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Abstract: The ocean, one of the five major components of the Earth’s climate system, plays a key
role in climate-forming processes, affecting its change and variability. The ocean influences climate
over a wide range of time–space scales. To explore the climate, its components, interactions between
them and, in particular, the effect of the ocean on weather and climate, researchers commonly use
extremely complex mathematical models of the climate system that describe the atmospheric and
ocean general circulations. However, this class of climate models requires enormous human and
computing resources to simulate the climate system itself and to analyze the output results. For simple
climate models, such as energy balance and similar models, the computational cost is insignificant,
which is why these models represent a test tool to mimic a complex climate system and obtaining
preliminary estimates of the influence of various internal and external factors on climate, its change
and variability. The global mean surface temperature (GMST) and its fluctuations in time serve as
critical indicators of changes in the climate system state. We apply a simple two-box ocean model to
explore the effect of mixed and deep ocean layers on climate-forming processes and especially on
climate change and variability. The effect of mixed and deep ocean layers on GMST is parameterized
via the layers’ effective heat capacities and heat exchange between layers. For the listed parameters,
the sensitivity functions were derived numerically and analytically, allowing one to obtain an idea of
how the mixed and deep ocean layers affect climate change and variability. To study climate change,
a deterministic version of the model was used with radiative forcing parameterized by both stepwise
and linear functions. In climate variability experiments, a stochastic version of the model was applied
in which the radiative forcing is considered as a delta-correlated random process.

Keywords: climate change; climate variability; ocean mixed layer; deep ocean; climate thermal inertia

1. Introduction

Exploring contemporary climate change and assessing its impact on people, commu-
nities, infrastructure, economic activity and natural systems represents one of the most
important challenges of our time [1,2]. This extremely important and topical issue is in
the focus of ongoing discussions not only among the professional communities, but also
among politicians, public figures and the majority of ordinary people. The problem of
climate formation and change under the influence of natural and anthropogenic factors is
undoubtedly interdisciplinary and multifaceted, since the Earth’s climate system (ECS) is a
large-scale hierarchical physical system of extreme complexity, and the main tools for its
study are mathematical climate models numerically implemented on supercomputers (e.g.,
atmosphere-ocean general circulation models or AOGCM’s [3–6]).

In climate theory, a whole range of problems is associated with the assessment of
the functional influence of the ocean on climate formation, its change and variability
(e.g., [7–10]). The ocean, as we know, is one of the five major components of the ECS
influencing climate over a wide range of time–space scales [11]. The ocean, having a huge
heat capacity and being a store of the vast majority of excess heat, largely provides the
property of thermal inertia in the climate system. Due to this property, the climate system
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acquires resilience or slowness to changes in significant (external) factors affecting the
climate, such as, for example, the content of greenhouse gases (GHGs) in the atmosphere.
In the context of the climate change problem, this means that the ocean’s thermal inertia
delays global warming to some extent, and even if GHG emissions remain at current
levels, the surface temperature on our planet will continue to rise (at least for decades or
even centuries) as long as the climate system reaches a new equilibrium state [12–15]. In
climate change and variability studies, the overwhelming majority of coupled atmospheric–
ocean models take into account only the upper mixed layer of the ocean (with different
depth) since this layer modulates the atmosphere–ocean interaction [16,17]. However,
the importance of the deep ocean layers for the global climate system should not be
underestimated as well [18,19], since the deep ocean holds excess heat, therefore affecting
long-term climate formation processes. Generally, the atmosphere and ocean represent
a large-scale interconnected physical system in which the ocean is responsible for the
formation of the low-frequency part of the spectrum of variability and significant time lag
between “action and effect”.

This article is aimed at studying the effect of mixed and deep ocean layers on climate-
forming processes, climate change and variability. To achieve this objective, we use the
conceptual two-box ocean model that describes the influence of mixed and deep ocean
layers of the global mean surface temperature (GMST) [20–22]. This model is essentially
a two-layer energy balance model (EBM) that does not consider the atmosphere. This
assumption is physically justified, since, as can be easily shown [23], the effective heat
capacity of the upper quasi-homogeneous (mixed) layer of the ocean is more than 20 times
greater than the effective heat capacity of the entire atmosphere. In passing, we note that
the original EBM, introduced by Budyko [24] and Sellers [25], belongs to the class of the
simplest climate models. Although complex coupled atmosphere–ocean–land–ice models
that primarily describe the atmospheric and ocean general circulation are the main tools
used in climate research, simplified models such as EBM remain popular among researchers
because they make it possible to quickly and efficiently obtain preliminary estimates of the
influence of the main climate-forming factors on the essential features of climate change
and variability. It has a certain logic behind it, since the response of extremely complex
climate models to external forcing can be described with a few simple parameters, similar
to those of a simple model. Moreover, complex climate models require enormous human
and computing resources to simulate the climate system itself and analyze the outputs.
Meanwhile, for simple climate models, such as being used in this study, the computational
cost is insignificant, which is why these models can be successfully used as test tools to
mimic a complex climate system. In this regard, a recently published paper [26] in which
the performance of a two-box EBM (which is similar to the one used in our study) in
simulating historical and future surface temperature projections from Coupled Model
Intercomparison Project Phase 6 (CMIP6) models was analyzed in detail. To assess the
EBM performance, the authors of this paper used the CMIP6 historical and future shared
socio-economic pathway (SSP) projections for AOGSMs [27]. Results obtained showed
that the EBM prediction errors for future global surface temperature projections differ
significantly between AOGSM, radiative forcings produced by both greenhouse gases and
aerosols, time periods and methods of EBM calibration. According to the authors of [26],
the model performance can be improved by introducing an efficacy factor into the model
equations, as well as by incorporating time variations in climate feedbacks. Nevertheless,
the authors of the article concluded that the two-layer EBM allows for obtaining quite
realistic results for pre-defined climate change scenarios and periods.

The two-box ocean model considered here predicts the evolution of two dependent
variables: the GMST anomaly (deviation form a certain norm) that characterizes the state
of the ocean mixed layer, and the global mean deep ocean temperature (GMDOT) anomaly
that describes the deep ocean state. The change in GMST and its fluctuations serve as a key
indicator of climate change and variability. For this reason, we will explore the sensitivity of
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GMST and its fluctuations with respect to the main parameters characterizing the influence
of the ocean on the Earth’s climate within the framework of a two-box model.

This paper is organized as follows. In Section 2, we present the essential features of
the two-box ocean model used in calculations, its analytic solution and sensitivity study
approach. Results obtained are considered in Section 3. Discussions and concluding
remarks are given in Section 4.

2. Materials and Methods

In this paper, we apply mathematical modeling and dynamical systems sensitivity
analyses to study the effects of mixed and deep ocean layers on GMST and its fluctuations.
All calculations were performed using the two-box ocean model. This model makes it
possible to explore the dependence of climate system response to external radiative forcing
on changes in the model parameters characterizing the thermal inertia of both the mixed
and deep ocean layers. To quantify the influence of variations in the model parameters on
the GMST fluctuations, sensitivity functions derived analytically are used.

2.1. The Model

The mathematical model used consists of two boxes. The first one (upper box) cor-
responds to the mixed ocean layer, and the second one (lower box) represents the deep
ocean. We consider the intermediate layer waters that are several hundred meters deep
and that affect the climate on time scales of years to decades. However, to be consistent
with [20–22], we use the term “deep ocean” for these layers. It is usually presumed that
only the upper few hundred meters of the ocean are involved in exchange of heat with the
atmosphere on decadal time scales. In this case, the solutions of model equations reach an
equilibrium state after several hundred years of integration. On longer time scales, the role
of the deeper layers of the ocean increases.

The state of the model boxes is characterized by the temperature anomalies Ta (upper
box) and To (lower box). In doing so, the change in Ta is identified with change in the GMST.
The model equations in stochastic formulation can be written as follows [20–22,28,29]:

Ca(dTa/dt) = −λTa − γ(Ta − To) + Fd + Fr, (1)

Co(dTo/dt) = γ(Ta − To), (2)

where Ca and Co (both in W yr m−2K−1) are effective heat capacities for the upper and
lower boxes (note that Co � Ca); λ

(
W m−2K−1

)
is the climate feedback parameter char-

acterizing the change in downward top-of-the-atmosphere (TOA) radiative flux for a given
change in surface temperature; γ (W m−2K−1) is a heat exchange coefficient describing the
deep ocean heat uptake; Fd and Fr are, respectively, top of the atmosphere deterministic
and random radiative forcing terms (W m−2). Note that the EBM becomes completely
deterministic if we set the random term Fr to zero.

Using a specially designed fitting procedure, Geoffroy et al. [22] adjusted the two-box
model parameters so that the GMST change calculated by this model matched the GMST
change obtained in CMIP5 (Coupled Model Intercomparison Project, Phase 5) models [16]
for step and linear forcing. The values of model parameters that are consistent with the
CMIP5 multi-model mean are as follows: Ca = 7.3 W yr m−2K−1, Co = 105.5 W yr m−2K−1,
λ = 1.13 W m−2K−1, γ = 0.7 W m−2K−1. It can be easily shown that the mentioned values
of ocean heat capacities Ca and Co are equivalent, respectively, to a 75-meter-thick mixed
layer and a deep-ocean layer depth equal to about 1100 m [22].
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The model (1)–(2) is essentially a forced-damping oscillator, and its response to an
external forcing is determined by fast τf and slow τs relaxation times defined by the
following expressions, respectively [30]:

τf =
β
(

1−
√

1−ω2
0/β2

)
ω2

0
, τs =

β
(

1 +
√

1−ω2
0/β2

)
ω2

0
, (3)

where β = [(λ + γ)CD + γC]/(2CCD) is the damping constant, and ω0 =
√

λγ/CCD is
the (angular) natural frequency of free oscillations. For the used values of model parameters
(see above), we have τf ≈ 3.9 yr and τs ≈ 240 yr.

In the general case, the response of climate system, represented by linear time in-
variant model Equations (1) and (2), to an arbitrary but sufficiently small time dependent
deterministic radiative forcing Fd(t), can be estimated via the so-called impulse response
function h(t) (IRF) as a convolution of two functions, h(t) and Fd(t):

Ta(t) = [h ∗ Fd](t) =
t∫

0

h(τ)Fd(t− τ)dτ, (4)

where the IRF corresponding to the two-box ocean model is given by [30,31].

h(t) =
τf τf

C
(

τf − τf

)[( 1
τf
− γ

CD

)
e−t/τf −

(
1
τs
− γ

CD

)
e−t/τs

]
. (5)

However, for forcing represented by a step or liner function, the solution for the GMST
anomaly Ta as a function of time can be found analytically. For forcing specified by a
step function:

Fd(t) =
{

0 at t < 0
FA at t ≥ 0

, (6)

the corresponding solution is as follows [31]:

Ta(t) =
FA
λ

[
1− α1e−t/τf − α2e−t/τs

]
, (7)

where FA is a given constant.
For a linear forcing F(t) = ηt, where η is a parameter that determines the rate of

forcing growth, the solution takes the form [31]:

Ta(t) = α3e−t/τf + α4e−t/τf s + (η/λ)t− η(Ca + Co)/λ2. (8)

In Expressions (7) and (8), the coefficients α1, α2, α3 and α4 depend on the model
parameters [31].

Deterministic version of the two-box ocean model (Fd 6= 0, Fr = 0) is used to study
the influence of non-random radiative forcing on a climate system, the state of which is
characterized by the GMST anomaly Ta. Meanwhile, the stochastic version of the model
(Fd = 0, Fr 6= 0) is a tool for assessing the impact of random radiative forcing on climate
variability, characterized by the variance of the GMST anomaly σ2

T .
In climate research [32], random radiative forcing is usually considered additive and

is parameterized by Gaussian δ− correlated in time process with zero mean Fs(t) = 0 and
correlation function given by Rr(t2 − t1) = 〈Fr(t1)Fr(t2)〉 = 2Drδ(t2 − t1), where δ is the
Dirac delta function and Dr is the diffusion coefficient defined by the variance of Gaussian
random process σ2

r and its correlation time τr: Dr = σ2
r τr [33,34].

The variance of the GMST anomaly can be found via the power spectral density (PSD)
of GMST fluctuations STT(ω), where ω is an angular frequency of them [28,29]. In turn,
the PSD STT(ω) is expressed through the transfer function H(ω) of the two-box model
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and the power spectrum SSS(ω) of the input signal as follows: STT(ω) = |H(ω)|2SSS(ω).
The model used represents the so-called linear time-invariant (LTI) dynamical system,
since the latter is described by linear ordinary differential equations with constant coef-
ficients [35]. LTI systems can be examined in the frequency domain using the system’s
transfer function H(s), which is the Laplace transform of its IRF h(t) with zero initial con-
ditions: H(s) = L{h(t)}, where L denotes the Laplace transform operator and s = σ + iω
is the Laplace variable also known as a complex frequency. In our case, the input signal is a
random Gaussian process for which the PSD is the Fourier transform of its autocorrelation
function [36]: SSS(ω) =

∫ ∞
−∞ e−iωτ Rr(τ)dτ = σ2

r τr/π. It can be shown that the transfer
function of the two-box ocean model H(ω) is as follows [29].

H(ω) =
γ + iωCo

CCo
[(

ω2
0 −ω2

)
+ i2ωβ

] . (9)

Thus, we have the following formula for PSD of GMST fluctuations:

STT(ω) = |H(ω)|2SSS(ω) =
q2

s
πCCo

γ2 + ω2C2
o(

ω2
0 −ω2

)2
+ 4ω2β2

, (10)

where q2
r = 2Dr = 2σ2

r τr.
Integrating (10) over all positive frequencies, we obtain an expression for the variance

of GMST fluctuations [37]:

σ2
T =

q2
r

2λC
γC + λCo

γC + (γ + λ)Co
. (11)

2.2. Sensitivity Analysis

To study the effect of mixed and deep ocean layers on the GMST and its fluctuations,
we use sensitivity functions that are partial derivatives of the GMST and its variance with
respect to the parameters Ca, Co and γ [38]. Sensitivity functions characterizing the effect
of the above-mentioned parameters on the GMST are defined as follows:

Sp = ∂Ta/∂p|p=p0
, p = (Ca, C0, γ), (12)

where p0 is the base parameter value around which the sensitivity is estimated.
Using sensitivity functions, one can easily evaluate the effect of model parameter

variations on the GMST anomaly change: ∆Ta = δp·Sp
∣∣

p=p0
, where δp is the variation in

the parameter p (sufficiently small departure of the parameter from its base value p0). For
simplicity, the sensitivity functions (12) are estimated numerically.

In contrast, the sensitivity functions that show the effect of model parameter vari-
ations on GMST fluctuations (i.e., on climate variability) are estimated analytically by
differentiating the expression for the variance of GMST fluctuations (11) with respect the
corresponding parameter:

SPSD,p = ∂STT/∂p|p=p0
, p = (Ca, C0, γ), (13)

For example, expression for sensitivity function SPSD,C is obtained by successively
differentiating Equation (11) with respect to the parameter C:

SPSD,C =
1
π

2q2
r

Ca
2C2

D

γ2 + ω2C2
D[(

ω2
0 −ω2

)2
+ 4β2ω2

]2
ω2

Ca
2

[
2β(2βCa − λ− γ)−

(
ω2

0 −ω2
)

Ca

]
. (14)

Similarly, one can derive expressions for sensitivity functions SPSD,Co and SPSD,γ.
Differentiation of Expression (12) with respect to parameters Co and γ leads to too bulky
formulas, which are not presented here for the sake of brevity.
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3. Results

It is assumed that in the two-box ocean model, climate change is associated with a
change in GMST Ta due to deterministic radiative forcing, while climate variability, in turn,
is identified with the variance of GMST fluctuations σ2

T generated by a random radiative
perturbation. The two-box model, both deterministic and stochastic, predicts the evolution
of two dependent variables, Ta and To, that characterize the state of the ocean mixed layer
and the deep ocean state, respectively. The evolution of these variables depends on the
model parameters, including those describing the climate inertia of the upper mixed ocean
layer (parameter Ca), the climate inertia of the deep ocean layers (parameter C0), and the
heat exchange between these layers (parameter γ). Since, as already noted, the behavior of
GMST serves as a key indicator of climate change and variability, we explore the effect of
model parameters characterizing the influence of the ocean on the Earth’s climate in the
two-box model, on GMST and its fluctuations using sensitivity functions.

As mentioned earlier, the model parameters used in calculations were obtained
in [22] via a specifically designed fitting approach for step and linear radiative per-
turbations, namely for an instantaneous quadrupling of carbon dioxide (CO2) content
(F4×CO2 ≈ 7.4 W m2 [39]) and for linear forcing, In order to be consistent with [22], we first
consider the results obtained for abrupt radiative experiments, assuming F = F4×CO2

if t ≥ 0, and second for logarithm relationship between radiative perturbation and
the CO2 content [39], which gives the following approximate relation: F = ηt, where
η = 5.92·10−2 W m−2 yr−1 [28].

3.1. Step Forcing (Deterministic Model)

The evolution of temperature anomalies of the upper and lower boxes, calculated in
1000-year intervals, is shown in Figure 1. Both Ta and T0 increase exponentially toward
the equilibrium Teq determined by the radiative forcing F4×CO2 and climate feedback λ:
Teq = F4×CO2 /λ. In the previous Section, we draw attention to the fact that the model
response to an external radiative perturbation is characterized by fast τf and slow τs
relaxation times defined by (3). An increase in temperature anomaly of the upper box
(mixed ocean layer) is determined by the fast relaxation time (positive effect) and the deep
ocean heat uptake (negative effect), while the increase in temperature anomaly of the lower
box (deep ocean layers) is affected by the slow relaxation time and the deep ocean heat
uptake, both effects having a positive sign.
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Sensitivity functions of GMST and GMDOT anomalies to parameter Ca, denoted
by SCa ,Ta and SCa ,To , respectively, are illustrated in Figure 2. These functions provide an
idea of the nature of upper mixed ocean layer effects on temporal change in Ta and, for
completeness, the change in T0. As Figure 2 shows, the absolute value of SCa ,Ta reaches a
maximum absolute value of 0.23 K2m2W−1yr−1 at t = τf , while the sensitivity function
of To with respect to parameter Ca has a maximum absolute value of 0.014 K2m2W−1yr−1

at t ≈ 26 yr. The sensitivity of both Ta and To with respect to parameter Ca weakens over
time after they reach their maximum values.
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Using sensitivity functions, we can estimate the influence of parametric uncertainty
on changes in the GMST anomaly. Let the uncertainty in the parameter Ca be 1% of its base
value, i.e., δCa = 0.073 W yr m−2K−1. This uncertainty produces the change in the GMST
anomaly of ∆Ta = ±0.073·0.23 = ±0.017 K (this estimation is obtained for the maximum
absolute value of SCa ,Ta ). The effect of variation in the parameter Ca on the GMDOT
anomaly is much less. For the maximum absolute value of the sensitivity function SCa ,To

(see above), the uncertainty in GMDOT generated by 1% uncertainty in the parameter
Ca is ∆To = ±0.073·0.014 = ±1.02·10−3 K, which is 16 times less than ∆Ta. Thus, the
thermal inertia of the upper ocean mixed layer, characterized by the effective heat capacity
Ca, significantly affects the change in GMST anomaly, while its effect on the deep ocean
temperature anomaly To is insignificant, which is physically obvious.

A somewhat different picture emerges when estimating the sensitivity of GMST and
GMDOT anomalies with respect to the thermal inertia of the deep ocean layers Co. Figure 3
illustrates the sensitivity functions of GMST and GMDOT anomalies, denoted by SCo ,Ta

and SCo ,To , respectively, to parameter Co. Both functions are convex downward and reach
their absolute maximum values of 8.84·10−3 and 0.024 K2m2W−1yr−1 at t = τf . For
the 1% of uncertainty in the parameter Co (δCD = 1.055 W yr m−2K−1), the changes in
GMST and GMDOT anomalies are, respectively, as follows: ∆Ta = ±9.34·10−3 K and
∆To = ±23.77 ·10−3 K. Thus, the value of ∆Ta is quite comparable with the value of ∆To.
After the functions SCo ,Ta and SCo ,To have reached their maximum modulo values, they
decrease toward zero at t→ ∞ .
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Figure 3. Sensitivities of global mean surface temperature (red line) and global mean deep ocean
temperature (blue line) anomalies with respect to parameter Co, calculated for step-forcing: (a) over
time interval of 0–1000 years, (b) over time interval of 0–2000 years.

Deep ocean heat uptake, or, in other words, the heat exchange between the mixed and
deep ocean layers, also affects GMST change. As we mentioned earlier, deep ocean heat
uptake contributes to a certain decrease in GMST and, at the same time, some increase in
GMDOT. Sensitivity functions of Ta and To with respect to the parameter γ characterizing
the deep ocean heat uptake, presented in Figure 4, to a certain extent confirm this conclusion.
Thus, for example, the sensitivity function Sγ, Ta reaches an extremum of −1.84 K2m2W−1

at t ≈ τf and retains a negative sign on the time interval t ∈ [0, τs ]. At t ≈ τs, this
sensitivity function transits into the domain of positive numbers, but at the same time, its
values remain relatively small. In turn, the sensitivity function Sγ, To , being positive on
the considered time interval t ∈ [0, 1000 ] yr, increases over time, reaching a maximum of
1.97 K2m2W−1 at t ≈ τs, and then smoothly decreases to the value of 0.34 K2m2W−1. at
t = 1000 yr.
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3.2. Linear Forcing (Deterministic Model)

Since the climate system trajectory is largely determined by external radiative forcing,
we also considered a radiative perturbation described by a linear function of time that
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corresponds to a 1% increase in the atmospheric CO2 content. The graphs of the functions
Ta(t) and T0(t) calculated for this case are shown in Figure 5. As expected, a linear increase
in radiative forcing leads to a continuous increase in both Ta and T0.
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Figure 5. Global mean surface temperature (red line) and global mean deep ocean temperature (blue
line) calculated for linear forcing.

Sensitivity function SCa ,Ta , characterizing the effect of the upper mixed ocean layer
on GMST, shows a rather rapid decrease during about the first 15 years (t ≈ 4τf ), which
continues further, but at a slower rate (see Figure 6). At the same time, the sensitivity
function SCa ,To describing the influence of the upper mixed ocean layer on the deep ocean
temperature decreases monotonically with time from the beginning. After a long time
( t→ ∞ ), the two curves, SCa ,Ta and SCa ,To , that are functions of time, de facto merge,
reaching a value of −4.1× 10−2 K2 m2 W−1 yr−1.
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Figure 7 displays the graphs of sensitivity functions SCo , Ta and SCo , To . The shape of
the curves of these functions undoubtedly differs from similar graphs of functions SCo , Ta

and SCo , To constructed for step-forcing and are shown in Figure 3. However, regardless of
the type of function describing the radiative forcing, the effect of the upper mixed ocean
layer is more pronounced on the temperature regime of the deep ocean than on the near-
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surface temperature. On the time interval tε[0, 1000] yr, both functions gradually decrease,
reaching the stationary mode.
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Finally, let us consider the behavior of sensitivity functions Sγ, Ta and Sγ, To calculated
for radiative forcing parameterized by a linear function of time (see Figure 8). In contrast
to the sensitivity function Sγ, Ta calculated for step-forcing (see Figure 4), in the case with
linear forcing, Sγ, Ta reaches its maximum absolute value of 1.32 K2m2W−1 at t = t f . Then,
the modulus function

∣∣Sγ, Ta

∣∣ decreases monotonically, tending to zero at t→ ∞ . In turn,
Sγ, To is a monotonically increasing function tending to the value of 9.15 K2m2W−1 in the
limit of t→ ∞ . Plots of functions Sγ, Ta and Sγ, To clearly show a significantly greater
sensitivity of T0 to the parameter γ than sensitivity of Ta (see note below).
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can easily determine which variable, Ta or T0, is more or less sensitive to one or another parameter.
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3.3. Random Forcing

A stochastic version of the two-box ocean model is used to estimate the effect of ocean
thermal inertia and deep ocean heat uptake on climate variability, which is identified with
the variance of GMST fluctuations σ2

T induced by random radiative forcing. In turn, random
radiative forcing, as we mentioned above, is parameterized by the delta-correlated in time
random process and is asymptotically estimated as follows [34]: q2

r = σ̃2
r τr, where σ̃2

r is
the radiative forcing variance averaged over the time interval [0, τr]. Assuming τr = 1 yr,
we obtain that q2

r = σ̃2
r . In this study, the standard deviation value of σ̃r ≈ 0.26 W m−2 is

used [28,29]. It is quite obvious that the parameterization of random radiative forcing by
additive delta-correlated in the time process does not fully describe the entire spectrum
of random perturbations both external and internal on the climate system. However, as
shown in a number of previous publications (e.g., [28–30,40–42] and references therein),
models similar to the one used in this study have proven to be a useful climate research
tool able to reproduce climate variability on time scales from years to decades.

Sensitivity functions of power spectral density of GMST fluctuations with respect
to the mixed ocean layer thermal inertia and the deep ocean thermal inertia determined,
respectively, by the effective heat capacities Ca and Co are presented in Figures 9 and 10.
In these figures, the x-axis is plotted on a logarithmic scale, where ν is a regular (linear)
frequency. Sensitivity functions, both SPSD, Ca and SPSD, Co , are highly nonlinear, having
pronounced extrema. For example, the function SPSD, Ca has a geometric shape that resem-
bles an upside-down bell, the top of which corresponds to the temperature fluctuations
with about a 41-year period 1/ν = (λ/2πCa)

−1. This means that interdecadal surface
temperature fluctuations are most sensitive to the thermal inertia of the upper mixed ocean
layer. Therefore, when studying interannual and interdecadal climate variability, models
of the atmosphere–ocean system are mainly used, in which only the upper ocean layer is
described. In turn, the extremum of sensitivity function SPSD, Co , the geometric shape of
which also resembles an inverted bell, is reached at a frequency of surface temperature
fluctuations, the period of which is approximately 1150 years. Thus, when studying climate
variability on intercentury time scales, coupled atmosphere–ocean models should take into
consideration the climate inertia of the deep ocean layers.
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Sensitivity function of power spectral density of GMST fluctuations with respect
to the deep ocean heat uptake SPSD, γ determined by the heat exchange coefficient γ is
illustrated in Figure 11. This figure shows that climate variability on interannual, decadal,
and interdecadal time scales is insignificant. The most sensitive are surface temperature
fluctuations with about a 170-year period. The sensitivity function SPSD, γ has another
extremum corresponding to surface temperature fluctuations, the period of which is about
2250 years. However, in absolute value, this extremum is about four times less than the
first one.
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4. Discussions and Concluding Remarks

In this paper, we have outlined the ability of sensitivity analysis for assessing the effects
of upper and deep ocean layers on climate change and variability, which are identified
with trends in GMST and variance of its fluctuations, respectively. As the main research
tool, a conceptual climate model was used, namely a two-box ocean model in deterministic
and stochastic formulation. To estimate the effects of thermal inertia of the upper and
deep ocean layers and heat exchange between them on GMST trends (climate change), a
deterministic version of the model was used, in which the climate system is affected by
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deterministic radiative forcing, approximated by stepwise and linearly increasing functions.
In turn, the stochastic version of the model was applied to study the effects of mixed and
deep ocean layers and deep ocean heat uptake on the temporal power spectrum of GMST
fluctuations generated by random radiative forcing.

Sensitivity functions calculated via deterministic models give a clear idea of the
GMST sensitivity with respect to model parameters Ca, Co and γ in the time domain.
Figures 2–4 and 6–8 are de facto time-domain graphs showing how GMST sensitivities with
respect to model parameters change with time. In other words, time-domain analyses allow
one to trace temporal dynamics of sensitivity functions and at any instant of time estimate
the effect of variations in model parameters on GMST change. At the same time, using
stochastic model one can calculate sensitivity functions of the power spectrum of GMST
fluctuations with respect to model parameters. Graphs of these functions (Figures 9–11)
show the frequency distribution of sensitivity of GMST variance to model parameters
(recall that climate variability is identified with the variance of GMST fluctuations).

The abrupt −4×CO2 scenario used in this study corresponds to a constant radiative
forcing, which means unaltered concentrations of greenhouse gases in the atmosphere. The
sensitivity functions of GMST to variations in model parameters characterizing the thermal
inertia of the upper and deep ocean layers were calculated for this scenario. Sensitivity
functions allow for quantifying the thermal damping effect of the ocean on climate change
and estimating the influence of the uncertainties in model parameters characterizing the
thermal inertia of the upper and deep ocean layers on the change in GMST at constant
radiative forcing. Analyzing the sensitivity functions, one can conclude that the thickness
of the mixed ocean layer, which, along with the specific heat of sea water, determines the
effective heat capacity of the upper ocean layer, is a critically important parameter that
significantly affects the realistic simulation of climate system response to a constant external
radiative forcing.

It is known that there are rather significant uncertainties in the climate change projec-
tions and long-term predictions of surface temperature trends obtained for given green-
house gas emission scenarios from different complex climate models [43,44]. These un-
certainties arise due to inter-model differences in the description (parameterization) of
major climate-formation physical processes. Some of these uncertainties can be apparently
explained by the differences in the parameterization of the upper layer of the ocean.

The GMST response to abrupt −4× CO2 forcing used in this study and the corre-
sponding sensitivity functions of GMST with respect to thermal inertia of upper and deep
ocean layers and heat exchange between them can be used to estimate the climate system
response to an arbitrary forcing scenario. This can be explained by the fact that an arbitrary
radiative forcing can be approximated by a certain sequence of small stepwise perturba-
tions, and the climate system response to these perturbations in the first approximation
is a linear combination of individual responses [45]. As an example, we considered a
linearly increasing radiative forcing [22]. The sensitivity functions of GMST to variations in
the parameters Ca and Co calculated for this scenario also confirm the thermal damping
effect of the ocean on climate change and the importance of correct parameterization of the
upper ocean layer including its thickness when projecting climate using complex climate
models. The deep ocean heat uptake, characterizing by the parameter γ, is also the thermal
damping mechanism that contributes to a decrease in GMST. However, the significance of
this mechanism is noticeable on centennial time scales.

Thus, in a deterministic approach, sensitivity analysis of climate trends to model
parameters shows how model parameters affect the GMST response on external radiative
forcing over time: the greater the absolute value of the sensitivity function, the greater
the response of the climate system. If on annual and decadal time scales the effect of
thermal inertia of the upper ocean layer prevails over the thermal inertia of the deep ocean
layers and the heat exchange between the layers, then over time, the picture changes
significantly: these physical mechanisms begin to exert an ever greater influence on the
surface temperature response to an external forcing, which is physically quite obvious.
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As is known, random radiative forcing generates surface temperature fluctuations
that contribute to climate variability. Temporal fluctuations in surface temperature are
commonly analyzed by examining its power spectrum, which can be interpreted in terms
of surface temperature variance at the respective frequency (period) of fluctuations. The
effects of ocean thermal inertia and deep ocean heat uptake on climate variability can
be seen from the change in PSD caused by variations in model parameters Ca, Co and γ.
Analysis of sensitivity functions of the power spectrum of GMST fluctuations to variations
in the listed above model parameters calculated under the influence of random forcing on
the climate system confirms the well-known fact that in order to reproduce the essential
features and patterns of climate variability on inter-annual, decadal and inter-decadal time
scales, it is sufficient to take into consideration the thermal inertia of the mixed ocean layer
in climate models (e.g., [46]), while the influence of deep ocean thermal inertia and deep
ocean heat uptake on climate variability is manifested on much larger time scales. All cal-
culated sensitivity functions of the power spectrum to model parameters are characterized
by nonlinearity and significant changes in the considered frequency range. Extrema of
sensitivity functions correspond to the frequency (period) of GMST fluctuations, which are
the most responsive to change in the parameter under consideration. Although the two-box
ocean model is an extremely simplified representation of the global climate system, the
results obtained may be of some interest, at least from a qualitative point of view, for a
better understanding of the effects of ocean thermal inertia and heat exchange between the
upper and deep ocean layers on climate formation processes under the influence of both de-
terministic and stochastic radiative forcings. Our confidence in the validity and plausibility
of the results obtained comes from the fact that, as shown in a number of research papers,
the two-box ocean model and similar models have proven to be useful for studying climate
change (e.g., [20–26,32,45]) and variability (e.g., [22,28,29,32,40–42,45,47,48]) on time scales
from years to decades, since simulation results provide evidence that these models produce
meaningful projections of GMST and its variability.

The application of other reasonable radiative forcing scenarios is unlikely to lead
to qualitatively new results in the estimation of sensitivity functions, since deterministic
forcing does not affect the power spectrum of GMST fluctuations (see Equation (10)), which
is quite correctly reproduced by the two-box ocean model (e.g., [29,49]). It is clear that the
results obtained from deterministic and stochastic models complement each other.

In conclusion, it is advisable to outline the problems that we intend to solve in the
future. A large portion of GMST variability on interannual and decadal timescales is
stimulated by random external forcings, also referred to as climate noise. This noise,
being random in time, can spatially contribute to the formation of some persistent recurring
features in the climate system state. As a result, under certain conditions, positive feedbacks
that exist in multicomponent systems, such as the climate system, can be triggered, which
will lead to the emergence of resonance phenomena. The model used in this study is two-
component. In its current version, the thermocline fluctuations at the interface of the two
layers of the model are not considered; therefore, the occurrence of resonance phenomena
does not seem to be possible. Thus, the study of resonance, hysteresis, bistability and
bifurcations is the area of our future research. At the same time, we intend to incorporate
in the model time-varying feedback mechanisms, which will require further research. To
study all of these problems in depth, we intend to use more complex climate models.
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