the vortex
direction of the secondary flow in Case-0◦-9D is opposite to that in Case-0◦-3D. Hence, it
can be concluded that increasing the interval distance of the two bends will weaken the
effect of the upstream bend and lead to contrary secondary flow motions.

Figure 14 shows the dimensionless vortices iso-surfaces by the Q-criterion [43] in Case-
0◦-3D, Case-90◦-3D, Case-180◦-3D, Case-0◦-9D, Case-90◦-9D, and Case18-0◦-9D to discuss
the effect of the interval distance on the vortex structures in double-curved pipes. The
Q-criterion can be defined as Q =

(
Ω2 − S2

)
/2, where Ω represents the rotation tensor,

and S represents the strain tensor. The dimensionless value is Q∗ = QD2/U2
bulk = 0.5,

which is colored by the velocity. In addition, the criterion contours of the x-components
Q∗x at x = 4D are printed alongside. It can be clearly observed that the pair of vortex
cores moves toward the inner corner at the downstream of the pipe in Case-0◦ when the
interval distance increases. In Case-90◦, the vortices are inclined since the angle between
the two bends are perpendicular. In terms of the vortices in Case-180◦, additional sweeping
structures generate when the interval distance increases. It is found that the distributions
of downstream vortices are various in different structures when the interval distance is 3D.
However, the vortices are close to the inner sides in all structures when the interval distance
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increases to 9D. In addition, as the interval distance increases, more vortices generate at the
downstream of the pipes. The above phenomenon implies that a short interval distance
limits the generation of the vortex at the downstream of the pipe. Increasing the interval
distance will lead to similar vortex structures in the double-curved pipe.
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Subsequently, a comparison of swirl intensities downstream of Cases-9D (i.e., Case-
0◦-9D, Case-90◦-9D, and Case-180◦-9D) and Cases-3D (i.e., Case-0◦-3D, Case-90◦-3D, and
Case-180◦-3D) is shown in Figure 15a. The initial values of Si in Cases-9D are higher than
those in Cases-3D since the higher tangential velocity in Cases-9D enhances the strength
of the downstream swirls (see Figures 9 and 13). In 1D downstream, sharp decreases in
swirl intensities occur in Cases-3D. However, the swirl intensities exhibit the exponential
dissipations in Cases-9D. To reveal the dissipation rates of the swirl intensities in Cases-9D,
Figure 15 (b) displays the dissipation of Si in a logarithmic coordinate. The dissipation rates
βs for Case-0◦-9D, Case-90◦-9D, and Case-180◦-9D (exclude the initial values) can be fitted
as 0.40, 0.20, and 0.25, respectively, indicating the highest dissipation rate in Case-0◦-9D. To
sum up, the short interval distance (3D) will limit the swirl intensity downstream of the
double-curved pipes, which coincides with the result from the analysis of vortex structures.
With the increase in the interval distance, the flow before the second bend starts to be
developed. As a result, the effect of the spatial angle is weakened, and the dissipation of the
swirl intensity downstream the second bend gradually conforms to an exponential form,
which is similar to a single-bend case.
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4. Conclusions

In this paper, a numerical study was conducted on the turbulent flow in double-curved
pipes with different spatial structures. The effects of the spatial angle and interval distance
between the two bends on the secondary flow were thoroughly investigated with the vector
fields, velocity distributions, vortex developments, and dissipations of swirl intensity.
Major conclusions are listed as follows:

1. The directions of the secondary flows in the Z- and U-type pipes are opposite when
the interval distance between the two bends is short (3D). In addition, the secondary
flow in the spatial Z-type structure is biased by the upstream bend and exhibits an
oblique symmetric type.

2. The vortex generations downstream of different double-curved pipes are limited
when the interval distance is short. However, increasing the interval distance of the
two bends will lead to similar secondary flow motions and vortex structures even if
their spatial structures are different.
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3. When the interval distance is short, only in the Z-type pipe, the downstream flow
dissipates in an exponential form, and it is easier to achieve a fully developed flow than
the other cases. However, the downstream flow recovers the exponential dissipations
in all the structures when the interval distance increases to 9D. The corresponding
dissipation rates of the downstream swirl intensities in the Z-, U-, and spatial Z-pipes
are 0.40, 0.25, and 0.20, respectively.

The present study provided an in-depth knowledge on the secondary flow charac-
teristics in double-curved subsea pipelines with different spatial structures. The results
can provide guidance for the layout design of subsea pipelines and the arrangement of
flowmeters. In terms of the pipeline design, a short interval distance between two bends
will limit the swirl strength to obtain a more accurate flow measurement, and the U-type
double-curved pipe inducing the weakest swirl is the most beneficial. In addition, in-
creasing the interval distance between the two bends will weaken the effect of the spatial
structure and strengthen the swirls. For the locations of flowmeters, it is not recommended
to be arranged within 1D downstream the bend outlet to avoid the sharp variation of the
swirl strength. For further research, the effect of the bend curvature and inlet flow condition
should be taken into consideration.
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