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Abstract: This research conducts experimental studies on supercavitation bubble development and
characteristics within free-surface water and the role of cavitator, comparing the results to those of
similar experiments carried on in a duct flow. Tests have been conducted on cylindrical bodies (47 mm
diameter) moving underwater at different velocities in a 10-m-diameter circular pool of about 50 cm
water level. A comparison has been made for supercavitation bubbles resulting from six different
cavitator geometries (flat, sphere, cone, ogive, inverted sphere, and truncated cone). The comparison
referred to the conditions of the bubble formation, as well as to the shape and development. It was
found that the different cavitators produced different bubble geometries as opposed to the results of
experiments conducted in a duct flow by the authors. Nevertheless, the order of onset of cavitation
bubble creation (with relation to the cavitation number and flow velocity) was similar. One of the
conclusions of this study was that the pressure difference used for defining the cavitation number
has a significant impact on the correlation between the bubble characteristics and cavitation number.
This fact should be considered when comparing data from different sources.

Keywords: supercavitation; supercavities; cavitator; cavitation number

1. Introduction

Studies on the formation and development of supercavitation bubbles have been the
subject of both theoretical and experimental investigations, promoting the scientific as
well as the practical aspects related to supercavitation vessels. Logvinovich [1], Serebri-
akov [1–3], Semenenco [4], and Savchenco [5] focused mainly on calculating axisymmetric
bubbles and their relation to flow conditions. Wall effect and also cavitation number
influence on the bubble shape have been considered as well [6]. Natural and artificial
(ventilated) supercavitation bubble development in bounded and unbounded flows have
been investigated experimentally [7,8]. The bounded case is important with relation to
flows in machine devices such as pumps, where the appearance of cavitation reduces the
efficiency. The cavitator shape plays a significant role in determining the bubble formation
and characteristics. Analytical and numerical studies have been conducted for two- and
three-dimensional flows for certain geometries in [9,10], respectively, whereas the effect of
cavitator on bubble dimensions was shown in [11]. Prediction for unbounded bubbles has
been the subject of a number of research programs [12–18]. Others conducted experimental
studied on flow separation, bubble closing, and gravitation effects. In their monograph,
Frank and Michel [19] displayed the major aspects related to the fundamentals of cavitation.
An investigation of supercavitation bubbles development and formation was made by these
authors [20] for a duct (bounded) flow, comparing different cavitators (e.g., flat, spherical,
and conical) with respect to flow conditions for bubble creation, development, shape, and
collapse. For such bounded flow conditions, it was found that all cavitators produced
supercavitation bubbles of a similar shape, though at different flow speeds, where the flat
nose cavitator implied onset of cavitation at the lowest flow speed, then the spherical, and
last (at the highest flow speed) the conical.
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The present study has investigated experimentally supercavitation bubble develop-
ment over cylindrical bodies moving underwater in a pool having free unbounded surface.
The effect of cavitators of six different geometries on the onset, development, and dimen-
sions of the bubble formed was studied with relation to the cavitation number and flow
speed. The results were compared to those found in a duct flow.

The dimensionless cavitation number is one of the parameters characterizing the
supercavitational flow. Its magnitude gives a significant indication about the cavitation
intensity [21]. Different ways of calculating this number have been suggested in researches,
offering approaches to describe the physical system and predict the development of the
supercavitational flow [19]. The cavitation number became a basic factor to characterize
the system and to examine the corresponding dimensions and development of the super-
cavitation bubble. In this research, we present the influence of the way of calculating the
cavitation number on the resulting bubbles, revealing that it should be accounted for when
examining supercavitation results from different sources.

Regarding the experimental aspect, typical systems for research and development
of underwater supercavitational vehicles are either complex, energy consuming, and of
costly maintenance (e.g., large, high-speed water tunnels), or they are more accurate
but too small for predicting actual vehicle characteristics. In the present paper, we use
a pioneering, simply designed, easy to maintain experimental system having as well
relatively low operating energy demands. The system enables investigating fair-size bodies,
characterizing and demonstrating phenomena that can be related to real-size vehicles.

2. Problem Description

In this research, the development of supercavitation bubbles over axisymmetric cylin-
drical bodies moving underwater in a pool with a free surface has been investigated. The
cavitation bubble forms due to the front edge cavitator (nose), causing change of water
flow-field, flow separation, and pressure drop. When the pressure attains values below the
equilibrium vapor pressure, evaporation of water (cavitation) occurs. Increasing the water
flow velocity, the zone of reduced pressure extends, and the bubble grows until enveloping
the entire body (Figure 1). The shape of the cavitator plays an important role in the bubble
formation and development.
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Figure 1. A scheme of the physical problem.

3. The Experimental System and Flow Conditions

The experimental system consists of a water pool with a depth of about 50–60 cm built
from two hexagons. The outer hexagons with a radius of 5.2 m and inner hexagon with
a radius of 4.3 m are diverted to one another to reduce the rotation of the water during
the circular motion in the pool. An arm of 4.82 m length is connected to an Oemer electric
motor of maximum power of 31 kW, with 1:28 Sumitomo transmission. The arm can hold
bodies weighing a few kg and move them in the water with a velocity of up to 25 m/s
(see Figure 2) in a 30 m circumference. The electric motor is controlled by an Emerson
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M700 controller. It communicates with a PC at a rate of 100 Hz via a National Instrument
analog-to-digital device. The data displayed online include motor rpm and moment as
well as motion speed, which can be controlled and changed in real time. A Go-Pro camera
placed at the bottom of the pool or at the arm above the examined object provides pictures
of the bobble formation and shape. A safety button is placed at the operator post. When
pushed by the operator (in case malfunction or emergency), the power supply to the electric
motor as well as the overall operation stop immediately.
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Figure 2. The experimental system.

The objects examined were held by the arm and were accelerated in the pool to the
desired speeds. Six slender cylindrical bodies of 47 ± 0.1 mm diameter and 280 ± 1 mm
length (aspect ratio of about 6) of the cylindrical section with different cavitators (noses)
have been tested: a flat cavitator, a spherical cavitator, a conical cavitator with an angle of
15◦, a cavitator of a truncated cone of 130 ± 0.5 mm height, a cavitator of an inverted sphere,
and an ogive cavitator (see Figure 3). The bubble created over the bodies was examined for
different speeds. In the range tested, the body’s length was much larger than the bubbles
formed; hence, the aspect ratio had no impact on the results. The large distance between
the channel side walls (over 1000 mm) as well as the location of the examined (47 mm
diameter) bodies at about the midway between the free upper surface and the bottom (total
of about 500 mm) were assumed to have no or only minimal effect on the flow around the
submerged bodies.
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Figure 3. The examined supercavitation bodies.

4. Results
4.1. Stages of Bubble Development

The different stages in the bubble development along the body with increasing the
flow velocity (motion speed) are presented in Figures 4 and 5 for all six different cavitators.
The observed geometries of the bubbles were different for each of the six different cavitators,
as opposed to the results in a duct flow, where practically similar bubbles were obtained
for the different cavitators [20]. The bubbles did not close on the body at any stage of
the flow, and they remained open in their back edge, similarly to the results of a duct
flow. The correlation of the bubble geometry to standard functions no longer holds in
free-surface conditions, and each cavitator causes a different flow regime leading to a
different bubble geometry.
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We would like to present here a known expression for a supercavitation bubble
shape, which was used by Semenenko (2001) [3] based on Logvinovich’s empirical results
(1973) [16]:

fa =
d
2

(
1 +

6
d

z
) 1

3
(1)

where d is the cavitator diameter, and z is the axial distance along the body expressed with
the same length units as d.

We have figured out that Equation (1) could express the bubble shape for free-surface
flow only at sufficiently high flow velocities. It is in contrast to bubbles in a duct flow,
which could be described by this function at low speeds only. No other functions describing
bubbles in both free-surface flows and duct flows have been found.

The cavitators of a less hydrodynamic shape impose a larger disturbance on the flow,
causing the onset of cavitation at a lower speed, as well as a larger final bubble size.
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4.2. The Bubble Dimentions

The bubble dimensions (length and diameter) were measured for the different cavita-
tors at a range of motion speeds, and the results are presented in Tables 1 and 2, respectively.
The measurement uncertainty is about ±0.5 mm.

Table 1. The measured bubble length (in multiplies of body diameter) for different cavitators and
motion speeds (the sign (-) indicates no bubble existence).

15 m/s 18 m/s 20 m/s 23 m/s 25 m/s

Conical Cavitator - 0.08 0.28 0.6 0.7
Spherical Cavitator - 0.45 0.81 1.39 1.86

Flat Cavitator 1.71 2.17 2.6 2.77 3.6
Truncated Cone Cavitator - 0.07 0.26 0.43 0.76
Inverted Sphere Cavitator 1.67 1.93 2.24 2.75 3.32

Ogive Cavitator - - - 0.14 0.56

Table 2. The bubble maximal diameter (in multiplies of body diameter) for different cavitators and
motion speeds (the sign (-) indicates no bubble existence).

15 m/s 18 m/s 20 m/s 23 m/s 25 m/s

Conical Cavitator - 1.05 1.11 1.14 1.16
Spherical Cavitator - 1.04 1.08 1.16 1.27

Flat Cavitator 1.75 1.81 2 2.17 2.56
Truncated Cone Cavitator - 1.02 1.03 1.15 1.21
Inverted Sphere Cavitator 1.67 1.8 1.93 2.09 2.21

Ogive Cavitator - - - 1.02 1.1

Based on the experiments, a relation between the supercavitation bubble dimen-
sions and the cavitation number of the flow has been deduced for all six cavitators
(Figures 6 and 7), according to Equation (2), which is valid in the range where bubble exists:

l/c = Aσn (2)

where l is the bubble length, c is the diameter of the body, A, n are constants depending on
the flow conditions, bubble position and form, and σ is the cavitation number of the flow,
calculated according to Equation (3):

σ =
Pa − Pv

1
2 ρU2

(3)

where Pa is the atmospheric pressure, Pv is the vapor pressure of the water, ρ is the water
density, U the water flow velocity relative to the body (motion speed of the underwater
body). One can see from Tables 1 and 2 and from Figures 6 and 7 that the highest cavitation
number (corresponding to the lowest relative flow velocity) for the onset of a natural cavi-
tation bubble under these test conditions has been between about 1 for the cavitators with
the largest influence (flat and inverted sphere cavitators) and 0.5 (for the ogive cavitator),
corresponding to a relative flow speed of approximately 14 to 20 m/s, respectively.
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Figure 7. The bubble maximal diameter (in multiplies of body diameter) vs. the cavitation number
for the six cavitators.

All curves demonstrated the same general trend (which presents the value of the
power n in Equation (2)) of increasing the relative length and diameter with decreasing
the cavitation number (practically, when increasing the flow velocity). The two cavitators
that showed the largest bubble expansion in both radial and axial dimensions were the flat
cavitator and the inverted sphere cavitator. The other cavitators with decreasing bubble
expansion order were as follows: the spherical cavitator (right after the first two), the
conical and the truncated cone cavitators, with identical results of length in the same flow
conditions; and last, the ogive, with the smallest bubble length. For the first two cavitators,
the values of n were between 1.5 to 1.6; afterwards, the spherical cavitator had a 1.8 value
of n; next, the values of n dropped under 1 to ~0.7 for the conical and truncated cone
cavitators; and lastly, the ogive cavitator’s value was approximately n = 0.4. An interesting
outcome regarding the resulting slopes is that the slopes of the curves describing the bubble
length of the flat, inverted sphere and spherical cavitators were almost identical but larger
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than the curve slopes of the other cavitators that were also identical. Regarding the radial
expansion, we can see that, according to our test data, the common relation shown in
Equation (2) can present the behavior of the curves of the diameter versus the cavitation
number as well, with different constants but a similar difference between the six cavitators:
the flat and the inverted sphere cavitator showed the largest radial expansion, then those
of the conical, truncated cone, and spherical cavitators, which were practically identical in
magnitude, presenting very similar slopes as well. Last was the ogive cavitator, which was
found to cause the smallest expansion, though its curve showed a similar slope to the five
other cavitators.

4.3. The Pressure Difference and the Cavitation Number

In order to evaluate the pressure difference created in the supercavitational flow, a
control volume analysis was performed (Figure 8). The pressure difference is coupled to
the cavitation creation and also leads to the cavitation bubble expansion. To calculate the
pressure at a cross-section i (where the diameter of the bubble is maximal) with relation to
the conditions at the cross-section t (where the front edge of the cavitator is placed), we
assumed a one-dimensional flow with negligible viscosity effects. The control volume was
chosen to be close to the boundaries of the system (the pool floor in the bottom and the free
surface at the top), having an overall diameter of Dcv = h = 49 cm. From the conservation
of mass, one can find the relation between the velocities at i and t cross-sections:

ui = ut
At

Ai
(4)

where ui and Ai are the flow velocity and cross-section i, respectively (ut, At are the
corresponding values at the cross-section t). The cross-section is calculated as an annular
surface with diameter h minus the cavitator diameter at cross-section t and minus the bubble
maximal diameter at cross-section i. Using the Bernoulli equation on a flow streamline
between the initial cross-section t and a cross-section i and substituting Equation (4), we
derive the pressure difference between section i and section t:

∆P = Pi − Pt =
1
2

ρut
2

(
1 −

(
At

Ai

)2
)
− ρgh (5)

where Pi, Pt are the pressures in section i and t, correspondingly, g is the gravitational acceler-
ation, ρ is the density of the water, and h is the height difference. As the height contribution
is three orders of magnitude smaller than the dynamic pressure, ρgh/ 1

2 ρu2 ∼ O(10−3), this
term in Equation (5) can be neglected.
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ρgh ρu

−
, this term in Equation (5) can be neglected. 
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Figure 9 shows the pressure difference established during the supercavitation bubble
creation for the six cavitators. The largest pressure difference is predicted for the flat
cavitator, then for the inverted sphere cavitator, and lastly for the other four. For all six
cavitators, the pressure difference versus the velocity shows quadratic behavior as predicted
by Equation (5). The pressure difference and the increase in flow velocity are both coupled
to the expansion and growth of the cavitation bubble.
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In a duct (bounded) flow, Arad Ludar and Gany [20] revealed that the cavitation
bubble shape was dictated by the duct geometry, practically keeping a constant cross-
section for the water flow between the supercavitation bubble boundary and the duct walls.
In that case, bodies of the same diameter but of different cavitator (nose) shapes exhibited
the same supercavitation bubble shape, though at different flow velocities. Contrarily, in
a free-surface situation, this behavior no longer holds. The cavitator role in determining
the supercavitation bubble development and dimensions (expanding and extending) was
found to be fundamental and crucial.

Examining the bubble length development along the body with all six cavitators, a
major difference in the curve magnitudes and slopes appears when defining the cavitation
number for a different pressure difference characterizing the system. Calculation of the
cavitation number as suggested in Equation (3) shows different results than calculation
using the pressure difference from Equation (5) (see Figure 10). To learn about the bub-
ble shape evaluation, the way of calculating the cavitation number describing the flow
conditions should be chosen properly. The issue has not been treated in the past. The
way of calculating the cavitation number is usually chosen according to the trivial fac-
tors describing the flow or based on the obvious characteristics as summarized by Franc
and Mitchel [19]. The change in calculating the cavitation number not only changes the
observation of the bubble development tendency with the flow conditions but may also
change the conclusion from the comparison between the cavitators. The insights about the
cavitator role in the supercavitation development are affected by the cavitation number
calculation. The purpose of bringing up this issue and demonstrating it in Figure 9 is to
make one aware of the way the cavitation number was defined when comparing results
from different studies.
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5. Conclusions

In the case of a duct (bounded) flow, the wall has a significant influence on the flow
regime and on the development of a supercavitation bubble on a body within the flow.
Contrarily, in a free-surface flow, the cavitator geometry is the most significant factor
in determining the supercavitational flow, the onset of cavitation, as well as the bubble
development and dimensions. Testing six different cavitators at the same flow conditions
and examining the bubble development for each of those cavitators, one observes that a
supercavitation bubble is created at the lowest flow velocity by a cavitator generating the
largest disturbance in the flow (the flat cavitator), implying a more rapid change in the flow
regime. The bubble created at the highest flow velocity occurred for the cavitator causing
the least and more moderate disturbance in the flow; this was the ogive cavitator. In all
cases, supercavitation relative bubble length and diameter were found to increase with
decreasing the cavitation number (actually, increasing the flow velocity). Although certain
cavitators affected the development of the bubble with the cavitator number in a similar
manner, the bubble dimensions (both diameter and length) were different for the different
cavitators. One significant conclusion is about the influence of the cavitation number
calculation in examining the supercavitational flow. While examining the bubble length
development along the body with all six cavitators, one can observe a substantial difference
in magnitude and slope of the curves for different ways of defining the cavitation number,
in particular the characteristic pressure difference chosen for the calculation. Hence, one
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should carefully examine the cavitation number calculation when comparing data from
different investigations to avoid erroneous conclusions and misleading interpretations.
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