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Abstract: When a propeller is under a state of cavitation, it will experience negative effects, including
strong noise, vibration, and even damage to the blades. Accordingly, the detection of propeller
cavitation has attracted the attention of researchers. Propeller noise signal contains a wealth of
cavitation information, which is a powerful method to identify the cavitation state. Considering the
nonlinear characteristics of propeller noise, a feature describing the complexity of nonlinear signals,
which is called refined composite multiscale fluctuation-based dispersion entropy (RCMFDE), is
adopted as the indicator of propeller cavitation, and a framework for the identification of propeller
cavitation state is established in this paper. Firstly, the propeller noise signal is decomposed by the
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method, and
the intrinsic mode function (IMF) components with cavitation characteristics are extracted. Secondly,
the RCMFDE of the IMF components is computed. Finally, a hybrid optimization support vector
machine (SVM) is established to classify the features, in which a Relief-F filter is utilized to reduce
the feature dimension, and a particle swarm optimization (PSO) wrapper is utilized to optimize the
parameters of the SVM. The experimental results demonstrate encouraging accuracy to apply this
approach to identify the propeller cavitation states, with an identification accuracy of 91.11%.

Keywords: RCMFDE; cavitation noise; feature extraction; machine learning

1. Introduction

Cavitation is a general fluid mechanics phenomenon that can occur in the operation of
a marine propeller [1]. The speed at which cavitation starts is called the cavitation inception
speed (CIS) when the vessel is drifting steadily. When the propeller speed is higher than
CIS or in some off-design conditions, the pressure in the low-pressure area at the tip and
back surface of propeller blade is lower than the saturated vapor pressure, and cavitation
forms [2]. Propeller cavitation can produce many undesirable consequences. On the one
hand, the jet flow produced by a cavitation bubble bursting acts on the propeller blade for
a long time, leading to cavitation erosion phenomenon, causing damage to the blades [3].
On the other hand, cavitation will induce strong noise and vibration, which becomes the
main noise source of vessels, affecting the acoustic stealth of vessels and the comfort of the
crew’s living environment, and negatively affecting marine mammals and the ecological
environment [4]. As a complex nonlinear phenomenon, there are many factors affecting
the cavitation process [5], and accurate prediction of the cavitation of a full-scale propeller
cannot be achieved at present, so that only the real-time monitoring method can be used to
obtain the cavitation state of a propeller during navigation. Early detection of propeller
cavitation helps the operator to adjust the working conditions of the propeller in time
and avoid the negative effects caused by cavitation. Consequently, an accurate cavitation
detection method of propellers is of critical importance.

The optics-based approach is a direct way to detect cavitation. When cavitation occurs,
traveling or banded bubbles appear near the mechanical blade, which can be directly
observed by the naked eye or with the help of stroboscopic equipment, high-speed camera
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and other optical devices [3]. However, in practical engineering, the application of the
optical method is confined by factors such as fluid visibility and ambient brightness, so
indirect detection methods based on vibration, sound and pressure fluctuation have been
proposed and applied in the past few years. Generally speaking, these detection methods
comprise three steps: signal preprocessing, feature extraction and classification.

As for the signal preprocessing method, because of the non-stationarity of cavitation
noise, some non-stationary signal analysis methods, such as short-time Fourier trans-
form (STFT) [6], wavelet scalogram [7], wavelet packet [8], Wigner-Ville distribution
(WVD) [9], time-domain synchronous averaging (TSA) [10] and empirical mode decom-
position (EMD) [11], have been applied to the analysis of cavitation signals. Nevertheless,
these methods have some shortcomings: STFT and wavelet methods are limited by ba-
sis functions and do not have adaptability; WVD has the problem of cross-term aliasing.
TSA involves a complex resampling procedure; although EMD is an adaptive method,
the modal aliasing problem limits its application. CEEMDAN is an improved algorithm
based on EMD, which adaptively adds white noise to each layer decomposition process
to better suppress mode aliasing, reduce residual noise and improve the integrity and
efficiency of decomposition [12]. Due to these advantages, CEEMDAN has been applied
to non-stationary signal processing in fields such as fault diagnosis [13], biological signal
processing [14], and power prediction [15], however, to our best knowledge, its application
in cavitation noise signal processing has not been reported.

As for feature extraction, traditional cavitation detection methods are typically based
on the energy [16,17] and modulation characteristics [18,19] of the signal. Since the for-
mation, development and collapse of cavitation bubbles is a nonlinear process, and only
using energy or demodulation characteristics to describe cavitation characteristics is in-
complete. As a nonlinear analysis technique, entropy has been widely used in feature
extraction in recent years [20–22]. Fluctuation-based dispersion entropy (FDE) is a kind
of nonlinear dynamical entropy. Compared with permutation entropy, sample entropy
and fuzzy entropy, FDE enjoys a better performance in terms of stability, calculation cost
and noise-robustness [23]. However, FDE can only evaluate the dynamic characteristics
of time series on a single scale, which leads to serious information loss. In order to obtain
deeper signal features from different scales, multi-scale [24], composite multi-scale [25]
and fine composite multi-scale [26] methods are proposed. Compared with the previous
two methods, the fine composite multi-scale has better stability and performance effect.
Up to now, there are few studies on entropy in the field of cavitation feature extraction.
Considering the advantages of FDE and the requirements of multi-scale analysis, this paper
combines the fine composite multi-scale method and FDE to form RCMFDE, which is used
to represent the characteristics of propeller cavitation state.

After feature extraction, it is essential to choose an appropriate classification algorithm
to intelligently identify the feature. Common machine learning classification algorithms
include back propagation neural networks (BPNN), random forest (RF) and SVM. BPNN
is sensitive to the initial weight of the network, and when the network is initialized with
different weights, the BP algorithm can run into the local minimum problems. Random
forest is susceptible to overfitting problems when dealing with classification problems
affected by noise. SVM is a supervised machine learning classification model which can
effectively deal with local minimum and overfitting problems in BPNN and RF, and has
been successfully applied to the classification of features such as multiscale entropy in the
fault diagnosis field [27,28]. However, the multi-scale entropy feature usually has a high
dimension, which affects the training efficiency, and the setting of SVM model parameters
also has a great influence on the classification effect. Thus, it is essential to take measures to
optimize the classification model.

In this paper, a novel acoustic method for intelligent identification of propeller cavi-
tation state based on CEEMDAN, RCMFDE, and hybrid optimization SVM is proposed.
Firstly, CEEMDAN is applied to preprocess propeller noise to adaptively separate cavita-
tion characteristic signals from propeller noise signals and reduce the influence of mode
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aliasing. Then, the RCMFDE algorithm is applied to extract the nonlinear complexity
features of noise signals at different scales and the cavitation state of propeller can be distin-
guished from the perspective of nonlinear characteristics. Finally, to solve the problem of
feature redundancy and parameter optimization, a hybrid optimization SVM classification
model is established to realize intelligent identification of propeller cavitation and a higher
identification accuracy is achieved. The rest of this paper is organized as follows. Section 2
introduces the basic principles and framework of the proposed method. Section 3 intro-
duces the cavitation noise measurement experiment of the propeller model. In Section 4, the
experimental data are analyzed based on the method proposed in this paper and compared
with other methods. Finally, Section 5 is the conclusion of this paper.

2. Identification for Cavitation States of Propeller Based on CEEMDAN-RCMFDE and
Hybrid Optimization SVM
2.1. CEEMDAN Principle

CEEMDAN is an improved algorithm based on EMD, which references the idea
of adding gaussian noise and removing noise through multiple averaging in EEMD
method [12,13]. To better illustrate the principle, Ek(·) is defined as the k-th IMF com-
ponent obtained after EMD, and vi(t) represents the white noise component with N (0,1)
added in the i-th test. For signal X(t), the steps of CEEMDAN method are as follows:

(1) Construct the signal that adds noise Xi(t) = X(t) + ε0vi(t), where (i = 1, 2, . . . , I),
ε0 is the amplitude, and I is the number of the experiment. Decompose by EMD I realization
Xi(t) to get first IMF and calculate:

IMF1(t) =
1
I

I

∑
i=1

E1(Xi(t)) (1)

(2) At the first stage (k = 1), the first residual is calculated as:

r1(t) = X(t)− IMF1(t) (2)

(3) Decompose realizations r1(t) + ε1E1(vi(t)), i = 1, 2, . . . , I. Get their first EMD
mode and define the second mode:

IMF2(t) =
1
I

I

∑
i=1

E1(r1(t) + ε1E1(vi(t))) (3)

(4) The calculation of the latter mode is consistent with step 3. First, the k-th residual
signal is calculated, and then the (k + 1)-th mode is calculated, as shown in Equations (4)
and (5):

rk(t) = rk−1(t)− IMFk(t) (4)

IMFk+1(t) =
1
I

I

∑
i=1

E1(rk(t) + εkEk(vi(t))) (5)

(5) Decomposition stops until the residual is a monotone function. The final residual
is as shown in

R(t) = X(t)−
K

∑
k=1

IMFk(t) (6)

Then, the original signal X(t) is expressed as shown in Equation (7):

X(t) =
K

∑
k=1

IMFk(t) + R(t) (7)
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2.2. RCMFDE Algorithm
2.2.1. FDE

Fluctuation-based dispersion entropy (FDE) is an index to measure the irregularity
of a time series, which takes into account the local fluctuation characteristics of series and
can effectively express the nonlinear characteristics of the signal [29]. For a given nonlinear
time series x = {x1, x2, . . . xN}, the calculation procedure of FDE is as follows:

(1) Establish the mapping between time series x and {1, 2, . . . , c} using the Equation (8)

yi =
1

σ
√

2π

∫ xi

−∞
e−(−

(t−µ)2

2σ2 )dt (8)

zc
j = round(c·yi + 0.5) (9)

where µ is expectation and σ2 is variance, and c is an integer.
(2) Calculate the embedded vector Z as follows:

Zm,λ,c
j =

{
zj, zj+λ, . . . , zj+(m−1)λ

}
(10)

where m is the embedding dimension, λ is the time delay, and j = 1, 2, . . . , N − (m− 1)λ.
(3) Transform Zm,λ,c to Qm,λ,c by

Qm,λ,c
j =

{
zj+λ − zj, . . . , zj+(m−1)λ − zj+(m−2)λ

}
(11)

(4) For each time series Qm,λ,c, there is a corresponding fluctuation dispersion pattern
Πv0v1 ...vm−2(1− c ≤ v ≤ c− 1), where Qm,λ,c

j,1 = v0, Qm,λ,c
j,2 = v1, . . . , Qm,λ,c

j,m−1 = vm−2. The
relative frequency of each pattern is calculated by:

p
(
Πv0v1 ...vm−2

)
=

Number
(
Πv0v1 ...vm−2

)
N − (m− 1)λ

(12)

where Number
(
Πv0v1 ...vm−2

)
represents the number of Qm,λ,c mapped to Πv0v1 ...vm−2 .

(5) According to the definition of Shannon entropy, the FDE of original time series x is
defined as

FDE(X, m, c, λ) = −
(2c−1)m−1

∑
π=1

p
(
Πv0v1 ...vm−2

)
ln p

(
Πv0v1 ...vm−2

)
(13)

2.2.2. RCMFDE

FDE is the characteristic of signal sequence at a single scale. Combined with refined
composite multiscale analysis, refined composite multiscale fluctuation-based dispersion
entropy (RCMFDE) can reflect the complexity relationship of signals at different scales [22].
The calculation procedure of RCMFDE for x = {x1, x2, . . . xN} is as follows:

(1) The n-th coarse-grained time series en =
(

en,1, en,2, . . . , en,(N/τ)

)
is obtained by

Equation (14):

en,k =
1
τ

n+kτ−1

∑
i=n+τ(k−1)

xi (14)

where τ is the scale factor, 1 < n < τ, 1 < k < N/τ.
(2) RCMFDE is calculated by

RCMFDE(X, m, c, λ, τ) = −
(2c−1)m−1

∑
π=1

p
(
Πv0v1 ...vm−2

)
ln p

(
Πv0v1 ...vm−2

)
(15)
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where p
(
Πv0v1 ...vm−2

)
is the mean frequency of the same dispersion patterns in each coarse-

grained time series.
The parameters involved are delay λ, embedding dimension m, class number c and

scale factor τ. If the embedding dimension m is too small, the dynamic changes might not
be detected in the signal, while a large m may make the FDE algorithm unable to observe
small variations [30]. For the number of classes c, its value should be greater than 1 to
avoid that there is only a dispersed pattern. At the same time, a small c value leads to
poor resolution, but a huge c value is easy to introduce noise effects, and the scope of c is
commonly 4 to 8. For delay λ, the value is normally 1 to avoid loss of frequency information.
For the scale factor τ, if the value is too small, the characteristic information of the series
will be insufficient, but if the value is too large, the amount of calculation will be increased.
Regarding the calculation accuracy and efficiency, the embedding dimension m = 3, the
number of classes c = 6 and the scale factor τ = 20 is adopted in this paper.

2.3. Hybrid Optimization SVM Classification Model

When applied in the classification of features similar to multiscale entropy, there are
two problems with SVM classification model as follows: first, the feature dimension is high
and there is a certain redundancy, which leads to low computational efficiency. The other is
that when kernel function is introduced to deal with nonlinear problems, the penalty factor
c and the kernel parameter g have a great influence on the final classification effect, and
it is considered unreliable to determine the two parameters only by experience. To solve
these two problems, a hybrid optimization SVM based on Relief-F and PSO is proposed in
this paper.

2.3.1. Relief-F

Relief-F method is an efficient filter-based feature selection method, which can rank
the features by analyzing the relevant weight between features and classifications [31].
Assume that the samples in dataset D come from γ categories. For feature xi, if it belongs
to class k ∈ {1, 2, . . .γ}, firstly the method looks for the nearest neighbor example of xi in
the k-th class sample xi,nh as near-hit, and then finds a nearest neighbor example of xi in
each class outside the k-th class as near-miss, denoted by xi,l,nm(l = 1, 2, . . . γ; l 6= k). Thus,
the relevance level corresponding to feature j is:

δj = ∑
i
−di f f

(
xj

i , xj
i,nh

)2
+ ∑

l 6=k

(
pl × di f f

(
xj

i , xj
i,l,nm

)2
)

(16)

where pl is the proportion of class L samples in data set D. For each feature, the larger the
relevance level, the better the classification ability of the corresponding attribute is.

2.3.2. PSO Algorithm

PSO is a classical swarm intelligent algorithm designed by simulating the predation
behavior of birds, which has the advantages of good robustness, good convergence and
strong global search ability. When applied to SVM model parameter optimization, it
can effectively solve the problem of blind parameter setting [13]. In the algorithm, the
global optimal solution is achieved by iteratively updating the position of particle swarm
according to Equations (17) and (18) [32].

vk
id = wvk−1

id + c1r1

(
pbsetid − xk−1

id

)
+ c2r2

(
gbsetid − xk−1

id

)
(17)

xk
id = xk−1

id + vk−1
id (18)

where vk
id is the motion velocity of the k-th iteration particle, xk

id is the position of the k-th
iteration particle in the current search space, c1 and c2 are acceleration factors, r1 and r2 are
two random constants in the value range, w is the inertial weight, pbsetid is the historical
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optimal position of a single particle and gbsetid is the historical optimal position of the
particle swarm.

2.3.3. Hybrid Optimization SVM Based on Relief-F and PSO

The flow chart of the hybrid optimization SVM based on Relief-F and PSO is shown in
Figure 1. In the model, Relief-F filter is utilized to reduce the feature dimension, improving
the calculation efficiency and PSO wrapper to optimized parameter combination (c, g) for
better accuracy. The specific steps are as follows:

(1) Use the Relief-F method to rank the features of the training sets from the highest best
feature to the lowest using Equation (16).

(2) Initialize parameters, including particle number, learning factor, weighting coefficient,
particle position and particle velocity, and the penalty factor c and kernel parameter g
of SVM are encoded as the position of the particle.

(3) Train SVM model with the training set. The parameters c and g vary as the particle
travels.

(4) Assess the fitness values. The SVM corresponding to each particle is used to predict
the training sample, and the prediction error of the current particle is taken as the
fitness of the particle.

(5) Determine whether the termination condition is satisfied. If the set ideal accuracy rate
or number of iterations is attained, the iteration is discontinued. Otherwise, update
the velocity and position of the particle swarm and resume step 3 to 5.

(6) Load optimal parameters acquired to model and classify the test set.
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Figure 1. Algorithm flow of the hybrid optimization SVM based on Relief-F and PSO.

2.4. Steps of Cavitation State Identification for Propeller Noise Signal

In this paper, an intelligent propeller cavitation state identification method integrated
CEEMDAN, RCMFDE, hybrid optimization SVM is proposed and its flow chart is shown
in Figure 2. The specific implementation steps include:
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Step 1. Carry out propeller model noise measurement test in cavitation tunnel, and
collect propeller noise signals under different cavitation states.

Step 2. CEEMDAN is applied to decompose the origin signal into several modal
components. IMF components associated with cavitation were extracted.

Step 3. Calculate the RCMFDE value of the extracted IMF component at 20 scales to
form the signal feature vector.

Step 4. The hybrid optimization SVM model is trained by the training set and the
optimized parameters, including features subset, penalty factor c and kernel parameter g
are acquired. Then the test sample set is used to test the model.

3. Experimental Investigation

The acoustic measurement experiment of propeller model was carried out in the
medium-sized cavitation tunnel of China Ocean Shipping Company (COSCO). The schematic
diagram of the cavitation tunnel is shown in Figure 3. There is a four-blade axial pump at
the bottom of the cavitation tunnel, which is driven by a DC shunt motor. By adjusting the
power of the motor, the flow velocity of water in the tunnel can be precisely regulated. The
tunnel is equipped with a pressure regulating device that can fine-tune the internal pressure
within a certain range.
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Figure 3. General arrangement of the cavitation tunnel.

The test section is the core part of the cavitation tunnel, where the propeller is located
and works in the given stable flow field. The test section lies in the upper middle part of the
device, as shown in Figure 4. The length of the test section is 2.6 m, and the cross section
is rectangular (0.6 m × 0.6 m) with rounded corners. The four sides of the test section are
view windows made by acoustically transparent acrylic, through which the cavitation of
the propeller can be observed from all around with the help of stroboscopic equipment.
The propeller dynamometer drives the propeller in the test section through a long shaft
and measures its thrust, torque and rotation speed in real time. The basic parameters of the
cavitation tunnel are summarized in Table 1.
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Table 1. Principal particulars of the cavitation tunnel.

Item Value

Dimension of test section, length × width ×
height 2.6 m × 0.6 m × 0.6 m

Pressure range 10~200 kPa
Maximum velocity 12 m/s
Velocity instability ≤1%
Velocity unevenness ≤1%
Minimum cavitation number 0.2
Motor capacity 90 kW

A standard DTM4381 propeller model with a diameter of 180 mm is used in the
experiment, and the basic information of the propeller is given in Table 2. The wake
prosthesis contains a V-shaped bracket and a double hole wake grid is arranged in front
of the propeller, which forms a non-uniform flow field close to the real ship. An acous-
tic tank full of water is suspended on the side of the test section, the size of which is
800 mm × 400 mm × 300 mm. One side of the tank is attached to the test section through
the perspective window. A hydrophone (model: B&K 8104) is suspended freely in the
tank. The hydrophone is in the same plane with the propeller disk, and is 500 mm away
from the center of the propeller hub. The top view schematic diagram of the test section is
shown in Figure 5 and the layout of the propeller model, wake prosthesis and hydrophone
are shown in Figure 6. The propeller noise signal collected by hydrophone is amplified
by charge amplifier (model: B&K 2690A), and then converted into digital signal by signal
acquisition instrument (model: B&K LAN-XI 3161) and recorded. The parameters of the
signal collection system are outlined in Table 3.

Table 2. Basic information of test propeller.

Parameter Value

Number of blades 5
Diameter 180 mm
Pitch ratio 1.2
Area ratio 0.725
Boss ratio 0.2
Material brass
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Table 3. Parameters of the signal collection system.

Item Model Parameter

Hydrophone B&K 8104

Frequency range: 0.1 Hz–120
kHz
Charge sensitivity: 0.44
pC/Pa

Charge-amplifier B&K 2690A Frequency range: 0–100 kHz
Data Acquisition System B&K LAN-XI 3161 Frequency range: 0–204.8 kHz

The propeller is tested at a prescribed set of two non-dimensional numbers [18]: thrust
coefficient kt and cavitation number σn:

kt =
T

ρn2D4 = f
(

V
nD

)
(19)

σn =
p0 − pv
1
2 ρn2D2

(20)

where T is the thrust force of propeller, ρ is the water density, n is the rotation speed
of propeller, D is the diameter of propeller, V is the inflow velocity, f (·) is the mapping
relationship of this propeller, p0 is the pressure in the tunnel, and finally pv is the saturated
vapor pressure depending on temperature. In cavitation tunnel, kt is adjusted by changing
the ratio of inflow velocity V to rotational speed n, and σn is adjusted by changing the
pressure p0, and propeller rotation speed n. For propeller tip vortex cavitation (TVC),
which most commonly occurs in the propeller of full-scale ships, when kt (σn) remains
constant, cavitation may occur or be serious with the decrease in σn (increase in kt).

In our case, considering the efficiency of operation, the pressure p0 and propeller
rotation speed n are set as constant values to keep the cavitation number σn constant, and
the thrust coefficient kt is regulated by changing the pump power, so that the propeller
appears different cavitation states. Through early testing, the initial pressure of the test, the
propeller rotation speed and inflow velocity are determined, in which propeller cavitation
does not occur. Then slowly decrease the flow velocity, and observe the propeller vortex
cavitation at the same time with the help of a stroboscopic device. It is observed that there
is no cavitation until the kt exceeds 0.33, as the development of cavitation of propeller
blades is not synchronous due to slight geometrical differences between blades. In this
experiment, if only one blade exhibits cavitation it is regarded as cavitation inception, and
3 blades (more than half of whole 5 blades) exhibiting cavitation is full cavitation. The test
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conditions of three cavitation states including no cavitation, cavitation inception and full
cavitation is outlined in Table 4, and the images of propeller cavitation at three states are
shown in Figure 7. The sampling frequency of noise signal is 131.072 kHz, and propeller
noise data of 30 s are collected for each cavitation state.

Table 4. Test condition and cavitation state of the propeller model.

Test
Number

Pressure
p0/kPa

Rotation
Speed
n/rps

Cavitation
Number

σn

Inflow
Velocity
V/m/s

Thrust
Coefficient

kt

Cavitation
State

1
103.2 28 7.93

4.69 0.24 No
cavitation

2 3.54 0.33 Cavitation
inception

3 3.32 0.35 Full
cavitation
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4. Result and Discussion
4.1. Cavitation Feature Extraction by CEEMDAN-RCMRDE

The original time domain diagram of the propeller noise signal collected in the test
under three test conditions is shown in Figure 8. It can be seen that the time domain
waveform and amplitude of noise in the inceptive stage of propeller cavitation are close to
that without cavitation. In the stage of full cavitation, the noise amplitude increases and
the propeller beat becomes obvious. The power spectrum of noise calculated under three
conditions is shown in Figure 9. It is apparent that the power spectral densities of test 1 and
test 2 are close in the whole frequency range, only except the frequencies above 30 kHz.
However, the power spectral density of test 3 is clearly higher than the other two tests at
frequencies above 2.5 kHz. The energy increased by the full cavitation spans a quite wide
frequency range.

Waveform and spectrum only reflect unilateral information of signal in time domain or
frequency domain, respectively, while CEEMDAN, as an adaptive decomposition method,
can decompose the signal into multiple IMF components, which can reflect the characteris-
tics of signal in time domain and frequency domain at the same time. The raw noise signals
under three test conditions are decomposed by the CEEMDAN method, in which the noise
standard deviation of CEEMDAN is 0.2, the average number of signal processing is 50, and
the maximum number of iterations is 100.
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Figure 10 shows the CEEMDAN results under three working conditions. In the
figure, the time domain waveform of IMF component is illustrated on the left, and the
corresponding power spectrum of IMF component is given on the right. With the increase in
IMF orders, the spectral centroid moves from high frequency to low frequency. Since the low
frequencies of the higher order components are usually independent with cavitation, only
the first eight order components are listed in the figure. It can be seen that in Figure 10a,
when cavitation does not occur, there is no obvious pulse signal in the low-order IMF
components. While in Figure 10b, after cavitation occurs, pulses with the same rotation
period of the propeller (about 35 ms) appear in IMF1 and IMF2, and in Figure 10c, distinct
periodic pulses propagate from IMF1 and IMF2 to low frequency band and appear in IMF3
to IMF6, which is consistent with the results of power spectral analysis. According to
the frequency band range of cavitation energy influence in power spectrum analysis and
the frequency band range of IMF signal, the first three IMF components are selected as
cavitation characteristic signals in the test.
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In order to compare the effects of different multiscale entropy and decomposition
methods on cavitation feature extraction, three kinds of adaptive decomposition methods
including CEEMDAN, EMD and VMD (variational mode decomposition) and three kinds
of multiscale entropy values including RCMFDE, RCMDE (refined composite multiscale
dispersion entropy) and MFDE (multiscale dispersion entropy) are adopted to calculate
results of CEEMDAN-RCMFDE, CEEMDAN-RCMDE, CEEMDAN-MFDE, EMD-RCMFDE
and VMD-RCMFDE, which are shown in Figure 11. Due to space limitation, only the
computation results of IMF1 are listed for analysis. It can be observed from Figure 11a that
the entropy values of the measured noise in the three tests conditions are mixed together
and not easy to recognize when the scale is small. As the scale increases, the entropy
values in different test conditions become easy to recognize, which illustrates the need for
multiscale analysis. According to the comparison of Figure 11a–c, the dispersion degree
of the entropy values of the three test conditions in Figure 11b,c is smaller than that in
Figure 11a, indicating that CEEMDAN classification method has a notably better effect on
extracting cavitation features than EMD and VMD. In Figure 11d,e, it is still more difficult
to recognize the result of different tests than in Figure 11a, indicating that the RCMFDE has
a certain advantage over RCMDE and MFDE in judging the state of cavitation.
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4.2. Diagnosis Results and Analysis

All the raw signals are divided into a total of 720 non-overlapping samples
(240× 3) with a length of 16384, of which 75% are used as training set and 25% as testing set.
CEEMDAN is executed for each sample and RCMFDE of the first three IMF components
are calculated. Then the hybrid optimization SVM based on Relief-F and PSO is applied to
the training set. The PSO initialization parameters are displayed in Table 5.

Table 5. Parameters of PSO-SVM.

G N c1 c2 w c g

100 20 1.5 1.7 1 [0.1, 100] [0.1, 100]

The identification accuracy with the number of features selected by Relief-F of the
training set is shown in Figure 12. It can be seen that the accuracy grows with the number
of features when the number is less than 20. Nevertheless, when the number of features
is 25 to 45, the accuracy is a little lower than that when the number of features is 20,
indicating the negative impact of redundant invalid features on classification. When the
number of features is greater than 45, the recognition accuracy is improved restrictedly
compared to that when the number of features is 20. Considering the identification accuracy
and computational efficiency, the number of features in this paper is set to 20. The PSO
optimization process of SVM parameters is shown in Figure 13. It can be seen that with the
increase in iterations, the accuracy keeps improving and eventually reaches 90.93%; the
optimized penalty factor c is 53.05, and the kernel parameter is 0.82.
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The identification result of the test set is shown in Figure 14. The results show that the
recognition accuracy of severe cavitation samples can reach 100%, while the recognition
rate of non-cavitation samples and slight cavitation samples is slightly lower, which are
86.7% (52/60) and 86.7% (52/60), respectively. The overall accuracy of the test set is 91.1%
(164/180).
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4.3. Comparison with Other Methods

In order to demonstrate the superiority of the hybrid optimization SVM proposed
in this paper, two other common filter-based feature selection methods, including the
Fisher-ratio [33] and Laplace score (LS) [34] methods are selected for comparison. The first
5 to 20 features are screened to form feature vectors, and PSO is used to optimize SVM
parameters. The identification results of the test sample are shown in Figure 15. It can be
seen that the identification accuracy of the method proposed is superior to the methods
based on Fisher and LS.
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To further demonstrate the advancement of the method in this paper, the five character-
istics mentioned above, EMD-RCMFDE, VMD-RCMFDE, CEEMDAN-MFDE, CEEMDAN-
RCMDE, and CEEMDAN-RCMDE are selected to calculate. Three common machine
learning models, back propagation neural networks (BPNN), random forest (RF) and
hybrid optimization SVM, are used to classify the samples, respectively. Each method
is tested 20 times, and the accuracy of each method is obtained as shown in Figure 16.
The result shows that CEEMDAN-RCMFDE is a better feature than other features, and
the combination of CEEMDAN-RCMFDE and hybrid optimization SVM can achieve the
optimal identification accuracy.
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5. Conclusions

Considering the nonstationary and nonlinear characteristics of propeller cavitation
noise, a novel intelligent identification of propeller cavitation states combining CEEMDAN,
RCMFDE, and hybrid optimization SVM is proposed in this paper. First, CEEMDAN is
used to adaptively decompose the noise signal to extract useful components related to
cavitation. Second, RCMFDE of the first three IMF components are computed as feature
vectors. Then, a hybrid optimization SVM classification model is proposed to realize
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intelligent identification of propeller cavitation states. The effectiveness of the proposed
method is fully verified by the propeller model experiment carried out in the cavitation
tunnel. The main conclusions are summarized as follows:

(1) After CEEMDAN preprocessing of the propeller noise signal, cavitation related
information exists in the low-order IMF components, and with the deepening of the
cavitation degree, cavitation characteristics move up to the higher-order IMF components.
CEEMDAN has a finer signal preprocessing effect compared to EMD and VMD.

(2) It is convinced that the nonlinear dynamical entropy theory can be applied to
the characterization of propeller cavitation state. Compared with RCMDE and MFDE,
RCMFDE applied in this paper has advantages in distinguishing cavitation states.

(3) Relief-F algorithm can optimize the entropy features of high dimensions, and the
effect is better than Fisher and LS algorithm. Compared with BPNN and RF, the proposed
hybrid optimization SVM model has higher cavitation state identification accuracy.

The method proposed offers a feasible solution for the detection of propeller cavitation.
Nonetheless, it should be noted that the noise signal characteristics are weak and unstable
at the initial stage of cavitation, which brings great difficulties to the identification of the
cavitation state. Future work will focus on improving the characteristics of weak cavitation.
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RCMFDE refined composite multiscale fluctuation-based dispersion entropy
CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
IMF intrinsic mode function
SVM support vector machine
PSO particle swarm optimization
CIS cavitation inception speed
STFT short-time Fourier transform
WVD Wigner-Ville distribution
TSA time-domain synchronous averaging
EMD empirical mode decomposition
FDE fluctuation-based dispersion entropy
BPNN back propagation neural networks
RF random forest
EEMD ensemble empirical mode decomposition
TVC tip vortex cavitation
VMD variational mode decomposition
RCMDE refined composite multiscale dispersion entropy
MFDE multiscale dispersion entropy
LS Laplace score
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