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Abstract: Machine vision-based automatic detection of marine organisms is a fundamental task for
the effective analysis of production and habitat changes in marine ranches. However, challenges of
underwater imaging, such as blurring, image degradation, scale variation of marine organisms, and
background complexity, have limited the performance of image recognition. To overcome these issues,
underwater object detection is implemented by an improved YOLOV5 with an attention mechanism
and multiple-scale detection strategies for detecting four types of common marine organisms in the
natural scene. An image enhancement module is employed to improve the image quality and extend
the observation range. Subsequently, a triplet attention mechanism is introduced to the YOLOV5
model to improve the feature extraction ability. Moreover, the structure of the prediction head of
YOLOV5 is optimized to capture small-sized objects. Ablation studies are conducted to analyze
and validate the effective performance of each module. Moreover, performance evaluation results
demonstrate that our proposed marine organism detection model is superior to the state-of-the-art
models in both accuracy and speed. Furthermore, the proposed model is deployed on an embedded
device and its processing time is less than 1 s. These results show that the proposed model has the
potential for real-time observation by mobile platforms or undersea equipment.

Keywords: marine organism; target identification; deep learning; attention mechanism; model
optimization

1. Introduction

Underwater organism observation is an important topic in the field of underwater
object detection, which can offer an effective means to evaluate the abundance of marine or-
ganisms and sensitively predict environmental changes. For instance, it can autonomously
and intelligently identify and analyze the number of sea cucumbers, scallops, and other
seafood, as well as invasive organisms in marine ranches, which were previously done
mainly manually. Therefore, the autonomous monitoring and accurate identification of the
seafood in marine ranches not only helps farmers to control the growth status of seafood
and the habitat changes in real time but also releases manpower from dangerous and
heavy workloads. Numerous advanced acoustic or optical-based detection tools have been
applied to the identification of marine organisms [1], and meanwhile underwater robots
are also further considered to provide a larger-scale observation based on their ability to be
incorporated into autonomous mobile devices [2].

In contrast to the acoustic-based approach, the optic-based approach has the advan-
tages of high resolution, low cost, and ease of operation. Thus, optic-based marine organism
identification methods have attracted increasing attention and are becoming a research
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trend. However, there are still many significant technical challenges in the optic-based
marine organism identification scenario. (i) Physical phenomena such as light scattering
and absorption in the water environment result in unclear underwater imaging, coupled
with the intensification of marine pollution in recent years, further reducing the quality of
underwater imaging [3]. These factors not only limit the observation range and efficiency
but also reduce the target identification accuracy when implementing some automatic meth-
ods with low-quality images. (ii) Marine organisms are frequently present in small-sized
images and the benthic organisms are often intertwined with the complex background,
which makes the accurate extraction of the marine organism difficult from the complex
background. The conventional target identification approaches are not adaptive and robust
to these challenges.

Following the rapid development of image processing technologies, the deep learning
theory has been convincingly and successfully applied in many fields due to its superior
performance in feature extraction [4,5], such as face recognition [6], maritime ship target
recognition [7], plankton image analysis [8], and so on.

Underwater enhancement approaches proposed in the recent literature can be divided
into traditional methods and deep learning-inspired methods. Since underwater images are
considered to be similar to hazy images in some ways, dehazing algorithms based on dark
channel prior were used to improve degraded underwater images [9]. This approach and
its derivatizations were almost entirely based on prior knowledge or statistical assumptions
about a scene to enhance the images globally [10]. To solve the problem of inaccurate depth
estimation of underwater scenes, IBLA and ULAP were proposed based on image blurriness
and light absorption, as well as based on underwater light attention prior [11,12]. These
approaches will be unsatisfactory because of prior invalidation in complex scenes. Apart from
image formation model (IFM)-based approaches, IFM-free methods are simple in principle
and can also effectively improve the visual effect of images. As one typical IFM-free method,
relative global histogram stretching (RGHS) [13] achieved better image quality and less noise
by contrast correction and color correction in shallow water image enhancement. According
to the diverse network models, deep learning-inspired approaches are separated into two
categories: CNN-based methods and GAN-based methods [14,15]. The representatives of
CNN-based methods include Water-net [16], LANet [17], and so on. Water-net performed
a weighted fusion of the input image by the network self-learning method to obtain the
enhanced underwater image. LANet solved the problems of color cast and low illumination
on underwater images. To expand the training data, GANs were utilized to generate realistic
underwater images. WaterGAN trained synthetic underwater images using a two-stage color
correction network [18]. The underwater generative adversarial network (UGAN) converted
blurred underwater images into high-resolution images [19]. However, these data-driven
enhancement approaches demand a large number of training samples and a long training
time. In addition, changes in the environment often require the model to be retrained. These
result in difficulties in practical applications.

The traditional method of object detection is to train the detector utilizing prior
artificially defined features, such as color, texture, and geometric features. Qiao et al. [20]
proposed an approach to recognize the sea cucumber using principal component analysis
extraction and support vector machine classification. Hasija et al. [21] classified fish species
using an enhanced discriminant analysis method of display graph embedding based on
display image processing. These artificially defined features of objects have high pertinency
and interpretability but poor scalability, which results in the loss of high-dimensional
features, especially in the complex and unstructured environment [22]. Therefore, most of
the research published in recent years mainly employs deep learning models to extract more
enrichment features of marine organisms. Peng et al. [23] designed a detection strategy for
sea cucumbers based on a modified feature pyramid network with a shortcut connection.
Cao et al. [24] proposed a real-time and robust detector to detect underwater live crabs
by using a lightweight MobileNetV2 as the backbone of a single-shot multi-box detector
(SSD) and replacing the standard convolution with depthwise separable convolution in the
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prediction layers. Li et al. [25,26] designed an in situ zooplankton detection neural network
with a densely connected YOLOV3 model to reduce the loss of features in the network
transmission and generated samples with a CycleGAN to address the problem of species
distribution imbalances. In addition, there are many deep learning-inspired approaches
that have been successfully applied to fish identification [27,28].

Human vision has the potential to quickly focus on the targets or interesting regions
when facing a complex sense. Inspired by the human visual system, the attention mecha-
nism has been used as an effective module in deep learning tasks in recent years [29–31].
Google first combined the attention mechanism with recurrent neural networks (RNN) and
successfully applied it in image classification tasks [32]. Hu et al. [33] proposed the squeeze
and excitation network (SE-Net), to obtain global information in the channel dimension by
global average pooling operation, and then selectively emphasized important features and
suppressed less important features with this information. However, this only considers
the attention in the channel dimension and ignores the information in the spatial dimen-
sion. Another representative attention module is the convolutional block attention module
(CBAM), which fuses attention information in both channel and spatial dimensions by
adding global average pooling and global max pooling [34]. Subsequently, Park et al. [35]
proposed a bottleneck attention module (BAM) based on channel and spatial dimensions to
weight significant features; the difference with CBAM is its attention computation in a par-
allel manner. Although the above methods exhibit a significant improvement over previous
achievements in target recognition integrated with CNNs, the semantic interaction between
features of different dimensions is not taken into account. To avoid missing spatial detail
information, a structure with three parallel branches is proposed to capture dependencies
between the channel and spatial dimensions of the input tensor, respectively [36].

Therefore, this paper presents a novel marine organisms detection model based on
a deep learning approach for automatic marine organism surveys or harvesting in un-
derwater scenes. The proposed model is developed based on a lightweight deep neural
network that ensures the potential for mobile observation of marine organisms by under-
water robots. In this work, an adaptive underwater image enhancement method named
relative global histogram stretching (RGHS) is employed primarily to optimize the imaging
quality and to improve the accuracy of object detection. Subsequently, convolutional triplet
attention mechanism modules are introduced into a lightweight deep neural network,
YOLOV5, to enhance the identification performance of organism detection from complex
scenes by encoding inter-channel and spatial information. Moreover, the structure of the
prediction head is modified to improve the capability of detecting small targets. Figure 1
visualizes the improvement of our proposed detection model by comparing it with the
original YOLOV5 model.
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The main contributions of this work are summarized as follows:

(1) The performance of three state-of-the-art attention modules for underwater object
detection with YOLOV5 was evaluated. Triplet attention-based YOLOV5 achieved
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the best accuracy since triplet attention can capture the cross-dimension interaction of
the channel dimension and spatial dimension.

(2) An optimization strategy for underwater small target detection was presented by
developing a four-scale prediction head of YOLOV5, which ensured the performance
of detection to the targets with significant variation in size.

(3) The improved YOLOV5 was further tested on an embedded device (Nvidia Jetson
Nano), and the inference time reached real-time performance (0.25 s). The overall
processing time for one frame was 0.98 s, including 0.25 s for detection and 0.73 s for
image enhancement.

(4) An underwater image enhancement algorithm, relative global histogram stretching,
was utilized to improve underwater image quality. Experimental results proved
that image enhancement was efficient in improving the performance of underwater
target detection.

The remainder of this article is organized as follows. The proposed detection model and
evaluation metric are described in Section 2. The experiment design and the discussions of
the obtained results are reported in Section 3. Finally, the conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Experimental Data

The optical image data of marine organisms were captured by the Underwater Robot
Picking Contest hosted at Zhangzidao island in China. Four different species of marine
organisms are selected in this work, including urchin, sea cucumber, starfish, and scallop.
In a total of 3100 images, 2480 images are randomly selected as the training data, and the
remaining 620 images are used as the testing data. The marine organisms were labeled as
ground truth based on our existing knowledge with a graphical annotation tool named
LableImg and converted to PASCAL VOC format to validate the accuracy of the model
identification results.

2.2. Model Backbone

The backbone is one of the core parts of the deep neural network to extract the features
of the input images. Considering the requirement both for the accuracy of the object detec-
tion and time consumption, a typical one-stage detection model, YOLOV5, is employed
in this work due to its lightweight parameters and excellent detection performance com-
pared to the two-stage detection model, e.g., Faster RCNN. YOLOV5 is the latest version
of the YOLO series, released in 2020, surpassing the other previous versions in accuracy
and speed.

Figure 2 illuminates the architecture of the proposed marine organism identification
model, which includes four parts: enhancement, backbone, neck, and prediction. The input
of the backbone of the detection model is an enhanced optical underwater image with the
RGHS method at the enhancement part after comparing the performance and analyzing
the suitability to the backend structures of the detection model.

There are four versions depending on the length and width of the backbone networks,
including YOLOV5s, YOLOV5m, YOLOV5l, and YOLOV5x. In this work, the YOLOV5s,
with the smallest parameters and fastest speed, is embedded into the proposed marine
organism detection model. The backbone is composed of Focus, Conv-BN-SiLU (CBS),
Cross-Stage Partial (CSP), and Spatial Pyramid Pooling (SPP) modules. The detailed
architecture of these modules is also exhibited in Figure 2. The Focus block mainly consists
of four parallel slice layers to extract pixels from input high-resolution images periodically
and reconstruct them into low-resolution images. The CSP module, inspired by CSPNet,
halves the number of channels by performing separate convolution operations to allow the
model to learn more distinguishing features. Aiming to further broaden the receptive field
and aid in segregating contextual characteristics, the SPP module is plugged at the end of
the backbone network.
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Figure 2. The architecture of the proposed marine organism identification model.

2.3. Triplet Attention Module

The neck part aims to further improve the feature extraction ability of the proposed
detection model. It is succeeded by PANet, using an FPN structure and PAN module to
convey strong semantic features and positioning features from top to bottom and bottom
to top, respectively. Many triplet attention modules are embedded into the neck part of the
identification model to improve the feature representations. Figure 3 shows the structure
and framework of the triplet attention module.
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Different from the other most prominent attention mechanism modules, such as
SE-Net, CBAM, and BAM, the triplet attention modules compute attention weights by
capturing cross-dimension interactions between (Channel, Height), (Channel, Width), and
(Height, Width) dimensions of the input tensor, respectively, using three parallel branches.
By concatenating the average pooled and max pooled features across each dimension, the
Z-pool layer reduces the zeroth dimension of the tensor to two. The advantage of the
Z-pool layer is to obtain a detailed representation of the actual tensor while also reducing
its depth, to make the following computations more efficient. The Z-Pool is formulated as:

Z − pool(χ) =
[
MaxPool0d(χ), AvgPool0d(χ)

]
(1)
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where 0d is the zeroth dimension across which the module reduces the dimension of the
tensor χ to two dimensions via max and average pooling.

A triplet attention module is inserted before each prediction head to enrich the target
features, so as to improve the recognition accuracy at different scales, as shown in Figure 2.

2.4. Prediction Head Optimization

In underwater observation, marine organisms could be present on various scales due
to their body size and their locations relative to the optical imaging device. Various scales
and body poses could reduce the accuracy of detection and identification to a certain extent.
Detection of small targets is a common issue occurring in underwater object detection. In
this work, the distribution of the target size in the marine organism dataset was analyzed
by examining the object/image ratio. The object/image ratio was calculated by the object
area divided by the total image size. In other words, the object/image ratio calculated the
proportion of the object in the entire image. The target size distribution is presented in
Figure 4. The target size was presented in significant variations. The maximal object size
was approximately 20 times larger than the minimum size. Moreover, a large proportion of
targets were of a small size, and their object/image ratio was less than 0.05.
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However, the prediction head of the original YOLOV5 was not designed to deal with
such a significant variation in target size. To suppress the effect of drastic scale changes
on detection accuracy, the prediction head of YOLOV5 is modified to capture objects with
large scale variation. An additional prediction scale is added to the prediction head of
the proposed detection model. In the proposed model, the output feature maps of four
different scales are 160 × 160, 80 × 80, 40 × 40, and 20 × 20, respectively, when the input
image is resized as 640 × 640.

2.5. Evaluation Metrics

The performance is evaluated from two aspects covering detection performance and
time consumption performance. In the evaluation of the marine organism detection per-
formance, AP is the integral over the precision–recall curve and represents the average
precision. mAP is the average precision of all species of marine organisms. AP and mAP
are formulated as follows:

AP =
∫ 1

0
Precision − Recall(Recall)d(Recall) (2)
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mAP = (1/N)
N

∑
i=1

APi (3)

where N is the number of species of marine organisms. The precision represents the
proportion of the correct number of positive samples predicted to all predicted samples.
The recall is the ratio of positive samples correctly predicted to all samples. Formulas for
precision and recall are as follows:

Precision =
True Positives

True Positives + False Positives
(4)

Recall =
True Positives

True Positives + False Negatives
(5)

Among them, true positives, false positives, and false negatives, respectively, represent
correctly classified positive samples, incorrectly classified negative samples, and incorrectly
classified positive samples.

Otherwise, the average time consumption of marine organism identification is also
considered to evaluate the performance of the proposed model, which is an important
factor to evaluate the availability of real-time observations.

3. Experiments and Discussion

In order to evaluate the detection performance of marine organisms, ablation studies
were implemented to verify the validity of each optimization module. In these experiments,
the YOLOV5s model is selected as the original architecture to provide a performance
baseline. Thereafter, an overall performance evaluation of the proposed model is discussed.

Subsequently, the detection model of the marine organisms is trained on a server under
a Linux environment, which is equipped with Intel XEON Gold 5217 CPU and NVIDIA
RTX TITAN GPU cards. Finally, the trained model is deployed on an embedded system
platform, the Jetson Nano development kit, with an ARM A57 processor (Quad-core @
1.43 GHz), 4 GB RAM, and Maxwell GPU (128 cores), to evaluate both the detection and
real-time performance.

3.1. Performance of Image Enhancement

A multiple color model-based image enhancement method, RGHS, is selected as the
image enhancement module in the proposed detection model of marine organisms by
comparing the enhanced performance with other methods published in the last decade.
From the enhancement results of these methods, illustrated in Figure 5, the performance of
RGHS is superior under human visual judgment. After image enhancement, the invisible
targets in the original images become visible. Thus, the enhanced images are re-labeled to
evaluate the performance of the image enhancement module.
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Image enhancement operation as a preprocessing module is plugged into the original
YOLOV5 model to evaluate its performance. The quantified detection results of the marine
organisms between the original YOLOV5 model and the YOLOV5 model with the image
enhancement module are listed in Table 1. Here, to represent the results more clearly, the
detection models are named with the suffixes ‘Raw’ and ‘En’ to classify the model using
the raw images or the enhanced images as the dataset. The ground truth is raised to 6530
from 6207, which means that there are 323 additional organisms visible after the image
enhancement operation. Notably, the metric AP of all four species of the marine organisms
is improved obviously after image enhancement, while the mAP for the Intersection of
Union (IoU) threshold with 0.5 rises to 78.0% from 71.5%. This indicates that the image
enhancement module is necessary and helpful to increase the capability for observing and
detecting targets in the marine environment.

Table 1. Performance comparison of image enhancement module.

Model

AP(@0.5)
mAP(@0.5) Ground

TruthUrchin Sea
Cucumber Starfish Scallop

YOLOV5 (Raw) 82.2% 62.6% 80.4% 60.9% 71.5% 6207
YOLOV5 (En) 91.3% 62.9% 86.2% 71.5% 78.0% 6530

3.2. Evolution of Attention Modules

Recently, attention mechanisms have achieved great success in computer vision tasks,
such as object detection/recognition and segmentation [37,38]. SENet and CBAM are two state-
of-the-art attention modules and have been widely applied to improve the performance of
object detection [38,39]. However, these attention mechanism modules overlook the interaction
between the channel dimension and spatial dimension. In this work, triplet attention (TA)
is proposed to improve the feature representational ability of YOLOV5. Triple attention is a
lightweight module and is able to capture the cross-dimension interaction between channel
dimension and spatial dimension without increasing the computational burden.

Performance analysis of YOLOV5, YOLOV5-SE, YOLOV5-CBAM, and YOLOV5-TA is
listed in Table 2. There is a 1.3% rise in the mAP, increasing from 71.5% to 72.8% after the
triplet attention modules are integrated. The mAP values of YOLOV5-SE and YOLOV5-
CBAM are 71.4% and 72.1%, respectively, which are both lower than the mAP of YOLOV5-
TA. Especially for the species starfish and scallop, which are often indistinguishable from
the background, the triplet attention outperforms the SE and CBAM attention.

Table 2. Performance comparison of attention mechanism modules.

Model

AP(@0.5)
mAP(@0.5) Ground

TruthUrchin Sea
Cucumber Starfish Scallop

YOLOV5 (Raw) 82.2% 62.6% 80.4% 60.9% 71.5% 6207
YOLOV5-SE (Raw) 83.8% 63.7% 81.2% 56.7% 71.4% 6207

YOLOV5-CBAM
(Raw) 85.4% 61.6% 81.2% 60.4% 72.1% 6207

YOLOV5-TA (Raw) 83.5% 61.9% 82.7% 63.2% 72.8% 6207

Subsequently, the attention heatmaps of these modules were visualized by implement-
ing Grad-CAM to explain the effectiveness of triplet attention. A couple of samples for
each species of the organism are provided in Figure 6. Tighter and more relevant bounds
on images are captured, which indicates that the triplet attention modules provide more
meaningful internal representations of the image through cross-dimensional interaction. In
terms of the above results, the performance and efficiency of the triplet attention mechanism
are demonstrated.
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3.3. Performance of Prediction Head Optimization

In this subsection, one additional prediction head is integrated into the YOLOV5
model for tiny organism detection to reduce the missed targets. Similar to YOLOV5-TA,
this model with an additional prediction head is abbreviated as YOLOV5-PH. In Table 3, the
AP has a minimum 1% increase in three quarters of the target species of marine organisms,
but the AP of the scallop species has a slight decrease (0.8%). Nevertheless, there is an
average 1.4% improvement in the metric AP after optimizing the prediction head to the
original detection model YOLOV5.

Table 3. Performance comparison of prediction head optimization.

Model

AP(@0.5)
mAP(@0.5) Ground

TruthUrchin Sea
Cucumber Starfish Scallop

YOLOV5 (Raw) 82.2% 62.6% 80.4% 60.9% 71.5% 6207
YOLOV5-PH (Raw) 85.5% 63.6% 82.6% 60.1% 72.9% 6207

Figure 7 shows the performance comparison of prediction head optimization on the
detection of tiny marine organisms. More organisms with small scale in images are detected
after adding one additional prediction head with a scale of 160 × 160 compared to the
common prediction structure with three heads. This indicates that the prediction head
optimization makes the detection model more sensitive to organisms with different scales.
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3.4. Overall Identification Performance Evaluation

To verify and validate the overall performance of the marine organism detection model,
we implement other ablation experiments based on incorporating the YOLOV5 model for
image enhancement by plugging the triplet attention module and optimizing the prediction
head, respectively. These model variants are marked as YOLOV5 (En), YOLOV5-TA (En),
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and YOLOV5-PH (En), respectively. In addition, a well-known two-stage approach, a Faster
RCNN model with the structures resnet50 and resnet101 as the backbone, respectively, is
also selected to compare with the proposed model.

Figure 8 shows that the loss curves of all the YOLOV5 architecture-based models
experience a steady decline while training these models, and eventually converge to a
low constant. After 30 epochs, the loss of the proposed model nearly remains stable at
a constant 0.07, similar to YOLOV5-PH (En), while the training loss of the other models
maintains a slightly decreasing trend until the 80th epoch. This means that the weights of
the proposed model could be trained with lower time consumption.
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The indices of performance evaluation for the proposed model in this paper and
the other comparison models are listed in Table 4. Values in bold denote that the related
model has the best performance for the corresponding evaluation indexes. mAP(@0.5:0.95)
represents the average mAP for increasing IoU threshold values from 0.5 to 0.95 by 0.05.
As reflected in these results, both the mAP(@0.5) and mAP(@0.5:0.95) of the proposed
model are higher than those of the other comparison models, achieving 83.1% and 42.2%,
respectively. Even in each species, the detection performance of the proposed model is better
than the other models. Compared to urchin and starfish, the AP values for sea cucumber
and scallop are reduced to some extent, reaching only 69.8% and 79.7%, respectively. The
reason is that these two species of marine organisms are similar in color to the background
and often lay flat on the surface of the seafloor or even buried in the sand, which poses a
huge challenge for detection.

A couple of samples of detection results are shown in Figure 9. What can be clearly
seen is that each approach accurately detects more organisms after image enhancement,
which proves the necessity of image enhancement in the marine organism observation
and detection scenario. As the depth of the backbone network increases, Faster RCNN
detects many more organisms. However, there are more misdetections, which results in a
lower AP of 61.6% for the Faster RCNN with resnet101 as the backbone. The above results
confirm that the proposed model is helpful to improve the detection performance of marine
organisms by integrating the triplet attention module and optimizing the prediction head.
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Table 4. Overall identification performance evaluation.

Model
AP(@0.5)

mAP
(@0.5)

mAP
(@0.5:0.95)

Detection
Time

Ground
TruthUrchin Sea

Cucumber Starfish Scallop

YOLOV5 (Raw) 82.2% 62.6% 80.4% 60.9% 71.5% 35.1% 0.248 6207
YOLOV5 (En) 91.3% 62.9% 86.2% 71.5% 78.0% 40.7% 0.917 6530

YOLOV5-TA (En) 92.0% 65.6% 87.1% 73.1% 79.4% 41.1% 0.924 6530
YOLOV5-PH (En) 93.1% 63.9% 88.0% 74.5% 79.9% 40.6% 0.999 6530

Faster RCNN (resnet50) (En) 73.0% 31.0% 57.1% 44.1% 51.3% 20.7% 6.817 6530
Faster RCNN (resnet101) (En) 85.9% 46.0% 78.0% 36.7% 61.6% 29.8% 11.370 6530
Ours (YOLOV5-TA+PH) (En) 93.4% 69.8% 89.3% 79.7% 83.1% 42.2% 0.982 6530
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3.5. Adaptation Performance Evaluation

To reduce the computational burden of the embedded system, the raw images are
resized to 640 × 640, and the resized images as input are fed to the detection model. The
time consumption for each frame is shown in Table 4. The trained detection model has a
weight of 360.15 MB and requires 11.370 s to process one frame by implementing the Faster
RCNN model with resnet101 as the backbone. Compared to the Faster RCNN, the weight
of our proposed detection model is approximately 14.1 MB, with the time consumption
of 0.982 s for processing one frame, including 0.25 s for detection and 0.73 s for image
enhancement, which ensures its implementation in the embedded system to carry out the
marine organism observation in real time. Notably, since we replace the complex CSP
module with a lightweight triplet attention module, our proposed model consumes less
time compared to the YOLOV5-PH model, with 0.999 s for one frame.

4. Conclusions

This study aims to improve the ability of automatic marine organism detection in
the real marine environment, which could release workers from heavy workloads and is
considered an effective tool in the management of the marine ranch. To achieve this goal,
an adaptive deep neural network model is proposed based on the YOLOV5 architecture
by integrating it with the image enhancement module and triplet attention mechanism
modules, as well as optimizing the number of prediction heads. In these optimizations,
the image enhancement module aims to improve the visual quality of images, which
brings out more targets buried in noise and also extends the observation range. The
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purpose of the other optimizations, covering triplet attention mechanism modules and
prediction head optimization, is to improve the detection performance, which makes the
proposed approach more sensitive to the complex environment. The experimental results
demonstrate the effectiveness of each optimization in the proposed approach to marine
organism detection, and the mAP reaches 83.1%, experiencing an 11.6% arise. Therefore,
the proposed approach is suitable for deployment on an embedded system due to its small
volume and low time consumption.

Currently, the proposed approach is deployed on the deep learning development
board Jetson Nano, the core process unit of our autonomous underwater vehicle. In further
work, many experiments will be carried out with the mobile platform to evaluate its
performance in the real marine ranch after intermodulation of the perception system and
control system.
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