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Abstract: Sudden natural disasters have the characteristics of complexity, unpredictability and fre-
quency. To better manage and analyze sudden natural disasters promptly with the help of historical
natural disaster cases, this study adopts the method of fused case structure to calculate the similarity
between sudden disaster cases. Based on the disaster information of historical natural disaster cases,
this paper aims to perform similarity measures for sudden natural disaster cases that contain textual
information, data information and geographic location information at the same time. Taking storm
surge disasters as examples, we designed a hierarchical case structure of “vertex-edge-label” based on
the characteristics of sudden natural disaster cases. Then, we calculated the case similarity based on
three aspects of sudden natural disasters, which were “case scenario”, “disaster damage” and “case
structure”. Finally, we aggregated multiple factors to obtain the similarity between storm surge
cases and conducted experiments on the historical storm surge cases in China. The result verified
the feasibility and effectiveness of the method and showed a higher accuracy of the established
aggregated multifactor method compared with the benchmark method.

Keywords: sudden natural disasters; domain ontology; similarity calculation; storm surge disasters

1. Introduction

With rising temperatures, global extreme weather events have increased, causing
an upsurge in natural disasters worldwide. Natural disaster outbreaks are generally
complex, unpredictable and frequent and have a serious impact on social and economic
development [1–3]. One of the most serious marine natural disasters in the world is a storm
surge disaster, which causes serious damage to the sea, nearshore and inland [4–6]. Storm
surge disasters are transient, high-risk, complex and frequent, resulting in serious damage
in a short time [7–9]. After the occurrence of sudden natural disasters, people need to
respond promptly for an immediate analysis and handling, by comparing with historical
natural disaster information. Furthermore, they need to make a qualitative damage determi-
nation in real time based on the actual situation of sudden natural disasters, so as to facilitate
the subsequent adjustment and decision-making for effective rescue measures [10,11].

An important empirical resource for natural disaster emergency managers is the
relevant historical disaster cases [6,12], but historical case information is widely recorded in
texts and people need to obtain historical natural disaster information and knowledge from
these texts to manage and analyze disasters [13]. As reference knowledge, historical natural
disaster cases can provide a scientific basis and support for emergency decision-making
to achieve an orderly and effective response over a short time. In recent years, scenario
construction techniques have been proposed in the field of emergency management from
home and abroad [14,15]. They can generate solutions to new problems by using source
cases through case-based reasoning (CBR) techniques, and they complete the mapping of
similar elements between source and target cases via reasoning [16,17]. Existing studies
have carried out a large number of case similarity calculations for scenario building in the
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areas of business [18–20], medical health [21–23] and disaster incidents [24,25]. However,
the existing studies provide very limited help for emergency decisions during sudden
natural disasters [2,26].

The paper [27] in the field of emergency management of sudden natural disasters
proposed an ontology-based semantic similarity calculation model to calculate the similarity
by quantifying the semantic similarity between concepts. The paper [28] proposed a case
inference based on a differential evolution algorithm, which obtained a new differential
evolution algorithm through a hybrid mutation operator and improved the adaptiveness
of the model. The paper [29] proposed a modeling and analysis of disaster chains based on
stochastic Petri nets, established the model elements of disaster chains and analyzed their
control flow relations. The paper [30] proposed an emergency risk decision-making method
based on fault tree analysis; they constructed fault trees by analyzing the evolution process
of emergencies and described the logical relations between the conditions and factors
leading to the evolution of emergencies.

The following problems and challenges are found when calculating the similarity
between cases in the natural disaster field: (1) natural disaster information is usually
recorded in unstructured texts, which generally contain a lot of noisy data (texts that are
irrelevant to disaster descriptions); (2) texts contain a variety of information, such as text
information, data information, geographic information, etc., which makes it difficult to
calculate the similarity between cases by processing the corpus uniformly; (3) natural
disaster cases contain many disaster events, and the values of the disaster-bearing body
and damage information in disaster are not unified, which makes it more difficult to judge
the similarity between disaster cases; (4) the temporal information between disaster events
is not obvious as many natural disasters are transient in nature, resulting in a lack of
temporal information in the text; (5) the spatial distribution of disaster events in natural
disaster cases is wide and disasters are generally scattered in different locations.

It can be found that most of the existing studies focus on disaster analysis, numerical
simulation, prediction and warning, damage assessment and emergency decision-making
in the field of sudden natural disasters [31], while the comprehensive problems caused
by sudden natural disasters are not considered globally. The distribution of disaster
“dynamics” in the field of sudden natural disasters is widely varied, resulting in a large
number of influencing factors. In this paper, we focus on the geographic distribution and the
damage of natural disasters and build a multifactor, multiaspect and multihierarchy model
to calculate the similarity between natural disaster cases. The main contributions of the
study can be summarized as follows:

• We transform the case similarity calculation into a similarity calculation of the case
structure and case node labels by using the “vertex-edge-label” case structure;

• We propose the similarity calculation of sudden natural disaster cases with a fused
case hierarchy and we calculate the similarity in “case scenario”, “disaster damage”
and “case structure” in a multihierarchy, multiaspect and multifactor way;

• The experimental results of the storm surge disaster cases show that the results of
aggregating the three similarities of “case scenario”, “disaster damage” and “case
structure” in this paper are better than other comparison methods.

2. Related Work

The intercase similarity calculations in traditional methods are mainly based on a case’s
textual content [32–34] and case hierarchy [35,36].

In the similarity calculation method based on a case’s textual content, an ontology
mapping is generally an effective means of multisource data fusion and an ontology
enables the sharing, common understanding and reuse of the domain knowledge [27,37].
an ontology mapping obtains the source ontology that is similar to the target ontology by
a similarity calculation method. It forms a mapping relationship, obtains a unified global
representation and realizes the effective fusion of multisource data. The ontology-based
similarity calculation methods can be broadly classified into five categories: semantic-
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distance-based similarity calculation methods [38], information-content-based similarity
calculation methods [33,39], concept-attribute-based similarity calculation methods [40],
hybrid semantic similarity calculation methods [41] and deep-learning-based similarity
calculation methods [42,43]. Among them, the calculation methods based on semantic
distance have a low computational complexity, but the single consideration makes the
results less accurate and unstable. For the calculation methods based on information
content, the results are more accurate for a corpus with a high completeness and the
algorithm does not have robustness. The calculation method based on concept attributes
shows more accurate results but ignores the location and content information between
concept nodes. Furthermore, the hybrid semantic similarity calculation method has more
objective and accurate results but has a high computational complexity. Furthermore, the
calculation method based on deep learning has accurate results but poor convergence. In
this paper, we build a domain ontology for the domain of storm surge natural disasters
and use the similarity calculation method of information content to calculate the similarity
of the cases’ textual content.

The graph structure is flexible and widely used in terms of similarity calculation
methods for case hierarchies, and the graphs are available in the form of a Petri net
model [44,45], BPMN network model [46], Bayesian network model [47], etc. a graph
structure is used for the similarity measure of sudden natural disaster case hierarchies by
methods such as the graph edit distance [48], maximum common subgraph [49] and graph
isomorphism [50] for the similarity search and graph matching on the graph structure.
With the development of neural networks, many studies have recently turned similarity
estimation into a learning problem, and a graph neural network is a powerful tool for
learning various structural graph representations [51,52]. However, since the extracted
sudden natural disaster case structures have fewer graph structure nodes, shallower layers
and smaller sizes, which makes the neural network [53] unable to learn effective features,
we used the unsupervised graph edit distance method to learn the similarity between
sudden natural disaster case hierarchies.

For the main problems of the similarity calculations between sudden natural disasters
cases, to deal with sudden natural disaster cases timely and intelligently and to overcome
the one-sidedness and limitations of the existing cases’ text content and hierarchy, we
propose a case similarity calculation with a fused case hierarchy.

3. Disaster Case Analysis

The current “scenario–response” model is the trend in the study of emergency natural
disaster response, and managers need to study the “situation” of the occurrence and the de-
velopment of that current emergency natural disaster [54]. The characteristics of the storm
surge disaster “situation” are that the “situation” is spatially dispersed and temporally
short-lived. Figure 1 shows the decomposition of multiple events in the spatial dimension
of a storm surge disaster case, which shows the spatial distribution of the disaster condi-
tions after the storm surge disaster VM1 ∼ VM8 . The distribution of the disaster is generally
expressed as the information and distribution of the storm-surge-disaster-bearing body,
which is a manifestation of the set of “states”.

We performed the analysis from the perspective of the disposal model of emergency
decision-making in sudden natural disasters, assuming that the fundamental goal of
emergency decision-making is to control, reduce and eliminate the impact of the disaster
around different disaster-bearing bodies. Based on the fundamental goal of emergency
decision-making, we combined the definition and spatial analysis of sudden natural disaster
texts. We believe that the damage of the disaster-bearing body (disaster damage) and the
disaster scenario constitute the core of sudden natural disaster cases. Furthermore, we
propose the concept of “sudden natural disaster cases”.
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Figure 1. Decomposition of events in the spatial dimension in storm surge disaster.

This paper used 281 cases of storm surge disasters in China from 1949 to 2019. We
analyzed the text of sudden natural disaster cases and found that they contained many case
scenarios and disaster damage information. Therefore, in response to the spatial and tempo-
ral distribution characteristics of natural disasters, we constructed “sudden natural disaster
cases” by converting case scenarios and disaster damage into case structure hierarchies
according to the geographical location of natural disasters. We defined a case as a collection
of information, which combined the disaster information suffered by a disaster-bearing
body and the disaster-generating environment in a sudden natural disaster. a sample of
sudden natural disasters from storm surges is shown in Figure 2.

Specifically, a sudden natural disaster case can be represented formally as a triplet
G = {V, E, N}, where V is the set of all nodes of the graph, E is the set of all edges of the
graph and N is the set of all node labels in the graph.

The set V = {VE, VI , VP, VM, VL} is the set of case nodes, VE = {VE1 , VE2 , . . .} is the set
of case ID nodes, VI = {VI1 , VI2 , . . .} is the set of case damage nodes, VP = {VP1 , VP2 , . . .} is
the set of case attribute nodes, VM = {VM1 , VM2 , . . .} is the set of disaster damage nodes
and VL = {VL1 , VL2 , . . .} is the set of disaster geographic location nodes. The set of case
edges E = {< Vi, Vj >, . . . ,< Vm, Vn >, . . .} is the set of directed edges, which is used to
represent the order relation between the case nodes of sudden natural disasters.

The set of case node labels is N = {NI , NP, NM, NL}, where NI = {HaI , PrI , DaI}
is the set of case damage information and the statistical information on dead popula-
tion, affected population, house loss, economic loss, crop damage and overalert tide
value in sudden natural events, consisting of the set of case disaster-bearing bodies
HaI = {HaI1 , HaI2 , . . .}, the set of attributes of the case disaster-bearing body
PrI = {PrI1 , PrI2 , . . .} and the set of data of the case disaster-bearing body
DaI = {DaI1 , DaI2 , . . .}; NP = {ReP, CoP} is the set of case attribute information, the
meteorological attributes and time attributes, etc., at the landing of sudden natural cases,
composed of the set of case attribute types ReP = {ReP1 , ReP2 , . . .} and the set of case
attribute data CoP = {CoP1 , CoP2 , . . .}; NM = {HaM, PrM, DaM} is a disaster damage infor-
mation set and the basic information of a sudden natural disaster event element, composed
of a disaster-damage-bearing body set HaM = {HaM1 , HaM2 , . . .}, the set of attributes of
the damage-bearing body PrM = {PrM1 , PrM2 , . . .} and the data set of disaster-damage-
bearing body DaM = {DaM1 , DaM2 , . . .}; NL = {LoL} is a disaster geographic location
information collection, which is the specific location of the event caused by sudden natural
disasters and it consists of the set of geographic locations LoL = {LoL1 , LoL2 , . . .}. The sets
DaI , CoP, DaM are numerical information and the other nodes are textual information.
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Figure 2. Sample of storm surge disaster cases.

4. Similarity Calculation between Cases

The similarity between cases was obtained by combining the similarity in “case
scenario”, “disaster damage” and “case structure” between two cases. The similarity
in “case scenario” in the case of sudden natural disasters was calculated from the label
data between the case loss node and the case attribute node. The similarity in “disaster
damage” was calculated from the textual information and data information in the label
data. Furthermore, the “case structure” was the geographic location information of the
event, which was transformed into a case hierarchy for the similarity calculation. In other
words, the similarity in the label text and the case structure were calculated and analyzed
in a multihierarchy, multiaspect and multifactor way for the label text and structure of the
cases that constituted sudden natural disasters. The architecture of the similarity model
between natural disaster cases is shown in Figure 3.

4.1. Similarity between Case Scenarios

The “case scenario” mainly contains the natural and disaster-forming attributes of the
disaster [55]. The natural attributes of the storm surge disaster were mainly the statistical
information about the disaster level, landfall time, landfall location, landfall wind speed,
central air pressure and coastal water increase in the case; the disaster-forming attributes of
the storm surge disaster were mainly the statistical information about the dead population,
affected population, housing damage, economic loss, crop damage and excess tide value.
The natural attributes and disaster-forming attributes corresponded to the case loss node
VI and the case attribute node VP in the case, respectively.
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Figure 3. Architecture of the similarity model between natural disaster cases.

Specifically, we used the disaster level (LL), landfall wind speed (WL), central air pres-
sure (PL) and coastal water increase (IL) information for the natural attributes’ similarity
calculation. For disaster-forming attributes followed the Statistical System of Natural Disas-
ter Situation (Minfa [2016] No. 23) and Natural Disaster Statistics (Part 1): Basic Indicators
(GB/T24438.1-2009), and for case damage we used the death population (DC), affected
population (PC), house damage (HC), economic loss (EC), crop damage (CC) and exceeded
warning tide values (SC) for the similarity calculation.

The similarity between the “case scenarios” was calculated by combining the informa-
tion of natural attributes and disaster attributes, which was transferred to the similarity
calculation of the label information in the VI and VP nodes of the disaster case. The formulas
for the natural attributes in the “case scenario” were given by the similarity between disas-
ter levels, similarity between landfall wind speeds and central air pressures and similarity
between coastal water increases, respectively, and the formulas for the disaster attributes
were for the similarity between case damages.

(1) Calculation of disaster level similarity: a storm surge disaster level PLL is gener-
ally divided into four levels: red, orange, yellow and blue, corresponding to level I, level II,
level III and level IV and corresponding to values 1∼4. Thus, the disaster level similarity
between case a and case B is calculated by the formula shown in Equation (1).

sim(Pα
LL, Pβ

LL) = 1−
|Pα

LL − Pβ
LL|

max(Pα
LL, Pβ

LL)
(1)

(2) Landing wind speed and central pressure similarity calculation: landing wind
speed PWL and central pressure PPL are both storm surge disaster environments; the more
similar the landing wind speed and central pressure of cases a and B are to the environment,
the higher their similarity is. The calculation formula is shown in Equations (2) and (3).

sim(Pα
WL, Pβ

WL) = 1−
|Pα

WL − Pβ
WL|

max(Pα
WL, Pβ

WL)
(2)

sim(Pα
PL, Pβ

PL) = 1−
|Pα

PL − Pβ
PL|

max(Pα
PL, Pβ

PL)
(3)
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(3) Coastal water increase similarity calculation: the maximum water increase value
PIL in the storm surge disaster process was divided into five levels: extralarge, large,
relatively large, medium and general, corresponding to level I, level II, level III, level IV
and level V. The specific classification criteria for the levels are shown in Table 1. Coastal
water increase counting in storm surge disasters involves multiple tide gauge sites. We first
counted the number of tide gauge sites and tide gauge site water increase values in cases
a and B; then, according to the corresponding values 1∼5 of the grade, we averaged the
site water increase values and calculated the similarity between coastal water increases in
cases a and B. The calculation formula is shown in Equation (4).

sim(Pα
IL, Pβ

IL) = 1−
|Pα

IL − Pβ
IL|

max(Pα
IL, Pβ

IL)
(4)

Table 1. Storm water increase grade standard

Grade Grade I Grade II Grade III Grade IV Grade V

Water
increase

value
≥251 cm 201∼250 cm 151∼200 cm 101∼150 cm 50∼100 cm

In conclusion, we combined these four calculations results of the disaster level, landfall
wind speed, central air pressure and coastal water increase to derive the case attribute
similarity sim(Nα

P, Nβ
P), and the formula is shown in Equation (5).

sim(Nα
P, Nβ

P) =
sim(Pα

LL, Pβ
LL) + sim(Pα

WL, Pβ
WL) + sim(Pα

PL, Pβ
PL) + sim(Pα

IL, Pβ
IL)

4
(5)

(4) Case damage similarity calculation: death (missing) people IDC, affected popula-
tion IPC, house collapse IHC, direct economic loss IEC, crop damage area ICC and exceeded
warning tide value ISC were divided into four grades (extralarge, large, relatively large, gen-
eral) and the specific classification criteria are shown in Table 2. The case damage similarity
between cases a and B was calculated according to the values 1∼4 corresponding to their
rank, where the formula for calculating the number of fatalities is shown in Equation (6)
and sim(Iα

PC, Iβ
PC), sim(Iα

HC, Iβ
HC),sim(Iα

EC, Iβ
EC), sim(Iα

CC, Iβ
CC) and sim(Iα

SC, Iβ
SC) also can be

calculated by the same formula.

sim(Iα
DC, Iβ

DC) = 1−
|Iα

DC − Iβ
DC|

max(Iα
DC, Iβ

DC)
(6)

Table 2. Criteria for disaster-forming attribute grades in case scenarios.

Grade Grade I Grade II Grade III Grade IV

Death (missing) people ≥100 people 31∼100 people 10∼30 people less than 10 people

Affected population ≥2 million people 1∼2 million people 0.5∼1 million people 0.1∼0.5 million
people

House collapse ≥300,000 houses 200,000∼300,000
houses

100,000∼200,000
houses

less than 100,000
houses

Direct economic loss CNY ≥ 5 billion CNY 2∼5 billion CNY 1∼2 billion <CNY 1 billion

Crop damage area ≥500,000 hectares 200,000∼500,000
hectares

100,000∼200,000
hectares

less than 100,000
hectares

Exceeded warning tide value ≥151 cm 81∼150 cm 31∼80 cm 0∼30 cm
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In conclusion, the six calculation results of death (missing) people, affected population,
collapsed houses, direct economic loss, crop damage area and exceeded warning tide value
were combined to derive the case damage similarity sim(Nα

I , Nβ
I ), and the formula is shown

in Equation (7).

sim(Nα
I , Nβ

I ) =
sim(Iα

DC, Iβ
DC) + sim(Iα

PC, Iβ
PC) + sim(Iα

HC, Iβ
HC) + sim(Iα

EC, Iβ
EC) + sim(Iα

CC, Iβ
CC) + sim(Iα

SC, Iβ
SC)

6
(7)

4.2. Similarity in Disaster Damage

Normally, a disaster case contains multiple “disaster damage” pieces of information.
For example, a storm surge disaster case may contain events such as “46 docks destroyed in
Jiangsu Province”, “275 fishing boats sunk in Zhejiang Province”, etc., where the “disaster
damage” corresponds to the node VM in the case of a sudden natural disaster, and the label
information of the node VM is “46 docks destroyed” and “275 fishing boats sunk”; the label
information contains the disaster’s textual information “docks” and “fishing boats” as the
“disaster damage”-bearing body HaM; “destroyed” and “sunk” are the “disaster damage”-
bearing body attributes PrM; “46 docks” and “275 boats” are the “disaster damage”-bearing
body data DaM.

All the “disaster damage” elements in cases a and B contributed to the similarity
calculated by the textual information of HaM, PrM and the data information of DaM.

4.2.1. Similarity in Textual Information

Both disaster-bearing body information HaM and disaster-bearing body attribute
information PrM in the “disaster damage” information are concepts of the mentioned
disaster domain ontology. The similarity calculation of HaM and PrM can be transformed
into the similarity calculation between concepts of the ontology. In our previous work,
we constructed the storm surge disaster domain ontology by comprehensively referring
to the existing domain ontologies for sudden natural disasters and the National General
Emergency Response Plan for Public Emergencies issued by the State Council and other
emergency management departments [56,57]. Figure 4 shows the hierarchy among some
concepts in the storm surge disaster domain ontology.

In this paper, the similarity between the disaster-bearing body Haα
M of storm surge

disaster case a and the Haβ
M of case B was taken as an example for the calculation of textual

information similarity, which mainly contained the following three steps.
(1) Construct the disaster similarity matrix: HaM: the sets of HaM of the two cases are

Haα
M = {Haα

M1
, Haα

M2
, . . . , Haα

M−m}, m = (1, 2, . . .) and Haβ
M = {Haβ

M1
, Haβ

M2
, . . . , Haβ

M−n},
n = (1, 2, . . .). Then, the following m× n disaster-bearing body similarity matrix MHaM
can be established based on the two HaM sets, and the calculation formula is shown in
Equation (8).

MHaM =


Sim

(
Haα

M1
, Haβ

M1

)
Sim

(
Haα

M1
, Haβ

M2

)
Sim

(
Haα

M2
, Haβ

M1

)
Sim

(
Haα

M2
, Haβ

M2

)
...

Sim
(

Haα
M−m, Haβ

M1

) ...
Sim

(
Haα

M−m, Haβ
M2

)
. . . Sim

(
Haα

M1
, Haβ

M−n

)
. . . Sim

(
Haα

M2
, Haβ

M−n

)
. . .
. . .

...
Sim

(
Haα

M−m, Haβ
M−n

)

 (8)

where Sim(Haα
Mi

, Haβ
Mj
)(i = 1, 2, . . . , m; j = 1, 2, . . . , n) is the similarity between the

disaster-bearing body Haα
Mi

in the set Haα
M and Haβ

Mj
in the set Haβ

M.
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Figure 4. The concept of storm surge disaster domain ontology.

(2) Calculate the value of each element in the similarity matrix: each element of the
matrix MHaM represents the similarity between two concepts, and they can be calculated by
any concept hierarchy method in the domain ontology. The similarity calculation method
based on the domain ontology concept was used to calculate the concept similarity matrix
MHaM for the content based on the amount of concept information within the ontology.
The elements in the matrix MHaM were calculated by the formula shown in Equation (9).

Sim(Haα
Mi

, Haβ
Mj
) =

2IC(Haα
Mi
∩ Haβ

Mj
)

IC
(

Haα
Mi

)
+ IC(Haβ

Mj
)

(9)

where Haα
Mi
∩ Haβ

Mj
is the commonality between two words, which is expressed as the

nearest neighbor common ancestor concept of concepts Haα
Mi

and Haβ
Mj

in the ontology

structure tree, and IC(Haα
Mi
) and IC(Haβ

Mj
) denote the information quantity of concepts

Haα
Mi

and Haβ
Mj

, respectively.
The IC value illustrates the amount of information provided by a concept when it

appears in context [58], and the IC value of the function used the method reported in [59]
to calculate the information content of a concept. The value of the function increases
incrementally with the depth of the ontology, which means a more abstract concept has
a smaller IC value and a more concrete concept has a larger IC value. This approach
ensures that the value of the concept decreases as it moves from the leaf node to the root
node of the hierarchy, and the calculated value is greater for the more concrete concept.
To calculate the concept information content (IC), the formula shown in Equation (10)
was used:

IC(HaMk ) = −log(
|leaves(HaMk )|/|subsumers(HaMk )|+ 1

sumleaves + 1
) (10)

where IC(HaMk ) is the information content of the concept HaMk , and HaMk refers to
a specific concept. |leaves

(
HaMk

)
| is the number of the set composed of all leaf concepts
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under HaMk , |subsumers(HaMk )| is the number of the set composed of all leaf concepts
and all their parent concepts HaMk , and sum_leaves is the number of all leaf concepts in
the storm surge disaster domain ontology.

(3) Calculate the similarity of textual information: after calculating the value of
each element in MHaM, we selected the element with the largest value sim(Haα

Mi
, Haβ

Mj
)

and added it to the setM. Then, we removed all the elements in row i and column j from
MHaM . Repeating the above procedure until the number of elements in the setM gets
to |M| = min(|HaM

α|, |HaM
β|), assuming that the setM = {sim1, sim2, . . . , simN}, the

similarity between the set of disaster-bearing bodies can be calculated by the sum of all
elements of the normalized set A. The corresponding formula is shown in Equation (11).

sim(Haα
M, Haβ

M) =
(|Haα

M|+ |Haβ
M|)∑N

k=1 simk

2|Haα
M| × |Haβ

M|
(11)

In the same way, we can calculate the similarity sim(Prα
M, Prβ

M) between the set of
attributes PrM in cases a and B.

4.2.2. Similarity in Data Information

Considering the different data types in the data set DaM of the disaster-bearing body,
we classified the data information into three types of cases, namely, exact values, definite
intervals and fuzzy intervals, for the calculation of the similarity.

(1) Similarity between exact values: the data of exact value type can be continuous or
discrete, and we used the evolution formula based on the Hamming distance formula [60]
to calculate the similarity of value attributes in this paper. The formula is shown in
Equation (12), where a, b are the specific data information values of concepts C1, C2 and S
denotes the range of these data information values.

sim(C1, C2) = 1− |a− b|
S

(12)

(2) Similarity between definite intervals: a definite interval is a set of real numbers
in a closed interval with definite upper and lower bounds and the data information interval
value of the concept C1 is (c, c′) and for the concept C2, it is (d, d′). The formula for
calculating the similarity between them is shown in Equation (13).

sim(C1, C2) =
(c, c′) ∩ (d, d′)

max(c′, d′)−min(c, d)
(13)

(3) Similarity between fuzzy intervals: fuzzy intervals have no definite upper and
lower bounds, the values of such data information are usually sets and the elements in the
sets are fuzzy concepts corresponding to the concept variables x. In this paper, the intervals
were divided by the trapezoidal affiliation function [61], and the affiliation function was
as in Equation (14), shown in Figure 5. The similarity between the concepts C1 and C2
was set to one in the optimal value interval, and the other intervals were expressed by
the affiliation function relation. The two fuzzy intervals and their overlapping interval
areas were calculated according to the responding affiliation function, and the rate of area
overlapping was the similarity between the fuzzy intervals. The formula is shown in
Equation (15), where g, k are the fuzzy intervals of concepts C1 and C2.

f (x) =



x−min(y)
k1−min(y) ∀x ∈ [min(y), k1)

1 ∀x ∈ [k1, k2]
max(y)−x
max(y)−k2

∀x ∈ (k2, max(y)]

0 other

(14)
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sim(C1, C2) =
g ∩ k

g− k− (g ∩ k)
(15)

Figure 5. Fuzzy interval affiliation function.

The steps to calculate the similarity matrix of the data information were the same as
those of the text information and took the calculation of the similarity sim(Daα

M, Daβ
M) of the

set DaM as an example. We needed to calculate the value of each element in MDaM at first
and select the element with the largest value to add to the setM. Then, we standardized
the sum of all elements of the setM to obtain the final “disaster damage” set DaM of cases
a and B, and the formula is shown in Equation (16).

sim(Daα
M, Daβ

M) =
(|Daα

M|+ |Daβ
M|)∑N

k=1 simk

2|Daα
M| × |Daβ

M|
(16)

4.3. Similarity between the Case Structures

In this paper, we converted the geographic location in disaster cases into a hierarchy
for a multihierarchy similarity calculation, and a case hierarchy sample is shown in Figure 6.
The difference in two cases’ structures was expressed as a sequence of editing operations,
and the sequence of editing operations was the editing operations required when changing
one case to another, such as deleting nodes, inserting nodes, deleting edges and inserting
edges. Then, the case structure similarity between cases a and B was sim(Gα

S, Gβ
S), which

was calculated as shown in Equation (17).

sim(Gα
S, Gβ

S) = 1−
edis(Gα

S, Gβ
S)

max(|Gα
S|, |G

β
S |)

(17)

edis(Gα
S, Gβ

S) = wsubV × subV + wskipV × skipV + wskipE × skipE (18)
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Figure 6. Sample of storm surge hazard case hierarchy.
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In Equation (18), edis(Gα
S, Gβ

S) is the edit distance between graph Gα
S and graph Gβ

S ,
|Gα

S| = |Vα
S |+ |Eα

S|, |Vα
S | denotes the number of nodes in the graph Gα

S, |Eα
S| denotes the

number of edges in the graph Gα
S, subV denotes the set of all nodes to be replaced, skipV

denotes the set of all nodes to be inserted or deleted, skipE denotes the set of all edges to
be inserted or deleted, wsubV denotes the cost weight assigned to the set of replacement
nodes, wskipV denotes the cost weight assigned to the set of nodes to be added or deleted
and wskipE denotes the cost weight assigned to the set of edges associated with the nodes to
be added or deleted. For this group of parameters, we used the experimental best values
wsubV = 1, wskipV = 1, wskipE = 0.5.

4.4. Similarity Calculation between Cases

The similarity between two cases can be obtained by aggregating the label and struc-
ture information of the cases in a multihierarchy, multiaspect and multifactor way. Specifi-
cally, we set the source case a as Gα = (Gα

L, Gα
M, Gα

S) and the target case B as Gβ = (Gβ
L , Gβ

M, Gβ
S).

The similarity between the two cases was calculated by the similarities of the “case scenario”
GL, “disaster damage” GM and “case structure” GS.

The “case scenario” similarity GL can be obtained by combining the multifactor case
attribute similarity sim(Nα

P, Nβ
P) and the case damage similarity sim(Nα

I , Nβ
I ). The “dis-

aster damage” similarity GM can be obtained by combining the multifactor “disaster
damage”-bearing body similarity sim(Haα

M, Haβ
M), “disaster damage”-bearing body at-

tribute similarity sim(Prα
M, Prβ

M) and “disaster damage”-bearing body data similarity

sim(Daα
M, Daβ

M). Then, the similarity sim(Gα, Gβ) between Gα and Gβ was calculated
as shown in Equation (19).

sim(Gα, Gβ) = w1sim(Gα
L, Gβ

L) + w2sim(Gα
M, Gβ

M) + w3sim(Gα
S, Gβ

S) (19)

sim(Gα
L, Gβ

L) = wL1sim(Nα
I , Nβ

I ) + wL2sim(Nα
P, Nβ

P) (20)

sim(Gα
M, Gβ

M) = wM1sim(Haα
M, Haβ

M) + wM2sim(Prα
M, Prβ

M) + wM3sim(Daα
M, Daβ

M) (21)

where sim(Gα, Gβ) is the overall similarity between the two cases, w1, w2 and w3 are the
weights of the aggregation method, wL1 and wL2 are the weights in the “case scenario”,
wM1 and wM2 are the weights in the “disaster damage”, and they satisfy the conditions
of 0 ≤ wL1, wL2 ≤ 1, 0 ≤ wM1, wM2 ≤ 1, 0 ≤ w1, w2, w3 ≤ 1 and wL1 + wL2 = 1,
wM1 + wM2 = 1, w1 + w2 + w3 = 1.

5. Experimental Evaluation
5.1. Experimental Setup

The sudden natural disaster data were the collected storm surge disaster cases in China
from 1949 to 2019, containing 281 storm surge disaster cases with a total of 39,340 case pairs,
including four storm surge disaster grades: red, orange, yellow and blue. a total of
1155 case damage nodes, 1075 case attribute nodes, 5253 disaster damage nodes and
627 disaster geography nodes were extracted.

Eleven domain experts were invited to estimate the similarity between each storm
surge disaster case pair; the domain experts included five domain-expert teachers and six
PhD and graduate students in the field of sudden natural disasters. The domain experts
made judgments based on the values of similarity between cases in four levels of no simi-
larity [0 0.25), low similarity [0.25 0.50), medium similarity [0.50 0.75) and high similarity
[0.75 1.0], respectively. We eliminated one maximum and one minimum value from the
11 estimation results and then averaged the remaining 9 estimation results of each case pair
to get the final manual estimation similarity.

To better evaluate the performance of the aggregation method in this paper, we
used 31,472 case pairs as the training set to determine the best weights for the method
performance results and we used 7868 test case pairs as the input data. In this paper,
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we used a regression analysis [62] to calculate the weights of the case similarity, and we
used 31,472 case pairs and their final manually estimated similarity as input to calculate
the maximum value of the Pearson correlation coefficient between the similarity of the
aggregation method and the similarity of the manual estimation. The formula is shown in
Equation (22).

sim(Gα, Gβ) = w0 + w1sim(Gα
L, Gβ

L) + w2sim(Gα
M, Gβ

M) + w3sim(Gα
S, Gβ

S) + e (22)

where w0 is the constant term and e is the residual term; we finally obtained the best values
of the weights form the experiment as w1 = 0.5972, w2 = 0.2857 and w3 = 0.1171. The for-
mula for calculating the intercase similarity is Equation (23), and the weight coefficients
in Equations (20) and (21) can be calculated similarly, where wL1 = 0.3063, wL2 = 0.6937,
wM1 = 0.1627 and wM2 = 0.8373.

sim(Gα, Gβ) = 0.5972sim(Gα
L, Gβ

L) + 0.2857sim(Gα
M, Gβ

M) + 0.1171sim(Gα
S, Gβ

S) (23)

In this paper, we used the maximum value, mean, standard deviation and Pearson
correlation coefficient of the difference between the similarity of the comparison experiment
algorithm and the similarity of the manual evaluation to compute the performance test
experiments. Furthermore, we assessed the correlation between the similarities derived
from various algorithms and the results obtained from the manual evaluation. The Pearson
correlation coefficient was used to characterize the correlation between two variables, with
values ranging from 0 to 1, and a higher value meaning a greater correlation between the
two. The Pearson correlation coefficient was used as a reference indicator and the formula
is shown in Equation (24).

r = ∑ (x− x̄)(y− ȳ)√
∑ (x− x̄)2 ·

√
∑ (y− ȳ)2

(24)

where x ∈ X, y ∈ Y, x̄ and ȳ are means, the numerator is the covariance of X and Y, and the
denominator is the product of the standard deviation of X and Y.

We used precision, recall and F1 scores to perform accuracy testing experiments on
groups of storm surge disaster levels and compared the performance of this aggregation
method with 10 benchmark methods.

5.2. Analysis of Experimental Results

Based on the fused case structure, the core of the similarity calculation of storm surge
disaster cases had two points, which were the similarity calculation between cases by
fusing multiaspect and multifactor information and the similarity calculation between
cases by fusing the multihierarchy information of case structure. Therefore, the focus in the
experimental design phase was to verify whether adding different aspects, different factors
and multihierarchy information would bring gains. We experimentally tested and verified
the textual-information-based similarity calculation method (sim1), data-information-based
similarity calculation method (sim2), case-scenario-based similarity calculation method
(sim3), disaster-damage-based similarity calculation method (sim4), case-structure-based
similarity calculation method (sim5) and the similarity calculation methods based on case
scenario + disaster damage (sim6), case scenario + case structure (sim7) and disaster damage
+ case structure (sim8). Furthermore, we designed two neural network learning methods,
the Word2vec [63] method (sim10), which can model document information, and the graph
neural network (GNN) [53] method (sim11). These two methods were compared with
the aggregation method (sim9) from this paper, and the comparison results are shown in
Tables 3 and 4.



J. Mar. Sci. Eng. 2022, 10, 1218 15 of 23

5.2.1. Multifactor Analysis

From the experimental results shown in Table 3, it can be seen that the Pearson
correlation coefficients of the aggregation method sim9 proposed in this paper are all higher
than those of the other 10 methods. The similarity calculation methods sim1 based on
textual information and sim2 based on data information are all single-factor methods,
and the similarity calculation methods sim3 based on case scenario, sim4 based on disaster
damage and sim5 based on case structure are all multi-factor methods that only consider
one side. It is observed that the Pearson correlation coefficients of the single-factor methods
are lower than those of the other methods, indicating that the multifactor methods can
represent storm disaster cases better than the single-factor methods.

Table 3. Experimental results of similarity performance test in storm surge disaster cases

Calculation Method of Similarity Expression Max Error Mean Error Standard
Deviation

Pearson
Correlation
Coefficient

Textual information sim1 0.7861 0.2466 0.1804 0.7410
Data information sim2 0.1827 0.3447 0.2785 0.9046
Case scenario sim3 0.2370 0.6120 0.4995 0.9323
Disaster damage sim4 0.3436 0.6321 0.5059 0.9352
Case structure sim5 0.5436 0.1857 0.1320 0.5623
Case scenario + disaster damage sim6 0.2162 0.3429 0.3131 0.9829
Case scenario + case structure sim7 0.4832 0.1207 0.8550 0.7945
Disaster damage + case structure sim8 0.1666 0.4882 0.3119 0.9659
Aggregation method (ours) sim9 0.1760 0.4528 0.3290 0.9886
Word2vec sim10 0.5233 0.1564 0.1157 0.6170
GNN sim11 0.4843 0.1610 0.1362 0.5901

sim1 has a much lower Pearson correlation coefficient than sim2 and the main reason
is that the information extracted from sim1 is the conceptual information about the disaster-
bearing bodies and their attributes in the document. It does not directly reveal the severity
of the disaster and only shows that those disaster-bearing bodies have been damaged by the
storm surge. On the contrary, the data information in sim2 can directly show the severity of
the disaster and sim2 is more effective than sim1, for sim1 only uses textual information.
However, since the data information in the data-based similarity calculation method does
not reflect the specific disaster-bearing body object, it leads to better results when the two
are combined in the disaster-damage-based similarity calculation method.

From Tables 3 and 4, we can see that the similarity experimental results of sim5 are
worse than those of other methods. The reason is that sim5 uses structural information,
which is calculated by the editing distance. It cannot verify whether the disaster events in
two cases are similar or not by directly using the editing distance. In actual storm surge
disaster cases, there are many nodes with different information contents. For example,
139 people died in case a and 2 people died in case B represent one node; the editing
operation of the node operation is similar, but the similarity between the substantial
information contents of the two nodes is very low. Therefore, the combination of structural
and textual information in the sim7 similarity experiment could not lead to a significant
improvement in the effect, as it lacks information about the severity of the storm surge
disaster cases. The results of the experiments are consistent with human cognitive logic:
when evaluating the similarity manually, experts will first judge the similarity of keywords
and data in the text between two cases before judging the similarity between the scenarios
and structures.

From the accuracy test’s experimental results in Table 4, we can see that the similarity
experimental results of red level and blue level have higher accuracy, where the textual
information factor and data information factor can bring obvious accuracy improvement for
the methods. Different disaster levels are classified differently, and the experimental results
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show that the classification method does not distinguish the orange level from the yellow
level significantly, and the effect is worse compared to the accuracy performance of the red
level and the blue level. This is due to the special nature of the dichotomous classification
problem, and adding too many factors to the method does not bring an improvement in
the accuracy rate.

The experimental comparison shows that the improvement of similarity experimental
results of aggregation method sim9 is not caused by a single factor individually, but the
combination of multiple factors leading to the resulting enhancement. The textual infor-
mation factor and the data information factor are the keys to significantly improving the
experimental results. The role of the textual information factor and the data information fac-
tor is to provide the basic feature information for the method to ensure that the method can
successfully learn the similarity-related information. While the case scenario information
and case structure information further enhance the aggregation ability, the basic feature
information is sufficient for the method to distinguish the similarity between different data.
We can see that when multiple factors are available at the same time, the method sim9
obtains the globally optimal result. Furthermore, the result will fall back when any factor
has been removed, so we believe that multiple factors are essential.

Table 4. Experimental results of similarity accuracy test in storm surge disaster cases.

Calculation Method
of Similarity Expression

Red Orange Yellow Blue

P. R. F. P. R. F. P. R. F. P. R. F.

Textual information sim1 71.97 54.52 62.04 63.38 51.73 56.97 68.45 57.59 62.55 73.80 63.63 68.34
Data information sim2 77.21 60.46 67.82 72.24 54.78 62.31 75.11 60.48 67.01 78.32 62.85 69.74
Case scenario sim3 74.71 63.80 68.83 66.16 63.39 64.75 78.10 63.92 70.30 77.65 65.57 71.10
Disaster damage sim4 81.61 67.31 73.77 73.33 66.89 69.96 76.98 65.55 70.81 75.27 67.92 71.41
Case structure sim5 57.34 39.24 46.59 56.61 38.48 45.82 61.31 43.62 50.97 64.94 59.83 62.28
Case scenario + disaster damage sim6 91.79 71.02 80.08 81.83 71.01 76.04 82.58 73.88 77.99 89.46 73.01 80.40
Case scenario + case structure sim7 71.70 58.95 64.70 70.68 59.52 64.62 70.93 52.85 60.57 78.98 62.80 69.97
Disaster damage + case structure sim8 90.73 69.39 78.64 80.03 69.27 74.26 84.84 70.12 76.78 86.87 69.53 77.24
Aggregation method (ours) sim9 92.54 79.42 85.48 82.53 74.64 78.39 85.41 77.78 81.42 90.94 76.20 82.92
Word2vec sim10 86.71 64.21 73.78 80.32 60.17 68.80 76.68 61.24 68.10 77.35 63.18 69.55
GNN sim11 68.72 44.61 54.10 59.41 40.94 48.48 66.54 45.10 53.76 73.24 57.34 64.32

5.2.2. Neural Network Analysis

From Tables 3 and 4, it can be seen that sim11, a method based on a graphical neural
network, has poor experimental results in calculating the similarity between cases. Com-
paring the results of sim11 and sim5, it can be seen that the graphical neural network can
indeed learn the structural information in the cases, and the reasons for its poor accuracy
are similar to the reasons of sim5. The case structure information extracted by sim11 can
only show the hierarchical relation between each disaster event in the case. This hierarchical
relation can only show the geographical location of each disaster damage event and the
relation between them, and it is hard to learn the damage data, casualty data and other
data information factors. The previous experiments through multifactor learning and anal-
ysis showed that only when the text information, data information, scenario information
and case structure information were combined in multiaspect, multifactor and multihier-
archy ways could we get better results. This explains why the sim11 experiments were
less effective.

The similarity experimental results in the neural network method sim10 based on
word vector are much better than those of the method sim11. We think the reason is that
the features of word vector Word2vec are made from the extracted textual information,
which is the feature word vector obtained by a secondary calculation, and it is not the
textual feature of the original document. Word vector Word2vec shows more features of
the text itself; if the feature space is large enough, the model can learn certain knowledge
based on these features to make predictions. In this paper, each type of feature had



J. Mar. Sci. Eng. 2022, 10, 1218 17 of 23

a separate dimension in the feature matrix, and each word in the word vector approach was
a node with 200-dimensional features. When we pooled the word vectors, the information
contained in the word vectors themselves was masked, and the pooled word vectors of
a document were not able to fully characterize the document. The information in the
documents that played a key role in the similarity calculation between cases was masked
a lot by pooling, which led to a worse similarity experiment result of Word2vec than the
aggregation method sim9 with multifactor learning.

6. Example Analysis

Taking storm surge disasters no. 1 and no. 2 as examples, we show the process of
similarity calculation between the two disasters. The relevant information in the two cases
was extracted automatically from case text by the natural language processing technology,
which included the label information of VP, VI , VM, VL and the structure information of the
cases. Figure 7 shows the case of storm surge disasters no. 1 and no. 2.

The label information VP of the storm surge disaster cases is shown in Tables 5 and 6,
each node label NP of a case attribute contains two attribute values of case attribute type
ReP and case attribute data CoP. The label information VI of the storm surge disaster cases
is shown in Tables 7 and 8, the label NI of case damage node in each case contains three
attribute values of case disaster-bearing body HaI , case disaster-bearing body attribute
PrI and case disaster-bearing body data DaI . The label information VM and VL of the
storm surge disaster cases are shown in Tables 9 and 10, the label of disaster damage node
NM in each case contains three attribute values of disaster-damage-bearing body HaM,
disaster-damage-bearing body attribute PrM and disaster-damage-bearing body data DaM,
and the geographical location node label NL contains the attribute value of geographical
location LoM.

Based on the above results, the “case scenario” of storm surge disaster no. 1 contains
11 nodes of VP and VI , its “disaster damage” contains 12 nodes of VM, and the “case
structure” has four layers; the “case scenario” of storm surge disaster no. 2 contains
10 nodes of VP and VI , its “disaster damage” contains 16 nodes of VM, and the “case
structure” has three layers. The similarity in “case scenario”, “disaster damage” and “case
structure” in both cases was calculated from the contents shown in Tables 5–10, and the
aggregated similarity multifactor was 0.8922, using Equation (23).

Table 5. Label information VP of storm surge disaster case no. 1.

Case Attribute ReP CoP

NP_1 Disaster level Yellow
NP_2 Landing wind speed 35 m/s
NP_3 Central air pressure 970 hPa
NP_4 Coastal water increase 100 cm

Table 6. Label information VP of storm surge disaster case no. 2.

Case Attribute ReP CoP

NP_1 Disaster level Yellow
NP_2 Landing wind speed 23 m/s
NP_3 Central air pressure 990 hPa
NP_4 Coastal water increase 132 cm
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Table 7. Label information VI of storm surge disaster case no. 1.

Case Damage HaI PrI DaI

NI_1 People Dead Four people
NI_2 Population Affected 42,900 people
NI_3 House Loss 3280 rooms
NI_4 Economy Loss CNY 1.2106 billion
NI_5 Crops Affected 203,180 hectares
NI_6 Old Town Station Exceeds the warning tide value 2 cm
NI_7 Quarry Bay Exceeds the warning tide value 69 cm

Table 8. Label information VI of storm surge disaster case no. 2.

Case Damage HaI PrI DaI

NI_1 People Dead Twelve people
NI_2 Population Affected 168,330 people
NI_3 House Loss 321 rooms
NI_4 Economy Loss CNY 0.230253 billion
NI_5 Crops Affected 47,333 hectares
NI_6 Xiuying Station Exceeds the warning tide value 30 cm

Table 9. Label information VM and VL of storm surge disaster case no. 1.

Disaster Damage HaM PrM DaM LoL

NM_1 People Affected 3,667,800 people Guangdong Province
NM_2 Population Emergency transfer 42,900 people Guangdong Province
NM_3 House Collapse 3280 rooms Guangdong Province
NM_4 Aquaculture Affected 48,930 hectares Guangdong Province

NM_5 Fishing boat Damage More than 120 boats
Huilai County, Jieyang

City, Guangdong
Province

NM_6 Fishing boat Sank Eight boats
Huilai County, Jieyang

City, Guangdong
Province

NM_7 Direct economy Loss CNY 1.2106 billion Guangdong Province

NM_8 Direct economy Loss CNY 0.557 billion Shanwei City,
Guangdong Province

NM_9 Direct economy Loss CNY 0.417 billion Jieyang City,
Guangdong Province

NM_10 Direct economy Loss CNY 0.1215 billion Chaozhou City,
Guangdong Province

NM_11 People Hurt Five people Hong Kong
NM_12 Boat Damage Two boats Hong Kong
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Figure 7. Storm surge disaster cases no. 1 and no. 2.
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Table 10. Label information VM and VL of storm surge disaster case no. 2.

Disaster Damage HaM PrM DaM LoL

NM_1 People Dead Four people Hainan Province
NM_2 Population Affected 167,590 people Hainan Province
NM_3 House Damage 321 rooms Hainan Province
NM_4 Boat Damage 34 boats Hainan Province
NM_5 Farmland Affected 45,700 hectares Hainan Province
NM_6 Cage culture Damage 155 cages Hainan Province
NM_7 Aquaculture Loss 940 tons Hainan Province
NM_8 Breakwater Damage 246 m Hainan Province
NM_9 Bank protection Damage 48 m Hainan Province
NM_10 Road Damage 900 m Hainan Province
NM_11 Direct economy Loss CNY 0.23 billion Hainan Province
NM_12 People Dead 8 people Guangxi Zhuang Autonomous Region
NM_13 Population Affected 380 people Guangxi Zhuang Autonomous Region
NM_14 Fishing boat Damage 2 boats Guangxi Zhuang Autonomous Region
NM_15 Farmland Flooded 1633 hectares Guangxi Zhuang Autonomous Region
NM_16 Direct economy Loss CNY 0.03 billion Guangxi Zhuang Autonomous Region

7. Summary

Cases of sudden natural disasters contain textual information, data information and ge-
ographic location information, which are difficult to read and understand by computers. In
this paper, we took a holistic approach to consider the comprehensive problems associated
with sudden natural disaster disasters and calculate the similarity between sudden natu-
ral disaster cases by aggregation methods in multihierarchy, multiaspect and multifactor
ways. Furthermore, we comprehensively considered the text content and the geographical
distribution in cases and solved the one-sidedness and limitation of similarity calculation
between cases with case text content and case hierarchy. Meanwhile, we converted the text
information of sudden natural disaster cases into case label information and converted the
disaster damage events into a case structure based on geographic location information. This
can help calculate the similarity of sudden natural disasters and provide corresponding
automated processing methods and reference solutions for natural disaster emergency
managers. The results were verified by storm surge disaster domain experiments, which
showed that the aggregated multihierarchy, multiaspect, multifactor method worked better
compared to other single-factor methods. The case similarity calculated by the aggregated
method was closer to the manually estimated similarity than other methods.

The case similarity calculation method proposed in this paper still needs to be further
refined in the future; the sudden natural disaster domain database needs to be continuously
expanded and more different features need to be found. We will improve the case similarity
calculation by optimizing the sudden natural disaster domain ontology, learning matrix
and weights, to provide a more intelligent and automated disaster analysis and disaster
decision-making.
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