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Abstract: Given the increasing intensity and frequency of flood events, and the casualties and cost
associated with bridge collapse events, explaining the flood behavior for the collapse sites would be of
great necessity. In this study, annual peak flows of two hundred and five watersheds, associated with
two hundred and ninety-seven collapse sites, are analyzed. Generalized Extreme Value distribution
together with other statistical analyses are used to derive and analyze the shape parameters of
the distributions which represent the extremeness of flood events. Random forest mechanism is
employed in order to identify the predictor variables (and the associated importance levels) for the
shape parameters. Peak flows are also classified in order to find the extremes and the associated return
periods. The results indicate that most of the bridge collapse sites across different physiographic
regions, i.e., Appalachian Highland, Central Lowland, Coastal Plain, and Interior Highlands, exhibit
common characteristics such as (a) variation of important predictor variables, (b) human interference,
(c) extremeness of flood events similar to the regions with hydrologic heterogeneity, and (d) frequent
occurrence of extreme flows. These results indicate a commonality in flood behavior, as stems from
specific settings, for the collapse sites studied. The findings instigate the revisiting of the bridge
design practices and guidelines and provide some basis to assess the risk of future collapse.

Keywords: flood behavior; bridge collapse; shape parameter; extreme flows

1. Introduction

Floods and other hydraulic events are perceived to be the most common causes of total
or partial bridge collapse in the United States (U.S.) [1]. About 62.23% of overwater bridge
collapses correspond to hydraulic events [1], with an annual hydraulic collapse frequency
of approximately 1/5000 [1,2]. Probable hydraulic effects causing bridge collapses include
scour, hydrodynamic horizontal loads applied on the piers, hydrodynamic loads applied on
the superstructure (i.e., deck), debris jam, and/or a combination of these effects. The topics
of scouring [1,3–5] and hydrodynamic horizontal loads (on piers) [6,7] have been studied
extensively, whereas hydrodynamic loads on the superstructure are being studied more
recently [8,9]. Although several studies exist focusing on the effects of debris jam [10–16],
it is one of the most challenging topics under investigation by the hydraulic engineering
community. Given that all of these hydraulic effects can be induced and exaggerated by
floods, investigating flood events are of particular concern with the increasing intensity
and frequency of recent floods in the U.S. It is noted that scour—particularly scour during
floods—alone has been estimated to cause the collapse of 20–100 bridges per year in
the U.S. [1,3,4]. More frequent or intense flooding is linked with climate and land use
change [17]; the associated high risk is linked with direct and indirect costs, casualties, and
user delays [1,3,4,18]. The 2021 American Society of Civil Engineers (ASCE) Report Card
noted that a $22.7 billion annual investment is needed to substantially improve the current
bridge conditions [19].
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In response to reducing collapse risk due to floods, engineers primarily aim at de-
termining the magnitude and frequency of design floods. Methods commonly used for
estimating the return period of a flood event include block maxima approaches, in which a
series of annual peak flows is used to define an extreme value distribution. The generalized
extreme value distribution (GEV) is a widely used model for extreme events [20]. The
major benefit of the GEV model is its ability to fit highly skewed data since it combines
three distributions: Gumbel, Frechet, and Weibull [20]. The GEV distribution has three
parameters, namely, the location and scale parameters which are mostly related to the
magnitude of flow [21], and the shape parameter that determines the behavior (or shape)
of the tail of the distribution [21].

Although it is obvious that flood behavior and/or flood hazard depends on the climate,
soil, topography, and other watershed conditions, the specific attributes which can be used
as predictors for flood behavior are not apparent. Whereas there exists a plethora of studies
on site specific flood hazard, there is a knowledge gap in relation to finding the exact
relationships among flood behavior and regional attributes. Regional study and/or large-
sample catchment hydrology is a common practice in relation to the 2003–2012 initiative of
the hydrological community for predictions in ungauged basins [22]. In particular, such
approach is called regionalization of parameters using regression algorithms [22]. The
large spatial scale is considered an advantage for hydrologic studies in that it includes
more diverse basins; therefore, statistical characterizations would be more complete and
generalizable in their extrapolation ability. Whereas local study provides more refined,
site-specific analysis, their uses are limited because of their limited extrapolation ability. The
regional-based approach is also in advantage since the comparison study can be conducted
to identify the similarities and differences among different regions within a country or
across countries, and to interpret the findings in terms of underlying climate–watershed–
soil–topography–human controls [22].

Many hydraulic studies have also drawn attention to the regional scale [23–27], par-
ticularly in the presence of human intervention in the water system [23] for assessing the
risk of the bridge collapse. There is an emphasis on physiographic settings when assess-
ing bridge–stream intersections since the risk issues/events are intrinsically different for
different physiographic regions [27]. Designing bridge scour countermeasures ignoring
the regional scale hydrology sometimes results in continuous local maintenance of the
structure [23]. For instance, debris jam is often caused by factors acting at a larger scale
and addressing such a problem requires consideration of a large spatial scale [23]. In fact,
assessing channel instability in relation to both regional and local scales is recommended
by the Federal Highway Administration [27].

The goal of the study is to explain flood behavior for 297 bridge collapse sites in
relation to the shape parameters of the GEV distribution within a regional context. To attain
the goal, three objectives are identified: (1) to derive shape parameters of GEV distribution
using annual peak flow data, (2) to identify predictor variables for the shape parameter
in relation to specific physiographic regions and all regions combined, and (3) to identify
extreme flows with associated return periods. The values of shape parameters would
reveal the overall extremeness of the flood events. The predictor variables within the
regional context would help to identify important hydrological signatures in relation to
the extremeness of the flood events. Finally, the identification of extreme flows with return
periods would help to identify the uniqueness of the flood events for the collapse sites, if
any. The results can reveal any anomaly and/or trend in the behavior of peak floods for
the bridge collapse sites and can support the understanding of the mechanism behind the
generation of collapse-inducing floods. Since analyzing peak flow distribution parameters
is not a common practice in bridge design procedures, such regional analysis can provide
preliminary data to assess future collapse risk, as it can be highlighted that the flood event
occurrence should be expected within a specific context. Concerning the bridge collapse
sites, the findings of the present study are also original in comparison to previous studies
in which the shape parameters were examined.
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2. Methods
2.1. Selection of Sites

The New York State Department of Transportation (NYSDOT) bridge failure database
is used here to identify 297 bridge collapse sites (Figure 1). NYSDOT is the only U.S.-wide
database of bridge collapses. The recorded information includes the NYSDOT failure
database ID, identifier in the National Bridge Inventory (NBI), failure cause, the location
of the collapsed bridge, the feature (or stream) under the bridge, the year of construction,
the date or year of collapse, the bridge material and structure type, the type of collapse
(total or partial), the number of casualties related to the collapse, and other comments. The
NYSDOT bridge failure database includes information based on available information, that
is, searches of journalism databases and surveys of other DOTs. An overpresentation of
collapsed bridges in a certain region/state, therefore, does not imply comparatively more
collapse events; rather, it only implies the availability of the specific collapse information
in that region [28]. In the current study, the selection of hydraulic collapse sites from the
NYSDOT database is guided by the availability of the required information at the recorded
collapse sites. The selected bridges were located in Appalachian Highland (140 sites),
Coastal Plain (47 sites), Central Lowland (42 sites), Interior Highlands (54 sites), Pacific
Mountain (8 sites), and Rocky Mountain (8 sites). The selection criteria are discussed in
detail below:

• Existence of a stream gauge listed in the U.S. Geological Survey (USGS) National
Water Information System Database at the bridge location, near the bridge location
(on the same tributary of the river or on a different tributary), or at a further distance
(not the same tributary, but on the same river or within the same watershed).
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• Availability of climate, soil, topography, watershed, and human interference data in
relation to the USGS stations in the Geospatial Attributes of Gages for Evaluating
Streamflow, version II (GAGES II) database.

• Bridges were apparently collapsed (complete or partial collapse) due to hydraulic
effects including scour, debris, and hydraulic pressure/load on the piers and the
superstructure. Each hydraulic effect and/or a combination of them could result in
the washout of a bridge, which is the case for a couple of bridges. Some collapses
are caused by specific flood and hurricane events as reported by NYSDOT. Whereas
hydraulic effects are exaggerated during floods and hurricane events, hurricanes are
much more complex, multifaceted natural hazards. Hurricanes can cause additional
rainfall, extreme waves, and storm surge. There are in-depth studies that focus on
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the estimation of hurricane-induced hydrodynamic effects on structures [29–33]. Both
for bridges [29,30] and buildings [31–33], it is proven that storm surges and waves,
induced by hurricanes, can exert large uplift pressures/forces and smaller horizontal
forces leading to potential collapse. With the presence of debris, the effect of any
hydraulic event can become more severe. The effects of debris include large, short-
duration horizontal impact forces on piers [10,11], both horizontal and uplift forces
at different locations of the bridge superstructure [12], and long-duration damming
effects both on the pier [13–15] as well as on the bridge superstructure [16]. Debris
jams can also significantly increase the collapse risk, particularly in three specific
ways: (i) increasing the drag force exerted by the flow [34], (ii) substantially increasing
the upstream flood levels [35,36], and (iii) exacerbating the scour [14]. In fact, the
accumulation of debris at piers is being acknowledged as a key mechanism of affecting
the interaction between bridges, rivers, and floods [14], and contribute to more than
one-third of bridge collapses in the United States [13].

Retrieved information of the selected bridge collapse sites (with associated USGS sta-
tions) can be found at https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-
Sites/tree/main/List%20of%20Collapse%20Sites (accessed on 10 March 2022).

2.2. Shape Parameters

Shape parameters are retrieved for the GEV distribution using the extRemes R package.
Annual peak flow data, retrieved from the United States Geological Survey (USGS), are
used to fit with the GEV distribution. The cumulative distribution function of the GEV
distribution is given by the following equation [37–41].

F(x/θ) = exp
(
−(1 + k(x − µ)/σ)±1/k

)
, θ = (µ, σ, k), σ > o

Here, µ is the location parameter, σ is the scale parameter, and k is the shape parameter.
The shape parameter is of critical significance in that it represents the type of distribution:
Gumbel (shape parameter = 0), Frechet or heavy tail (shape parameter > 0), and Weibull
(shape parameter < 0) for fitting to block maxima series of data. Therefore, the shape
parameter is related to how extreme the floods are. The higher values of k result in
heavier tails.

2.3. Predictor Variables

The variables used in the current work are retrieved from the “GAGES II dataset” [42].
The dataset provides geospatial data and classifications for a total of 9322 stream gages main-
tained by USGS. The GAGES II dataset consists of gages that have had either
20+ complete years (not necessarily continuous) of discharge records since 1950 or are
currently active. The geospatial data include watershed characteristics compiled from
national data sources, including environmental features (e.g., climate—including precip-
itation, geology, soils, topography) and anthropogenic influences (e.g., land use, road
density, or presence of dams). The dataset also includes comments from local USGS Water
Science Centers, based on Annual Data Reports, pertinent to hydrologic modifications
and influences. The dataset and associated detail description are available to the public at
https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011 (accessed on 29 August 2022).
For the current study, specific variables are retained which are continuous, have physical
meaning, and are not related to each other in an obvious way. For instance, ‘DDENS_2009’
and ‘pre1990_DDENS’ refer to dam density currently and pre-1990, respectively; both
data are continuous and have physical meaning. However, they are related to each other;
therefore, only the most updated data, ‘DDENS_2009’, is included in the analysis. There
are a total of 40 distinct variables selected for the current study, as shown below:

• 15 variables related to climate: watershed average of annual number of days of measur-
able precipitation, watershed average of mean day of the year of last freeze, watershed
average of monthly maximum number of days of measurable precipitation, mean an-

https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites/tree/main/List%20of%20Collapse%20Sites
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nual precipitation (cm) for the watershed, watershed average of mean day of the year
of first freeze, watershed average of minimum monthly air temperature (degrees C),
average annual air temperature for the watershed (degrees C), mean annual potential
evapotranspiration, standard deviation of maximum monthly air temperature, water-
shed average of maximum monthly air temperature, precipitation seasonality index of
how much annual precipitation falls seasonally, watershed average of monthly mini-
mum number of days of measurable precipitation, standard deviation of minimum
monthly air temperature (degrees C), watershed average relative humidity (percent),
and snow percent of total precipitation estimate.

• 7 variables related to watershed: fragmentation index of “undeveloped” land in the
watershed, watershed percent “planted/cultivated” (agriculture), watershed percent
“forest”, watershed percent “developed” (urban), watershed drainage area (sq km),
watershed compactness ratio, density (per square km) of lakes/ponds, and reservoir
water bodies.

• 6 variables related to soil: average value for the range of available water capacity for
the soil layer, average value of sand content (percentage), average value of silt content
(percentage), average value of clay content (percentage), average value of bulk density
(grams per cubic centimeter), and average permeability (inches/hour).

• 5 variables related to topography: mean watershed elevation (meters), standard
deviation of elevation (meters) across the watershed, aspect “north”, aspect “east, and
mean watershed slope (percent).

• 3 variables related to population infrastructure: watershed percent impervious sur-
faces, population density in the watershed, and road density (km of roads per water-
shed square km).

• 4 variables related to dams: dam density, dam storage in watershed (normal storage),
dam storage in watershed (NID storage), and major dam density.

A brief summary of the predictor variables used in the study is provided in
Appendix A. The summary includes variable names, descriptions, types, units, time period,
extent of data, data processing method, the scale of source data, and source of data.

For the selected variables, the random forests mechanism [43] is used to derive
physiography-based important levels. Pacific Mountain and Rocky Mountain System
were excluded from the physiography-based study because of the low number of sites. The
methodology is then also implemented considering all the collapse sites together across dif-
ferent physiographic regions in the U.S. Random forests is a machine learning algorithm of
increasing interest because of its excellent predictive performance [43]. Because of its ability
to find important predictor variables, the mechanism has been used in geoscience [44,45],
and in hydrology, particularly, to interpret the characteristics and relationships among
different hydrological signatures [46,47]. In the current study, the random forests algorithm
is used for regression [48], and the estimation of the importance levels [48,49] of differ-
ent predictor variables, that is, the contribution of each input variable in predicting the
response within a regional context. A negative importance level means that inclusion of the
predictor variable results in a decrease in the performance of the algorithm. Positive values
indicate a positive contribution to the prediction of the algorithm. The randomForest R pack-
age [50,51] is used to implement the algorithm. The algorithm requires little tuning, and its
performance is very good when using the default parameters, i.e., the number of trees, the
maximum number of terminal nodes of the trees, and the minimum size of terminal nodes.
R scripts used for the analysis can be retrieved from https://github.com/fahmidah/Shape-
Parameter-Bridge-Collapse-Sites/blob/main/Random%20Forest/Analysis (accessed on
10 March 2022).

2.4. Classification of Peak Flows

This study employs Jiang’s classification scheme [52] to categorize annual peak flows
into heavy tail and light tail flows. Heavy tail flow implies that flows in the heavy tail
increase more than the exponential order as compared to the flows in the light tail, and

https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites/blob/main/Random%20Forest/Analysis
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such high flows are expected to be with higher return periods. With Jiang’s classification
scheme [52], the minimum heavy tail flow would be identified. To retrieve the return
periods of minimum and maximum heavy tail flows, the annual peak flow data are fitted
with GEV distribution, and the task is performed by implementing the extRemes R package.

3. Results
3.1. Shape Parameters

For physiographic regions studied, as shown in Figure 2, shape parameters do present
fairly normal distributions (p-value of the Shapiro-Wilk normality test > 0.05). The ex-
tremeness of the flood behavior is quite similar across the study regions, as evident by
the similar shape parameter values (mean and median). In fact, the median value of the
shape parameter (Table 1) within each physiographic region is close to the median value
of 0.19 as obtained for the watersheds with a diversity of climate types [43]. The site with
the largest shape parameter value (0.74) is located within Central Lowland (USGS station
#6108000) (Table 1), which implies a higher likelihood of obtaining extreme flows at this
specific location. Here, the heavy tail flows are defined as extreme flows since they increase
more than the exponential order as compared to the flows in the light tail. Sites within
Coastal Plain experience much broader fluctuations (e.g., three or more standard deviations
from the mean) in peak flows; such finding is evident by the value of the kurtosis (>3)
in Table 1. A distribution is said to be leptokurtic when the kurtosis is greater than 3,
implying that there is a greater potential for extreme fluctuations in the observed values.
Coastal areas typically experience various kinds of flooding caused by high tides, heavy
rain, storm surge, and high waves. Extreme coastal hazards (i.e., hurricanes) do not occur
frequently, but when they do occur, they have a dominant effect on the rainfall and the
level of flooding. Such unique characteristics of the coastal area might explain the broader
fluctuation in the peak flow values. All the shape parameters’ values for 205 stations can
be retrieved from https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites/
tree/main/Shape%20Parameters (accessed on 10 March 2022).
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Figure 2. Normal distributions of the shape parameters derived from GEV estimates of the annual
peak flows for the bridge collapse sites: (a) Appalachian Highland; (b) Central Lowland; (c) Interior
Highland; (d) Coastal Plain; (e) All sites.

Table 1. Descriptive statistics of the shape parameter values for the bridge collapse sites.

Physiographic Region Range Mean Median Standard
Deviation Kurtosis Shapiro-Wilk

Normality Test

Appalachian Highland −0.21–0.61 0.21 0.20 0.19 2.58 0.16

Central Lowland −0.31–0.74 0.20 0.19 0.25 2.96 0.65

Interior Highland −0.11–0.43 0.18 0.17 0.14 2.43 0.53

Coastal Plain −0.32–0.63 0.18 0.2 0.21 3.28 0.64

All Sites −0.32–0.74 0.20 0.19 0.19 3.02 0.85

3.2. Predictor Variables

Among the six types of predictor variables, climate variables are found in a greater
number across all regions (Figure 3). Predictor variables with associated importance levels
for each physiographic region and all sites combined are provided in Appendix B.
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Figure 3. Types of predictor variables across different physiographic regions.

For Appalachian Highland, there are a total of 36 predictor variables (with positive
importance levels) identified: climate (13), watershed (7), soils (6), topography (3), dams (4),
and population infrastructure (3) (Figure 4, see also Appendix B).
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For Interior Highlands, 29 predictor variables (with positive importance levels) are
identified: climate (10), soils (6), watershed (4), dams (4), population infrastructure (3), and
topography (2) (Figure 5, see also Appendix B).

In total, 32 predictor variables (with positive importance levels) are identified for
Central Lowland: climate (13), watershed (5), soils (4), topography (4), dams (3), and
population infrastructure (3) (Figure 6, see also Appendix B).

For Coastal Plain, 32 predictor variables (with positive importance levels) are iden-
tified: climate (13), watershed (6), soils (6), dams (3), population infrastructure (3), and
topography (1) (Figure 7, see also Appendix B).

When considering all sites together, 39 predictor variables (with positive importance
levels) are identified: climate (15), topography (5), soils (6), population infrastructure (3),
dams (3), and watershed (7) (Figure 8, see also Appendix B).
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Figure 5. Predictor variables of the shape parameters (with associated importance) for Interior
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Considering the importance levels, certain climate variables are found to be most
important for Appalachian Highland; 9 out of 10 variables (ranking between 1 to 10) are
climate variables (Table 2). For Interior Highlands, certain climate, dam, and soil variables
are found to be most important (Table 2). Finding dam properties as the important predictor
variables (third, sixth, eighth) (Table 2) might be noted here specifically as it suggests the
apparent importance of human interference within the watershed. The importance of
human interference is also apparent within Central Lowland with the rankings of certain
variables: population density (second), percentage of impervious area (third), percentage
of developed area in the watershed (fourth), and road density (seventh) (Table 2). Certain
topography, population infrastructure, and climate variables are also found to be most
important for Central Lowland (Table 2). For Coastal Plain, certain soil and climate variables
are found to be the most important (Table 2). The findings, considering all sites together,
are quite similar to the Appalachian Highland; 9 out of 10 important variables are found to
be climate type (Table 2).
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Table 2. Types of most important (ranking 1 to 10) predictor variables across different physiographic
regions. Description of predictor variables is provided in Appendix A.

Ranking Appalachian
Highland Interior Highlands Coastal Plain Central Lowland All Sites

1 WDMIN_BASIN FST32F_BASIN AWCAVE ELEV_MEAN_M_BASIN WD_BASIN
2 WD_BASIN LST32F_BASIN SANDAVE PDEN_2000_BLOCK LST32F_BASIN
3 WDMAX_BASIN DDENS_2009 PERMAVE IMPNLCD06 WDMAX_BASIN
4 SLOPE_PCT BDAVE PLANTNLCD06 DEVNLCD06 PPTAVG_BASIN
5 T_MIN_BASIN T_MIN_BASIN SILTAVE T_MAXSTD_BASIN FST32F_BASIN
6 T_AVG_BASIN STOR_NID_2009 PRECIP_SEAS_IND LST32F_BASIN ELEV_MEAN_M_BASIN
7 LST32F_BASIN T_AVG_BASIN LST32F_BASIN ROADS_KM_SQ_KM RH_BASIN
8 T_MAX_BASIN STOR_NOR_2009 PPTAVG_BASIN RH_BASIN T_MIN_BASIN
9 SNOW_PCT_PRECIP PET ELEV_MEAN_M_BASIN ELEV_STD_M_BASIN T_AVG_BASIN

10 PET CLAYAVE ROADS_KM_SQ_KM FST32F_BASIN PET
Climate Watershed

Soils Dams
Population

Infrastructure TopographyJ. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 34 
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Among 40 distinct variables, 10 predictor variables are found common across all
regions (Table 3); climate (6), soil (2), population infrastructure (1), and watershed (1). Each
of the common variables is found to be important for one or more than one physiographic
region (Table 3), except for the variables ‘T_MIN_STD_BASIN’, and ‘FRAGUN_BASIN’.
Only one common variable, ‘LST32F_BASIN’, is found to be important (ranking between
1 to 10) for all regions (Table 3).

When comparing important (ranking between 1 to 10) variables common to more
than one region, comparatively higher importance levels are obtained for certain regions
(Figures 9–13). For instance, for common soil variables (ranking 1 to 10), relatively higher
important levels are retrieved for Coastal Plain except for ‘BDAVE’ (Figure 10). For com-
mon topography variables (ranking 1 to 10), comparatively higher importance levels are
retrieved for Central Lowland (Figure 11). On the other hand, for common topography
and watershed variables (ranking 1 to 10), Interior Highlands have the least importance
levels (Figures 11 and 12). Higher importance levels imply higher predictability of the flood
behavior for Central Lowland and Coastal Plain while considering certain variables as
predictors. Since the system has higher predictability, accurate forecasts based on current
observations (predictor variables with higher importance levels) would be comparatively
easier.
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Table 3. Common predictor variables across all study regions. Description of predictor variables is
provided in Appendix A.

Variables Variable Type Important (Ranking between 1 to 10) Regions

LST32F_BASIN Climate All regions

T_MIN_BASIN Climate Appalachian Highland, Interior Highlands

T_AVG_BASIN Climate Appalachian Highland, Interior Highlands

SNOW_PCT_PRECIP Climate Appalachian Highland

FST32F_BASIN Climate Interior Highlands

T_MINSTD_BASIN Climate NA

CLAYAVE Soils Interior Highlands

SANDAVE Soils Coastal Plain

ROADS_KM_SQ_KM Population Infrastructure Central Lowland, Coastal Plain

FRAGUN_BASIN Watershed NA
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3.3. Heavy Tail Flows

Most of the USGS stations (172 out of 195) associated with the collapse sites are found
to be exhibiting a ‘heavy tail’ distribution (Figure 14, Table 4) for peak flows, that is, the
shape parameter values of the GEV distributions are greater than zero.
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Figure 14. Number of sites with heavy and light tail flows of the bridge collapse sites across different
regions.
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Table 4. Return periods and associated information for heavy tail flows of the bridge collapse sites
across different regions.

Physiographic
Region

# of Sites with
Heavy Tail Flows

(Total Sites)

# of Sites with Different Return Periods (Years) Minimum/Maximum
Return Periods

(Years)
Mean/Median Kurtosis

<50 Years 50–100 Years 100–500 Years >500 Years

Appalachian
Highland 100 (111) 80 9 10 1 3/897 45.58/13.57 47.0

Central
Lowland 23 (26) 18 1 4 2/465 55.37/10.12 10.41

Coastal Plain 28 (33) 22 1 5 2/213 45.38/14.81 2.05

Interior
Highlands 21 (25) 15 3 2 1 1/627 75/18.41 9.30

Heavy tail flows are expected to be with higher return periods. However, for most of
the sites, heavy tail flows exhibit lower return periods (Figure 15, Table 4). The minimum
return periods range from 1 to 3 years considering all regions (Table 4). In fact, the median
values for the return periods are found to be less than 50 years for each of the physiographic
regions studied (Table 4). Within these regions, heavy tail flows occur more frequently
than expected. There are also a few collapse sites within each region, for which no heavy
tail flow occurred yet. Such results imply that at these specific sites, bridges collapsed
at flows with lower return periods, particularly, less than 50 years. On the other hand,
the maximum return periods for the heavy tail flows range from 213 to about 897 years
(Table 4). Comparing all regions, the likelihood of having extremes with higher return
periods (outliers) is greater for Appalachian Highland as implied by the larger kurtosis
value of 47 (Table 4). The calculated return periods for the heavy tail flows (for 205 USGS
stations) can be retrieved from https://github.com/fahmidah/Shape-Parameter-Bridge-
Collapse-Sites/tree/main/Return%20Periods (accessed on 10 March 2022).
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4. Discussion

The key findings are discussed in detail here.

1. The normal distribution of shape parameters does not imply climate variables as the most
important predictor variables. Some studies suggest that the shape parameter depends on
climate indexes, while other attributes of the catchments are less important [46,53–55].
With such attributes, the GEV shape parameter is most preferably modeled by a normal
distribution with a common mean across all sites [46,53,56–58]. However, it is also
claimed that this may be a result of an insufficient summary of the catchment attributes
by the implemented indexes [59]. For the current study, the retrieved values of shape
parameters do agree with recent studies [59–62] in that the values follow a fairly normal

https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites/tree/main/Return%20Periods
https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites/tree/main/Return%20Periods
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distribution within each physiographic region. However, for the study sites, the distinct
association with climate variables is not evident except for Appalachian Highland.

2. There is a variation in the types of important predictor variables across all study regions. Al-
though there is an over-representation of climate variables, important predictors
(ranking 1 to 10) include more than one type across all regions: climate and to-
pography for Appalachian Highland; climate, dam, and soil for Interior Highlands;
topography, population, and climate for Central Lowland; and soil and climate for
Coastal Plain. In fact, the median value of the shape parameters obtained for each
region is very close to the median value of 0.19, as obtained for the sites with hydrolog-
ical heterogeneity [46]. Such a result implies that the flood behavior (or extremeness)
within each specific region is similar to the flood behavior (or extremeness) within the
region of hydrological heterogeneity.

3. Predictor variables associated with human interference are important. For all regions, ‘pop-
ulation infrastructure’ and ‘dams’ variables are obtained as the predictor variables.
For Interior Highlands, Coastal Plain, and Central Lowland, the importance of human
interference is apparent with higher importance levels (ranking between 1 to 10) as
compared to other predictor variables. It is well-established that human interference,
particularly the presence of dams, can cause and/or exacerbate flood events. Dam
break-generated floods can be much more catastrophic than typical riverine floods
since dam break generates significant impulsive loads, which can exceed the drag of
typical riverine floods by up to 270% [63]. Dam break-generated floods also generate
different patterns of vertical forces and moments, which would lead to different prob-
abilities of collapse and different failure modes as compared to riverine floods [63].
Emergency releases of water down spillways can also cause far greater and more
sudden floods downstream as compared to the natural riverine floods [64]. The loss
of natural sponges for floodwaters, such as deforestation, removal of scrub, and/or
drained-out wetlands, caused by building dams, can result in a completely different
hydrological regime, and can also increase the risk of extreme floods [64]. In the
current study, the peak flows of 29 sites are affected by possible dam breaks as noted
by USGS. The reconnaissance studies throughout the mid-west also revealed that
the widespread human disturbance together with easily erodible soils has produced
thousands of miles of highly unstable streams [27,65]. Therefore, it can be argued
that human interference, for instance, through dams, is an important parameter at
a watershed and/or regional scale, given the unique flood generation mechanism
within such a context.

4. Return periods of heavy tail flows vary from very low to very high. For the collapse sites
studied, there exists a wide variation of return periods for the heavy tail flows. How-
ever, there is a persistence of lower return periods, as low as 1 to 3 years, which implies
that the heavy tail flows occur more frequently than expected at the bridge collapse
sites. Such a finding is in accordance with a recent study of the bridge collapse sites in
the U.S. where the prevalence of collapse-inducing floods with lower return periods
has become evident [28]. In fact, certain physiographic settings do possess plausible
conditions for which flows with lower return periods can induce collapse [66,67].
For instance, within physiographic regions, namely, Central Lowland, Intermontane,
Great Plains, Appalachian Highland, and Coastal Plain, unique conditions such as
irregular channel shifting, high erosion at bed and bank, debris jam, backwater from
bays, and/or intensive human interventions are exhibited [27,65]. Regions with such
intrinsic risk conditions would not have the resiliency to flow with lower return peri-
ods as would have been expected. Extreme flows with higher return periods would
have catastrophic effects within such settings. The study results do also indicate the
occurrence of extreme flows with return periods as high as 213 to 897 years at a few
sites within each region studied. Such findings instigate revisiting the guidelines spec-
ifying the use of a “100-year flood” (flood with an annual probability of exceedance of
1%) for modern interstate bridges receiving federal funding [68]. Typically, for design
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purposes, i.e., calculation of expected scour and hydraulic loads, engineers would
consider the magnitude of a single design flood. One single, characteristic flood, such
as a 100-year flood, is also frequently used in collapse risk studies [1]. Given that the
collapse can be induced by heavy tail flows with both low and high return periods,
in relation to certain physiographic settings, bridge design should be modeled over
a range of possible collapse-inducing flows. Risk studies should also consider all
plausible collapse-inducing floods in relation to certain regional conditions.

Summary

Whereas climate, soil, topography, and watershed attributes are common in flood
hazard indexing, recent studies suggest that the shape parameter of the flood distribution
mostly depends on climate indexes, while other attributes of the catchments are less
important [46,53–55]. The association of the shape parameter mostly with climate variables
implies that certain climate variables are the most important predictors of flood behavior.
The current study results are novel in that they suggest that other variables, including soil,
topography, watershed, and human interference, are more important than climate variables
in certain physiographic settings, at least for the collapse sites considered. Widespread
human interference at a regional scale is also evident in the bridge collapse sites, particularly
within Interior Highlands, Coastal Plain, and Central Lowland. Another key finding is that
the collapse sites within each physiographic region exhibit a. similar extremeness of flood
as within the region of hydrologic heterogeneity. The extremeness of floods is also implied
by the frequent occurrence of heavy tail flows within each region. All of these key findings,
within a regional context, should be considered in failure modes and effect analysis for
assessing collapse risk at a local scale, which could be an area for further research. Here,
it should be noted that failure modes and effects analysis for a large dataset of bridge
collapse sites are not feasible because of the unavailability of the required information. The
NYDOT failure database does not include any information about the failed component
or the failure mode for the collapse events. Such information might be available at the
state-based DOT (Department of Transportation); however, they are not available to the
public. Nonetheless, if an association can be established among regional variables, bridge
characteristics, and local conditions in relation to specific failure modes, it can lead to
a robust risk assessment framework for the bridge structures. In addition, hydrologic
variables, such as the 40 variables selected in the current study, are typically analyzed at a
regional and/or watershed scale, whereas hydraulic parameters, such as flood level, bridge
type, etc., are considered at a more refined local scale. Some parameters, such as debris
jams, are investigated both at the regional and local scales. Integration of these two spatial
scales requires extensive research and, therefore, could be a topic of future studies.

5. Conclusions

In the study, analysis of shape parameters, retrieved from the GEV distribution of
annual peak flows, are performed for 205 USGS watersheds (or stations) associated with
297 bridge collapse sites across different physiographic regions. Annual peak flows are
also analyzed in relation to the heavy tail flows and their return periods. Certain unique
findings become apparent for all of the collapse sites in relation to each physiographic
region (Appalachian Highland, Central Lowland, Interior Highlands, and Coastal Plain):
(a) variation of the most important predictor variables, (b) apparent importance of human
interference, (c) flood extremeness similar to the region with hydrologic heterogeneity, and
(d) frequent occurrence of extreme peak flows. Such findings necessitate revisiting bridge
design and bridge collapse risk study in relation to not only the magnitude and frequency of
floods but also the behavior of the floods as stemming from specific physiographic settings.
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Appendix A

Table A1. Description of predictor variables. All information is retrieved from https://water.usgs.
gov/lookup/getspatial?gagesII_Sept2011 (accessed on 10 February 2022).

Variable Name Description Units Time Period Extent/Processing
Method

Additional Note on
Processing or Dataset

Scale of
Source Data

Source of Data
for Details
[Citation]

Climate Variables

WD_BASIN

Watershed average of
annual number of days
(days) of measurable
precipitation, derived

from 30 years of record
(1961–1990), 2 km PrISM.

days 1961–1990 WATERSHED/
Grid N/A 2 km grid PRISM [69,70]

LST32F_BASIN

Watershed average of
mean day of the year of
last freeze, derived from

30 years of record
(1961–1990), 2 km PRISM.
For example, value of 100

is the 100th day of the
year (10 April).

day
of

year
1961–1990 WATERSHED/

Grid

Values of 0 here
indicate there is no

freeze.
2 km grid PRISM [69,70]

WDMAX_BASIN

Watershed average of
monthly maximum

number of days (days) of
measurable precipitation,
derived from 30 years of
record (1961–1990), 2 km

PrISM.

days 1961–1990 WATERSHED/
Grid N/A 2 km grid PRISM [69,70]

PPTAVG_BASIN

Mean annual precip (cm)
for the watershed, from

800 m PRISM data.
Period of record of 30

years, 1971–2000.

cm 1971–2000 WATERSHED/
Grid N/A 800 m grid PRISM [69,70]

FST32F_BASIN

Watershed average of
mean day of the year of

first freeze, derived from
30 years of record

(1961–1990), 2 km PRISM.
For example, value of 300

is the 300th day of the
year (27 October).

day
of

year
1961–1990 WATERSHED/

Grid

Values > 365 mean that
the first freeze occurs

after 31 December. It is
conducted this way so
that (first freeze–last

freeze) should always
give a positive

number; high numbers
for an area with a long
frost-free period (e.g.,
Florida), low numbers
for an area with a short

frost-free period.

2 km grid PRISM [69,70]

https://github.com/fahmidah/Shape-Parameter-Bridge-Collapse-Sites
https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011
https://water.usgs.gov/lookup/getspatial?gagesII_Sept2011
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Table A1. Cont.

Variable Name Description Units Time Period Extent/Processing
Method

Additional Note on
Processing or Dataset

Scale of
Source Data

Source of Data
for Details
[Citation]

T_MIN_BASIN

Watershed average of
minimum monthly air

temperature (degrees C)
from 800 m PRISM,

derived from 30 years of
record (1971–2000).

degrees
C 1971–2000 WATERSHED/

Grid N/A 800 m grid PRISM [69,70]

T_AVG_BASIN

Average annual air
temperature for the

watershed, degrees C,
from 2 km PRISM data.
Period of record of 30

years, 1971–2000.

degrees
C 1971–2000 Grid WATERSHED/

Grid N/A 2 km grid PRISM [69,70]

PET

Mean annual potential
evapotranspiration

(PET), estimated using
the Hamon (1961)

equation.

mm/year 1961–1990 WATERSHED/
Grid

The Hamon equation
computes PET from
mean monthly air
temperature and

latitude. The mean
monthly air

temperature values
were computed from
1961–1990 “normals”

(30-year average
values) of mean

monthly minimum
and maximum air

temperature generated
from a PRISM

spatial/statistical
model.

1 km grid PRISM [69,70]

T_MAXSTD
_BASIN

Standard deviation of
maximum monthly air

temperature (degrees C)
from 800 m PRISM,

derived from 30 years of
record (1971–2000).

degrees
C 1971–2000 WATERSHED/

Grid N/A 800 m grid PRISM [69,70]

T_MAX_BASIN

Watershed average of
maximum monthly air

temperature (degrees C)
from 800 m PRISM,

derived from 30 years of
record (1971–2000).

degrees
C 1971–2000 WATERSHED/

Grid N/A 800 m grid PRISM [69,70]

PRECIP
_SEAS_IND

Precipitation seasonality
index (Markham, 1970;

Dingman, 2002). Index of
how much annual
precipitation falls

seasonally (high values)
or spread out over the

year (low values). Based
on monthly precip values
from 30 year (1971–2000)

PRISM. Range is 0
(precip spread out

exactly evenly in each
month) to 1 (all precip

falls in a single month).

unitless 1971–2000 WATERSHED/
Grid

This is calculated as
described in Dingman
(2002), pages 140–145.
Each month is treated

as a vector, and the
precip in that month as

the “length” of that
vector.

800 m grid PRISM [69,70]

WDMIN_BASIN

Watershed average of
monthly minimum

number of days (days) of
measurable precipitation,
derived from 30 years of
record (1961–1990), 2 km

PrISM.

days 1961–1990 WATERSHED/
Grid N/A 2 km grid PRISM [69,70]

T_MINSTD
_BASIN

Standard deviation of
minimum monthly air

temperature (degrees C)
from 800 m PRISM,

derived from 30 years of
record (1971–2000).

degrees
C 1971–2000 WATERSHED/

Grid N/A 800 m grid PRISM [69,70]
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Table A1. Cont.

Variable Name Description Units Time Period Extent/Processing
Method

Additional Note on
Processing or Dataset

Scale of
Source Data

Source of Data
for Details
[Citation]

RH_BASIN

Watershed average
relative humidity

(percent), from 2 km
PRISM, derived from

30 years of record
(1961–1990).

percent 1961–1990 WATERSHED/
Grid N/A 2 km grid PRISM [69,70]

SNOW_PCT
_PRECIP

Snow percent of total
precipitation estimate,

mean for period
1901–2000. From McCabe
and Wolock (submitted,

2008), 1 km Grid.

percent 1901–2000 WATERSHED/
Grid N/A 1 km grid David Wolock

[71]

Topography Variables

ELEV_MEAN
_M_BASIN

Mean watershed
elevation (meters) from

100 m National Elevation
Dataset

meters N/A WATERSHED/
Grid

Original source of
elevation data were
30 m tiles of USGS

NED data assembled
by Roland Viger and

Curtis Price of the
USGS in the early

2000 period.

100 m grid
(resampled
from 30 m)

USGS [72]

ELEV_STD
_M_BASIN

Standard deviation of
elevation (meters) across
the watershed from 100
m National Elevation

Dataset

meters N/A WATERSHED/
Grid

Original source of
elevation data were
30 m tiles of USGS

NED data assembled
by Roland Viger and

Curtis Price of the
USGS in the early

2000 period.

100 m grid
(resampled
from 30 m)

USGS [72]

ASPECT
_NORTHNESS

Aspect “northness”.
Ranges from −1 to 1.

Value of 1 means
watershed is

facing/draining due
north, value of −1 means

watershed is
facing/draining due

south.

unitless N/A WATERSHED/
Grid

Original source of
elevation data were
30 m tiles of USGS

NED data assembled
by Roland Viger and

Curtis Price of the
USGS in the early

2000 period.

100 m grid
(resampled
from 30 m)

USGS [72]

ASPECT
_EASTNESS

Aspect “eastness”.
Ranges from −1 to 1.

Value of 1 means
watershed is

facing/draining due east,
value of −1 means

watershed is
facing/draining due

West.

unitless N/A WATERSHED/
Grid

Original source of
elevation data were
30 m tiles of USGS

NED data assembled
by Roland Viger and

Curtis Price of the
USGS in the early

2000 period.

100 m grid
(resampled
from 30 m)

USGS [72]

SLOPE_PCT

Mean watershed slope,
percent. Derived from

100 m resolution
National Elevation

Dataset, so slope values
may differ from those

calculated from data of
other resolutions.

percent N/A WATERSHED/
Grid

Original source of
elevation data were
30 m tiles of USGS

NED data assembled
by Roland Viger and

Curtis Price of the
USGS in the early

2000 period.

100 m grid
(resampled
from 30 m)

USGS [72]

Soil Variables

AWCAVE

Average value for the
range of available water
capacity for the soil layer

or horizon (inches of
water per inches of soil

depth).

unit
less

(frac-
tion

inches
of

water
per

inches
of

soil
depth)

N/A WATERSHED/
Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about

750 sq km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]
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Additional Note on
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[Citation]

SANDAVE Average value of sand
content (percentage) percent N/A WATERSHED/

Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about 750 sq

km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]

SILTAVE Average value of silt
content (percentage) percent N/A WATERSHED/

Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about 750 sq

km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]

CLAYAVE Average value of clay
content (percentage) percent N/A WATERSHED/

Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about 750 sq

km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]

BDAVE
Average value of bulk

density (grams per cubic
centimeter)

grams
per

cubic
cen-
time-
ter

N/A WATERSHED/
Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about 750 sq

km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]

PERMAVE Average permeability
(inches/hour) inches/hour N/A WATERSHED/

Grid

Each STATSGO
mapping unit contains

multiple soil
components, and each
component can have
multiple soil layers.

The average value for
each mapping unit is a

weighted average
based on soil layer

thickness and
component area.

The base data
layer is built

on the
STATSGO

mapping units,
the average

size of which
is about 750 sq

km

USGS NAWQA.
Data are based
on STATSGO,

but as
aggregated by

Wolock, 1997 [73]

Watershed variables

FRAGUN_BASIN

Fragmentation Index of
“undeveloped” land in

the watershed. High
numbers = more
disturbance by

development and
fragmentation; a very

pristine basin with a lot
of contiguous

undeveloped land cover
would have a low

number.

unitless 2000–2002 WATERSHED/
Grid

Based on Ritters and
others (2000) method,

using 3 × 3 processing
window. Number

given here is:
(100-percent “interior”
pixels of undeveloped
land (Riiters class 1)).

Definition of
“undeveloped” land =

all land which is not
urban nor agriculture,
from NLCD01 data.

30 m grid USGS NLCD01
[74]
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PLANTNLCD06

Watershed percent
“planted/cultivated”
(agriculture), 2006 era
(2001 for AK-HI-PR).

Sum of classes 81 and 82.

percent 2006 (2001 for
AK-HI-PR)

WATERSHED/
Grid

These are sums of
Level II classes. Data
are from NLCD01 for
Alaska-Hawaii-PR.

30 m grid
USGS NLCD06
(NLCD01 for

AK-HI-PR) [74]

FORESTNLCD06

Watershed percent
“forest”, 2006 era (2001
for AK-HI-PR). Sum of
classes 41, 42, and 43.

percent 2006 (2001 for
AK-HI-PR)

WATERSHED/
Grid

These are sums of
Level II classes. Data
are from NLCD01 for
Alaska-Hawaii-PR.

30 m grid
USGS NLCD06
(NLCD01 for

AK-HI-PR) [74]

DEVNLCD06

Watershed percent
“developed” (urban),

2006 era (2001 for
AK-HI-PR). Sum of

classes 21, 22, 23, and 24.

percent 2006 (2001 for
AK-HI-PR)

WATERSHED/
Grid

These are sums of
Level II classes. Data
are from NLCD01 for
Alaska-Hawaii-PR.

30 m grid
USGS NLCD06
(NLCD01 for

AK-HI-PR) [74]

DRAIN_SQKM
Watershed drainage area,
sq km, as delineated in

our basin boundary.

square
km N/A WATERSHED/Vector

polygon area

See report for more
info on basin

delineation process.

1:24,000–
1:100,000

USGS NAWQA.
Most are based

on Mike
Wieczorek basin

boundaries,
derived from

30-m NHDPlus
data [75,76]

BAS
_COMPACTNESS

Watershed compactness
ratio, =area/perimeter2

× 100; higher number =
more compact shape.

unitless N/A WATERSHED/Vector
polygon area

Basin grids were
reconverted to
polygons for

calculation, because
original perimeters

could be of
inconsistent detail,

depending on method
used to delineate

basins (some were
from NAWQA).

1:24,000–
1:100,000

USGS NWIS and
NAWQA [75,76]

HIRES_LENTIC
_DENS

Density (#/sq km) of
Lakes/Ponds + Reservoir
water bodies from NHD

Hi-Resolution (1:24k)
data.

number/sq
km N/A WATERSHED/Vector

polygon area

NHD Hi-Res data
assembled September

2011.
1:24,000

National
Hydrography

Dataset

Population Infrastructure

IMPNLCD06

Watershed percent
impervious surfaces
from 30-m resolution

NLCD06 data.

percent 2006 WATERSHED/
Grid N/A 30 m grid USGS NLCD06

[74]

PDEN_2000
_BLOCK

Population density in the
watershed, persons per

sq km, from 2000 Census
block data regridded to
100 m. This variable is
maintained to support

models built from
original GAGES dataset.

persons/sq
km 2000 WATERSHED/

Grid

Block data is the most
detailed Census scale.

Original SILVIS data in
polygon form (all U.S.

Census blocks),
subsequently gridded

at 100 m.

Census block SILVIS Lab [77]

ROADS_KM
_SQ_KM

Road density, km of
roads per watershed sq
km, from Census 2000

TIGER roads.

km/sq
km 2000 WATERSHED/Vector

line N/A 1:100,000
Census,

repackaged by
GeoLytics [78]
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Dams

DDENS_2009 Dam density; number
per 100 km sq.

number
of

dams/100
sq
km

All dams’ data
are based on an

enhanced
version of 2009

National
Inventory of
Dams (NID)

WATERSHED/Vector
point

We took the 2009 NID
(about 83,000) and
merged that with a

subset of about 59,000
dams whose locations
had been verified and,
in some cases, adjusted
by the USGS National
Map/NHD program,

which had located
those dams on the
NHDPlus network.

The result is that the
locations of the 83,000
NID dams are in many

cases
improved/corrected
from their original
location. We also

eliminated several
hundred which were

duplicates or
near-duplicates.

1:100,000

NID 2009 (83,000
records) merged

with veri-
fied/corrected
locations for
59,000 from

USGS National
Map/NHD work

[79]

STOR_NOR_2009

Dam storage in
watershed (“NOR-
MAL_STORAGE”);

megaliters total storage
per sq km (1 megaliters =
1,000,000 L = 1000 cubic

meters).

megaliters/sq
km

All dams’ data
based on an

enhanced
version of 2009

National
Inventory of
Dams (NID)

WATERSHED/Vector
point

We took the 2009 NID
(about 83,000) and
merged that with a

subset of about 59,000
dams whose locations
had been verified and,
in some cases, adjusted
by the USGS National
Map/NHD program,

which had located
those dams on the
NHDPlus network.

The result is that the
locations of the 83,000
NID dams are in many

cases
improved/corrected
from their original
location. We also

eliminated several
hundred which were

duplicates or
near-duplicates.

1:100,000

NID 2009 (83,000
records) merged

with veri-
fied/corrected
locations for
59,000 from

USGS National
Map/NHD work

[79]

STOR_NID_2009

Dam storage in
watershed

(“NID_STORAGE”);
megaliters total storage

per sq km (1 megaliters =
1,000,000 L = 1000 cubic
meters). See note to the

right as well.

megaliters/sq
km

All dams data
based on an

enhanced
version of 2009

National
Inventory of
Dams (NID)

WATERSHED/Vector
point

NID storage in the
National Inventory of
Dams is generally (but
not always, because of
apparent errors in the

NID) equal to the
maximum storage of

the reservoir. This was
the default we used

because of
inconsistencies in the

Normal storage
(STOR_NOR_2009);

i.e., dams which
obviously had
storage—huge
lakes—but had

Normal storage of 0.

1:100,000

NID 2009 (83,000
records) merged

with veri-
fied/corrected
locations for
59,000 from

USGS National
Map/NHD work

[79]

MAJ_DDENS
_2009

Major dam density;
number per 100 km sq.

number
of

ma-
jor

dams/
100 sq km

All dams’ data
based on an

enhanced
version of 2009

National
Inventory of
Dams (NID)

WATERSHED/Vector
point

Of the 83,262 dams in
our version of the 2009
NID dataset, 8576 met

this definition, i.e.,
roughly 10%.

1:100,000

NID 2009 (83,000
records) merged

with veri-
fied/corrected
locations for
59,000 from

USGS National
Map/NHD work

[79]
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Appendix B

Table A2. Predictor variables retrieved for Central Lowland.

Variable Type Variable Importance Level

Climate T_MAXSTD_BASIN 4.25 × 10−3

Climate LST32F_BASIN 4.24 × 10−3

Climate FST32F_BASIN 3.16 × 10−3

Climate T_MIN_BASIN 1.96 × 10−3

Climate T_AVG_BASIN 1.30 × 10−3

Climate SNOW_PCT_PRECIP 4.70 × 10−4

Climate T_MINSTD_BASIN 4.62 × 10−4

Climate WDMAX_BASIN 3.19 × 10−4

Climate PPTAVG_BASIN 3.06 × 10−4

Climate WD_BASIN 2.93 × 10−4

Climate RH_BASIN 3.82 × 10−3

Climate PET 1.24 × 10−3

Climate T_MAX_BASIN 1.03 × 10−3

Topography ELEV_MEAN_M_BASIN 8.52 × 10−3

Topography ELEV_STD_M_BASIN 3.72 × 10−3

Topography SLOPE_PCT 1.00 × 10−3

Topography ASPECT_EASTNESS 6.12 × 10−4

Soils CLAYAVE 1.48 × 10−4

Soils SILTAVE 1.33 × 10−4

Soils SANDAVE 7.12 × 10−5

Soils AWCAVE 3.86 × 10−4

Population Infrastructure PDEN_2000_BLOCK 8.26 × 10−3

Population Infrastructure IMPNLCD06 5.75 × 10−3

Population Infrastructure ROADS_KM_SQ_KM 3.91 × 10−3

Watershed DEVNLCD06 5.29 × 10−3

Watershed FRAGUN_BASIN 1.15 × 10−3

Watershed BAS_COMPACTNESS 1.05 × 10−3

Watershed PLANTNLCD06 2.84 × 10−4

Watershed DRAIN_SQKM 1.69 × 10−4

Dams STOR_NID_2009 1.30 × 10−3

Dams DDENS_2009 1.27 × 10−3

Dams STOR_NOR_2009 5.68 × 10−4
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Table A3. Predictor variables retrieved for Coastal Plain.

Variable Type Variable Importance Level

Climate PRECIP_SEAS_IND 1.45 × 10−3

Climate LST32F_BASIN 1.25 × 10−3

Climate PPTAVG_BASIN 9.99 × 10−4

Climate PET 6.54 × 10−4

Climate FST32F_BASIN 5.50 × 10−4

Climate T_MIN_BASIN 4.04 × 10−4

Climate WDMIN_BASIN 3.41 × 10−4

Climate T_MAX_BASIN 3.30 × 10−4

Climate WD_BASIN 3.01 × 10−4

Climate SNOW_PCT_PRECIP 2.86 × 10−4

Climate T_AVG_BASIN 1.48 × 10−4

Climate RH_BASIN 1.40 × 10−4

Climate T_MINSTD_BASIN 5.00 × 10−5

Topography ELEV_MEAN_M_BASIN 9.33 × 10−4

Soils AWCAVE 3.61 × 10−3

Soils SANDAVE 3.55 × 10−3

Soils PERMAVE 2.11 × 10−3

Soils SILTAVE 1.62 × 10−3

Soils CLAYAVE 2.84 × 10−4

Soils BDAVE 1.42 × 10−4

Watershed PLANTNLCD06 1.94 × 10−3

Watershed FORESTNLCD06 5.55 × 10−4

Watershed HIRES_LENTIC_DENS 4.87 × 10−4

Watershed FRAGUN_BASIN 2.12 × 10−4

Watershed DRAIN_SQKM 2.85 × 10−4

Watershed DEVNLCD06 2.29 × 10−4

Population Infrastructure IMPNLCD06 2.49 × 10−4

Population Infrastructure ROADS_KM_SQ_KM 6.57 × 10−4

Population Infrastructure PDEN_2000_BLOCK 1.20 × 10−4

Dams MAJ_DDENS_2009 3.08 × 10−4

Dams STOR_NOR_2009 7.78 × 10−5

Dams STOR_NID_2009 3.70 × 10−5
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Table A4. Predictor variables retrieved for Interior Highlands.

Variable Type Variable Importance Level

Climate FST32F_BASIN 2.41 × 10−3

Climate LST32F_BASIN 1.71 × 10−3

Climate T_MIN_BASIN 4.73 × 10−4

Climate T_AVG_BASIN 3.67 × 10−4

Climate PET 2.22 × 10−4

Climate PPTAVG_BASIN 2.02 × 10−4

Climate SNOW_PCT_PRECIP 2.02 × 10−4

Climate WDMAX_BASIN 1.30 × 10−4

Climate T_MINSTD_BASIN 5.67 × 10−5

Climate T_MAX_BASIN 3.52 × 10−5

Topography ASPECT_NORTHNESS 4.16 × 10−5

Topography SLOPE_PCT 3.50 × 10−6

Soils CLAYAVE 2.21 × 10−4

Soils SILTAVE 2.10 × 10−4

Soils SANDAVE 5.28 × 10−5

Soils PERMAVE 4.45 × 10−5

Soils AWCAVE 2.83 × 10−5

Soils BDAVE 7.33 × 10−4

Watershed DEVNLCD06 5.24 × 10−5

Watershed FORESTNLCD06 2.56 × 10−5

Watershed FRAGUN_BASIN 1.96 × 10−5

Watershed PLANTNLCD06 6.84 × 10−6

Population Infrastructure PDEN_2000_BLOCK 1.25 × 10−4

Population Infrastructure ROADS_KM_SQ_KM 8.74 × 10−5

Population Infrastructure IMPNLCD06 4.33 × 10−5

Dams DDENS_2009 1.15 × 10−3

Dams STOR_NID_2009 4.42 × 10−4

Dams STOR_NOR_2009 3.37 × 10−4

Dams MAJ_DDENS_2009 4.79 × 10−6
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Table A5. Predictor variables retrieved for Appalachian Highland.

Variable Type Variable Importance Level

Climate WDMIN_BASIN 1.67 × 10−3

Climate WD_BASIN 1.66 × 10−3

Climate WDMAX_BASIN 1.65 × 10−3

Climate T_MIN_BASIN 1.09 × 10−3

Climate T_AVG_BASIN 1.06 × 10−3

Climate LST32F_BASIN 9.79 × 10−4

Climate T_MAX_BASIN 9.52 × 10−4

Climate SNOW_PCT_PRECIP 8.87 × 10−4

Climate PET 8.64 × 10−4

Climate T_MAXSTD_BASIN 4.05 × 10−4

Climate T_MINSTD_BASIN 3.28 × 10−4

Climate FST32F_BASIN 5.55 × 10−4

Climate PPTAVG_BASIN 1.85 × 10−4

Topography SLOPE_PCT 1.28 × 10−3

Topography ELEV_STD_M_BASIN 7.44 × 10−4

Topography ELEV_MEAN_M_BASIN 4.30 × 10−4

Soils SILTAVE 2.17 × 10−4

Soils CLAYAVE 1.90 × 10−4

Soils BDAVE 9.56 × 10−5

Soils AWCAVE 7.78 × 10−5

Soils SANDAVE 1.74 × 10−4

Soils PERMAVE 7.63 × 10−5

Watershed FORESTNLCD06 7.43 × 10−4

Watershed FRAGUN_BASIN 7.23 × 10−4

Watershed DEVNLCD06 7.01 × 10−4

Watershed BAS_COMPACTNESS 6.63 × 10−4

Watershed PLANTNLCD06 3.10 × 10−4

Watershed DRAIN_SQKM 2.99 × 10−4

Watershed HIRES_LENTIC_DENS 1.29 × 10−4

Population Infrastructure IMPNLCD06 8.42 × 10−4

Population Infrastructure PDEN_2000_BLOCK 5.19 × 10−4

Population Infrastructure ROADS_KM_SQ_KM 2.67 × 10−4

Dams DDENS_2009 4.22 × 10−4

Dams STOR_NOR_2009 2.44 × 10−4

Dams STOR_NID_2009 1.85 × 10−4

Dams MAJ_DDENS_2009 2.93 × 10−5
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Table A6. Predictor variables retrieved for all sites combined.

Variable Type Variable Importance Level

Climate WD_BASIN 2.66 × 10−3

Climate LST32F_BASIN 2.60 × 10−3

Climate WDMAX_BASIN 1.65 × 10−3

Climate PPTAVG_BASIN 2.02 × 10−4

Climate FST32F_BASIN 2.41 × 10−3

Climate RH_BASIN 1.40 × 10−4

Climate T_MIN_BASIN 1.09 × 10−3

Climate T_AVG_BASIN 1.25 × 10−3

Climate PET 1.22 × 10−3

Climate SNOW_PCT_PRECIP 1.18 × 10−3

Climate T_MAXSTD_BASIN 1.15 × 10−3

Climate T_MAX_BASIN 1.14 × 10−3

Climate WDMIN_BASIN 7.69 × 10−4

Climate PRECIP_SEAS_IND 8.60 × 10−4

Climate T_MINSTD_BASIN 4.04 × 10−4

Topography ASPECT_EASTNESS 2.57 × 10−4

Topography ELEV_MEAN_M_BASIN 4.30 × 10−4

Topography SLOPE_PCT 7.97 × 10−4

Topography ELEV_STD_M_BASIN 5.87 × 10−4

Topography ASPECT_NORTHNESS 8.12 × 10−6

Soils AWCAVE 1.02 × 10−3

Soils SANDAVE 9.67 × 10−4

Soils SILTAVE 6.42 × 10−4

Soils BDAVE 6.00 × 10−4

Soils CLAYAVE 5.20 × 10−4

Soils PERMAVE 5.14 × 10−4

Watershed FRAGUN_BASIN 7.84 × 10−4

Watershed PLANTNLCD06 7.48 × 10−4

Watershed FORESTNLCD06 6.18 × 10−4

Watershed DEVNLCD06 5.60 × 10−4

Watershed DRAIN_SQKM 4.89 × 10−4

Watershed BAS_COMPACTNESS 4.17 × 10−4

Watershed HIRES_LENTIC_DENS 3.05 × 10−4

Population Infrastructure IMPNLCD06 6.42 × 10−4

Population Infrastructure PDEN_2000_BLOCK 5.39 × 10−4

Population Infrastructure ROADS_KM_SQ_KM 3.15 × 10−4

Dams DDENS_2009 2.98 × 10−4

Dams STOR_NOR_2009 2.66 × 10−4

Dams STOR_NID_2009 2.36× 10−4
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