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Abstract: A synchronous motion-based control strategy for unmanned aerial vehicle (UAV) landing
on an unmanned surface vehicle (USV) is proposed to address the problem of low accuracy or even
failure of UAV landing on the surface of a USV under wave action. Firstly, the landing marks are
identified and localized based on computer vision; secondly, the USV attitude angle is predicted
based on a bidirectional long-short term memory (Bi-LSTM) neural network to ensure that the
UAV can respond to USV attitude changes in real-time; furthermore, the UAV attitude controller is
designed based on a PID algorithm to realize UAV–USV synchronous motion. The experimental
results demonstrate that the proposed UAV–USV synchronous motion landing scheme with high
landing accuracy is more suitable for the UAV to achieve autonomous landing on a USV in a complex
marine environment.

Keywords: UAV; USV; synchronous motion; landing; Bi-LSTM; PID algorithm

1. Introduction

In the recent years, with the gradual application of the unmanned system on the mar-
itime battlefield, the form of maritime warfare has further developed towards unmanned
combat. As a new type of weapon system in future maritime war, the technological de-
velopment of maritime unmanned systems is of great significance to the maintenance of
national maritime rights and interests [1]. In coastal warfare, an unmanned surface vehicle
(USV) can realize maritime patrols and recharge an unmanned aerial vehicle (UAV). With
the ability of realizing reconnaissance and surveillance of the sky and the beach, a UAV
can complement the advantages of a UAV and USV, thus forming a cooperative combat
system [2,3].

One of the most important aspects of the UAV–USV cooperative warfare system is
the ability of the UAV to land accurately on the USV with changing attitude. However,
due to the impact of the harsh marine environment, as well as the enemy setting up radio
signal interference in the course of combat and other challenges, it is difficult for the UAV
to achieve autonomous landing on a USV. To this end, this paper proposes a UAV–USV
cooperative autonomous landing control strategy based on synchronous motion. The main
contributions of this paper are summarized as follows:

(1) The UAV–USV cooperative autonomous landing method based on synchronous motion
is proposed to improve the landing accuracy of a UAV in the harsh marine environment.

(2) Aiming at the problem that UAV–USV cannot be synchronized in real-time during
the landing process, a USV attitude prediction algorithm based on a bidirectional
long-short-term memory (Bi-LSTM) neural network is proposed.

(3) In order to realize UAV–USV synchronous motion, the UAV pose controller is designed
based on the proportional-integral-derivative (PID) algorithm.

J. Mar. Sci. Eng. 2022, 10, 1214. https://doi.org/10.3390/jmse10091214 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10091214
https://doi.org/10.3390/jmse10091214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-9451-1933
https://orcid.org/0000-0003-2037-319X
https://doi.org/10.3390/jmse10091214
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10091214?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1214 2 of 19

The rest of this paper is organized as follows. Section 2 briefly discusses the related
work. The mathematical model of the UAV–USV synchronous motion landing system
is given in Section 3. The design principles of the Bi-LSTM neural network-based pre-
dictive controller and the PID algorithm-based attitude controller are given in Section 4.
Section 5 verifies the effectiveness and superiority of the UAV–USV synchronous motion
landing strategy proposed in this paper in terms of landing accuracy through simulation
experiments. Finally, Section 6 summarizes the conclusions.

2. Related Works

In this section, we present a brief literature review in order to offer an overview of
research work on aspects related to UAV landing. This review is not meant to be complete,
and it only aims to show how our method differentiates from previous work.

Until now, the autonomous landing of a UAV remains one of the most challenging
tasks. In the process of UAV landing, the precise landing cannot be achieved if only the
global positioning system (GPS) is used for positioning. Landing accuracy can be improved
by combining multi-sensor data fusion techniques, including data fusion of radar altimeter
(RALT) with GPS [4,5], GPS with inertial navigation system (INS) [6], and ultra-wideband
beacons with inertial measurement units [7]. Whereas, the multi-sensor data fusion method
will generate sensor noise, and the installation of additional sensors will exceed the UAV
load, thus reducing flexibility. Therefore, it is important to study an efficient and low-cost
UAV landing strategy for UAV–USV cooperative operations.

With the development of computer vision technology, the vision-based localization
method has been widely used in UAV landing. Due to the uncertainty of the motion
platform, existing studies are based mostly on fixed platform landing. Patruno et al. [8]
proposed a vision-based UAV landing auxiliary algorithm, which can ensure that the
UAV accurately identifies the target and lands autonomously in the cluttered environment.
Lin et al. [9] designed a new vision system to help a UAV land autonomously in light-
limited environments. However, due to the renewed complexity and variability of maritime
combat missions, the landing method of the fixed platform can no longer meet the mission
requirements. Thus, recent research was diverted to the autonomous landing of a UAV on
the moving platform. Zhao et al. [10] proposed a robust visual servo control method to
solve the time delay problem of the UAV landing on the moving platform. Kwak et al. [11]
designed a landing platform with leveling function combined with computer vision, the
platform can enable the UAV to land smoothly even if the landing platform is located
on steep terrain. Gautam et al. [12] developed a logarithmic polynomial closed-loop
speed controller, which enables UAVs to land on the motion platform more accurately.
Niu et al. [13] proposed an autonomous landing system based on vision, which allows
under the condition of no GPS signal UAV to land autonomously on moving unmanned
ground vehicle (UGV). Persson et al. [14] proposed a model predictive control algorithm to
solve the problem of cooperative rendezvous between UAV and UGV, with whose control
strategy, the UAV can also land safely on a mobile UGV under wind disturbance.

However, compared with mobile platforms on land, USVs are subject to wave inter-
ference in the marine environment, which poses a greater challenge for autonomous UAV
landings. Polvara et al. [15–17], by installing landing markers on the USV deck and com-
bining them with deep reinforcement learning, analyzed the landing markers to improve
the accuracy of UAV attitude estimation and further improve the accuracy of UAV landing.
Bochan et al. [18] developed an automatic UAV landing system that combines machine vi-
sion and a nonlinear controller, where the UAV can remotely identify the landing point and
successfully land on a moving USV. Lapandic et al. [19] proposed a cooperative UAV–USV
landing control scheme based on distributed model predictive control, which can update
UAV–USV rendezvous information in real-time to ensure that UAV–USV will arrive at the
rendezvous point synchronously and land successfully. Ross et al. [20] designed a marine
condition predictor to compensate for ship motion, which makes UAV landing on a USV
more smoothly.
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However, under the influence of sea waves, sea winds, and bad weather, the USV
attitude will change at any time. In the final stage of UAV landing, a UAV only relies
on visual guidance to land [16–18] or controls the USV to land in a relatively static situa-
tion [15,20]. In these methods, the UAV does not respond to the attitude change of the USV,
and it cannot always ensure that the UAV can accurately land on the USV. In this paper, a
UAV–USV cooperative autonomous landing control strategy based on synchronous motion
is proposed, which can make the UAV consistent with the attitude of the USV in the final
landing process, improve the landing accuracy of the UAV, and make the UAV realize the
landing operation smoothly and safely.

3. System Modeling

In this section, the mathematical model of UAV–USV synchronous motion and the
pose calculation principle based on the ar_pose visual library [21] are introduced.

3.1. Establishment of UAV–USV Synchronous Movement Coordinate System

The UAV–USV synchronous motion coordinate system (shown in Figure 1) is estab-
lished [22], including the earth coordinate system, the carrier coordinate system, and the
landing mark coordinate system. OE − XEYEZE is the earth coordinate system, defined
by the East-North-Up (ENU). The carrier coordinate system includes the UAV coordinate
system OA − XAYAZA and the USV coordinate system OS − XSYSZS, which is defined by
the Front-Left-Up (FLU). OM − XMYM is the landing mark coordinate system.
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Figure 1. UAV–USV synchronous movement coordinate system. OE − XEYEZE is the earth coordi-
nate system, defined by East−North−Up (ENU). The carrier coordinate system includes the UAV
coordinate system OA − XAYAZA and the USV coordinate system OS − XSYSZS, which is defined
by Front−Left−Up (FLU). OM − XMYM is the landing mark coordinate system.
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In the actual analysis, the carrier coordinate system needs to be converted to the earth
coordinate system for analysis. The conversion matrix is:

RE
B =

cθB cψB cψB sθB sϕB − sψB cϕB cψB sθB cϕB + sψB sϕB

cθB sψB sψB sθB sϕB + cψB cϕB sψB sθB cϕB − cψB sϕB

−sθB sϕB cθB cψB cθB

, (1)

where subscript B represents the carrier coordinate system. s· and c· represent sin(·) and
cos(·), respectively.

3.2. Modeling of UAV

In this paper, the AR Drone 2.0 quadrotor UAV is used as the research object [23,24]. As
shown in Figure 1, (XA, YA, ZA) represents the position of the UAV in the earth coordinate
system; (φA, θA, ψA) is the cross-roll angle, pitch angle, and yaw angle, respectively, which
indicate the direction of the UAV in the earth coordinate system. Without considering
the wind disturbance and other environmental disturbance factors, the UAV is mainly
subjected to thrust for its gravity, air resistance, and four rotor blades. The force analysis of
the UAV is:

mA

ẌA
ŸA
Z̈A

 = RE
B

0
0
T

−
 0

0
mAg

−
 fx

fy
fz

, (2)

where, mA is the mass of UAV, T is the thrust in the direction of the ZA-axis, fx, fy, fz
represent the air resistance in the direction of XA, YA, ZA, respectively. The mathematical
model of the UAV is as follows:

ẌA =
T

mA
(cψAsθAcφA + sψAsφA)−

fx

mA

ŸA =
T

mA
(sψAsθAcφA − cψAsφA)−

fy

mA

Z̈A =
T

mA
cφAcθA − g− fz

mA

φ̇A = pA + qAsφAtθA + rAcφAtθA

θ̇A = qAcφA − rAsφA

ψ̇A = qAsφA sec θA + rAcφA sec θA

, (3)

where s·, c·, t· represent sin(·), cos(·), tan(·); pA, qA, rA is the angular velocity in the car-
rier system.

3.3. Modeling of USV

This paper mainly studies the pitching and rolling motions of the USV caused by
ocean currents, as shown in Figure 1, which represents the position of the USV in the earth
coordinate system, and also represents the azimuth of the USV in the earth coordinate
system. The USV kinematic model is established as follows [25]:

ẊS = uscψScθS + vs[cψSsθSsφS − sψScφS]

+ ws[sψSsφS + cψScφSsθS]
ẎS = ussψScθS + vs[cψScφS + sψSsθSsφS]

+ ws[sθSsψScφS − cψSsφS]
ŻS = −ussθS + vscθSsφS + wscθScφS
φ̇S = ps + qssφStθS + rscφStθS
θ̇S = qscφS − rssφS
ψ̇S = qs(sφS/cθS) + rs(cφS/cθS), θS 6= ±90◦

, (4)
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where [us, vs, ws]
T and [ps, qs, rs]

T represent the linear velocity and angular velocity, respec-
tively, and s·, c·, t· represent sin(·), cos(·), tan(·).

3.4. Pose Calculation

In this paper, the ar_pose computer vision library is used to calculate the pose. During
the UAV landing process, the UAV down-looking camera is used to search for the landing
mark. After obtaining the pixel coordinates of the landing mark (um, vm), the pose calcula-
tion is converted to the (Xm, Ym) coordinates in the earth coordinate system (assuming that
the landing platform height is zero). The pose calculation relationship is:(

XM
YM

)
=

(
cψA −sψA
sψA cψA

)[(
0 ku
kv 0

)(
cu − um
cv − vm

)
+

(
sθA
sφA

)]
ZA +

(
XA
YA

)
, (5)

where cu, cv are the central coordinates of the image, ku, kv are the parameters of the camera,
and the obtained coordinate (XM, YM) is the reference value of the UAV position, and s·, c·
represent sin(·), cos(·).

4. Proposed Method

The overall framework of the method for precise UAV landing on a USV based on
synchronized motion (as shown in Figure 2) is composed of three parts: computer vision-
based positioning is used to ensure that the UAV is always located directly above the
landing mark center during the UAV landing process; a Bi-LSTM neural network is used to
predict the USV attitude angle to ensure that UAVs respond to USV attitude changes in
real-time. The UAV is controlled based on the PID algorithm, which makes the UAV and
USV keep in synchronous movement for an accurate landing.

,m mu v

, ,S S Sf q y

Ar_pose vision 

library pose library pose 

calculation

BiB -Bi-LSTM M Neural Network Attitude Predictor

, ,
P P P

S S Sf q y

,M MX Y
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Landing Algorithm
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Figure 2. The overall framework of the method for precise UAV landing on a USV based on syn-
chronized motion. Computer vision−based positioning to ensure that the UAV is always located
directly above the landing mark center during the UAV landing process; a Bi-LSTM neural network
is used to predict the USV attitude angle to ensure that UAVs respond to USV attitude changes in
real−time; the UAV is controlled based on the PID algorithm, which makes the UAV and USV keep
in synchronous movement for an accurate landing.
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4.1. Predictive Controller

This section introduces the basic principles of long-short-term memory (LSTM) neural
network and bidirectional long-short-term memory (Bi-LSTM) neural network, and use
Bi-LSTM to predict the change of the USV attitude angle.

4.1.1. LSTM Neural Network

In USV motion, there is a strong correlation between attitude angle change and time
series. Based on the historical data on the USV motion attitude, the time series analysis
method can better predict the future attitude change. As a special kind of recurrent neural
network (RNN), the LSTM neural network solves the problem of gradient disappearance
and gradient explosion of RNN in the long-term sequence training process. It can better
remember the time series data and is more suitable for predicting the ship’s attitude [26,27].
The unit structure of LSTM is shown in Figure 3. The LSTM neural network is characterized
by the fact that it contains input gates, forgetting gates, and output gates. These gates are
used to update and discard historical information so that LSTM can perform long-term
memory. The principal formula of the LSTM neural network is as follows:

it = σ(Wi[ht−1, xt] + bi), (6)

ft = σ(W f [ht−1, xt] + b f ), (7)

ot = σ(Wo[ht−1, xt] + bo), (8)

C̃t = tanh(Wc[ht−1, xt] + bc), (9)

where it, ft, ot denote the input gate, the forgetting gate, and the output gate; xt, ht−1, C̃t
represent the input layer parameters at the current time, the hidden layer state at the
previous time, and the temporary state; Wi, W f , Wo, Wc and bi, b f , bo, bc represent the weight
matrix and bias of each door, respectively. σ and tanh are sigmoid functions and hyperbolic
tangent functions, respectively. According to the results of Equations (6)–(9), the current
state Ct and output ht are:

Ct = ft � Ct−1 + it � C̃t, (10)

ht = ot � tanh(Ct), (11)

where � is the element-wise product.
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Figure 3. LSTM neural network structure.
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4.1.2. Bi-LSTM Neural Network

LSTM neural network only considers the influence of a past state on the current
state when predicting a time series. The network ignores the influence of a future state
on the current state, which cannot satisfy the accurate prediction of the USV posture.
The Bi-directional long and short-term memory (Bi-LSTM) neural network [28] is further
developed on the basis of LSTM, which consists of a forward LSTM neural network and
reversed LSTM neural network. The past and future state information can be used to do
the prediction, which can better reflect the trend of the time series, and provides a more
accurate prediction of the ship’s motion attitude [29,30]. The Bi-LSTM neural network
structure is shown in Figure 4.

Forward 

Layer

Output 

Layer

Backward

 Layer

Input 

Layer 1tx -

1th -
h thh 1th +

h

1th -
h thh 1th +

h

tx 1tx +

1ty - ty 1ty +

Figure 4. Bi-LSTM neural network structure.

Combining the hidden layer states obtained in different directions yields the output
layer result yt at time t which is:

yt = [~ht,
←
h t]. (12)

4.2. Pose Controller

In order to better control UAV–USV to keep synchronous motion, this paper designs a
UAV pose controller based on the PID control algorithm [31,32]. The state of the UAV is
xa = [XA, YA, ZA, ẊA, ẎA, ŻA, φA, θA, ψA, φ̇A, θ̇A, ψ̇A]

T . In the process of UAV–USV syn-

chronous movement landing, the expected position is R = [XM, YM, ZS, φ
f
P, θ

f
P, ψP

S ]
T

. It is
necessary to control the UAV to land near the landing sign center and keep it synchronized
with the attitude of the USV.

From the mathematical model of the UAV, it can be seen that the quadrotor UAV has
four control inputs of T, fx, fy, fz, and six degrees of freedom for XA, YA, ZA, φA, θA, ψA. The
number of its degrees of freedom is much larger than the number of control inputs, so the
quadrotor UAV is a typical underactuated control system. For the underactuated quadrotor
UAV, its position XA, YA cannot be driven directly and needs to be driven indirectly by
φA, θA. Therefore, the coupling relationship between different states needs to be used
reasonably when designing the controller. Based on this, the PID controller designed in
this paper is described as follows:

Uφ = Kφ
P(φ

f
P − φA) + Kφ

D(φ̇
f
P − φ̇A) + Kφ

I

∫
(φ

f
P − φA), (13)

Uθ = Kθ
P(θ

f
P − θA) + Kθ

D(θ̇
f
P − θ̇A) + Kθ

I

∫
(θ

f
P − θA), (14)

Uψ = Kψ
P(ψ

P
S − ψA) + Kψ

D(ψ̇
P
S − ψ̇A) + Kψ

I

∫
(ψP

S − ψA), (15)
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UZ = KZ
P (ZS − ZA) + KZ

D(ŻS − ŻA) + KZ
I

∫
(ZS − ZA), (16)

where Uφ, Uθ , Uψ, UZ represent the four control signals of the controller; φ
f
P, θ

f
P represent

the desired attitude, which combines the predicted USV attitude angle φP
S , θP

S with the
position control value φ f , θ f . φ f , θ f are the virtual control signals, which represent the
position of the indirect control UAV in the XA, YA direction. Ki

P, Ki
I , Ki

D(i = φ, θ, ψ, Z, φ f , θ f )
denote the gain parameters of proportional, integral and differential of PID controller. The
specific design is as follows:

φ f = (K
φ f
P (XM − XA) + K

φ f
D (ẊM − ẊA) + K

φ f
I

∫
(XM − XA)) cos ψA

− (K
φ f
P (YM −YA) + K

φ f
D (ẎM − ẎA) + K

φ f
I

∫
(YM −YA)) sin ψA,

(17)

θ f = (K
θ f
P (XM − XA) + K

θ f
D (ẊM − ẊA) + K

θ f
I

∫
(XM − XA)) sin ψ

+ (K
θ f
P (YM −YA) + K

θ f
D (ẎM − ẎA) + K

θ f
I

∫
(YM −YA)) cos ψ.

(18)

In this paper, based on the experience of engineering applications, experiments are
conducted directly in the simulation system to adjust the gain parameters of the PID
controller. Firstly, all gain parameters are initialized to zero, and the integral and differential
links are removed, so that the UAV system becomes a pure proportional adjustment method.
Increasing the Ki

P value until the UAV begins to oscillate slightly; secondly, followed by a
small increase in Ki

I to suppress UAV oscillations until the UAV reaches stability; finally,
the Ki

D value is continuously increased to improve the response speed of the UAV under
the premise of system stability. Simulation experiments are used to continuously adjust
the size of the parameters of each link, so that the UAV can respond to the control signal
quickly and stably. The gain parameters of the PID controller selected for the simulation
experiments in this paper are shown in Table 1.

Table 1. PID parameters of the UAV controller.

i Ki
P Ki

I Ki
D

φ 0.4 0.01 0.3
θ 0.4 0.01 0.28
ψ 0.02 0.01 0.001
Z 0.5 0.05 0.2
φ f 0.4 0.01 0.3
θ f 0.4 0.01 0.28

4.3. UAV–USV Synchronous Motion Landing Algorithm

The principle of UAV–USV synchronous motion landing method is shown in Algorithm 1.
In this paper, we focus on the landing stage of UAV in the UAV–USV collaborative control
process. First, the landing mark is required to be always within the field of vision of the
UAV down-looking camera during the UAV landing. When the UAV height is less than
the altitude threshold h1 (set to 2–3 m), the UAV takes the predicted USV attitude angle as
a reference signal and responds to the USV attitude change in real-time to keep the UAV
and the USV in synchronous motion. At the same time, the UAV is controlled to reduce
the offset with the landing mark center in the XA, YA direction to ensure that the UAV can
land at the center of the landing point. When the UAV offset in the XA, YA direction is
less than the set threshold and the UAV height is less than the height threshold h2 (set to
0.15–0.25 m), the current vertical velocity VZ of the UAV is increased to 10×VZ, and the
UAV will accelerate to land on the USV to complete the autonomous landing task. By this
method, the autonomous landing operation of the UAV can be achieved even if the USV is
affected by the wave-current and produces pitch roll motion.
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Algorithm 1 UAV–USV Synchronous Motion Landing Algorithm

1: while UAV_not_landed do
2: if landing_marker_visible then
3: UAV_altitude←UAV_current_altitude−0.05 m
4: if UAV_altitude<Altitude_threshold_h1 then
5: UAV_roll←USV_predict_roll
6: UAV_pitch←USV_predict_pitch
7: UAV_yaw←USV_predict_yaw
8: UAV_4X← XMarker − XUAV
9: UAV_4Y← YMarker −YUAV

10: if UAV_4X < X_threshold AND UAV_4Y < Y_threshold then
11: UAV_altitude←UAV_current_altitude−0.05 m
12: if UAV_altitude<Altitude_threshold_h2 then
13: UAV_VZ ← 10× UAV_current_VZ
14: UAV_landed_USV← True
15: else
16: UAV_altitude←UAV_current_altitude + 0.05 m
17: end if
18: else
19: UAV_altitude←UAV_current_altitude + 0.05 m
20: end if
21: end if
22: end if
23: end while

5. Simulation Results

In order to verify the effectiveness and superiority of the synchronous motion-based
UAV landing method proposed in this paper, simulation comparison experiments were
conducted. All experiments were conducted under the Ubuntu 14.04.6 system. The simu-
lation simulator used ROS-indigo and Gazebo-2.2.6 platforms [33]. The UAV simulation
platform included an AR Drone quadrotor UAV and tum_simulator simulation control
package. The USV used Kingfisher_USV provided by ROS as the landing platform. In this
paper, the landing logo is identified and located based on the ar_pose visual library. The
4 × 4_8 tag in the ar_pose visual library is designed as the landing logo. To ensure that
the unmanned boat is not tilted by waves during the cyclic motion, the maximum wave
variation simulated is set not to exceed ten degrees [34].

In this paper, several simulation experiments are conducted under different conditions.
The experiment consists of three parts. In the first part, the Bi-LSTM neural network is used
to predict the attitude angle change of the USV; the second part introduces the landing situ-
ation of the UAV under the condition of USV pitching motion, conducts multiple landing
experiments of UAV–USV synchronous movement and UAV–USV conventional movement,
respectively, and compares and analyzes the final experimental results. UAV–USV con-
ventional motion means that the UAV does not respond to USV attitude change, and the
landing process is vertical landing. The UAV–USV conventional motion landing method
can be found in the literature [16]. The third part introduces the landing situation of a UAV
under the condition of USV roll motion, and the experimental process is the same as that of
the second part.

5.1. USV Attitude Prediction

In the marine environment, the effects of USV pitch and roll motions on UAV landing
on a USV are more obvious and needs to be focused on. In this paper, the attitude data
of pitch motion and roll motion generated by the USV running in the simulation system
for 100 s are selected, and the LSTM neural network model and Bi-LSTM neural network
model are used for training and prediction, respectively. The prediction results are shown
in Figure 5.
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(a)

(b)

Figure 5. (a) pitch angle prediction results of USV; (b) roll angle prediction results of USV. The ratio
of the training set to the test set is 8:2, i.e., the first 80 s are the training data and the second 20 s are
test data.

As shown in Figure 5, the ratio of the training set to the test set is 8:2, i.e., the first 80 s
are the training data and the second 20 s are test data. The difference between the predicted
results and the actual USV values is shown in the diagram. In order to better compare the
accuracy of the prediction results, the following evaluation indexes are introduced: Root
Mean Square Error (RMSE), Mean Absolute Errors (MAE), and Mean Absolute Percentage
Errors (MAPE). The results of the comparative analysis of prediction errors are shown in
Table 2 and Figure 6.
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Figure 6. Error statistical histogram of USV attitude angle prediction.
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Table 2. Error comparison of USV attitude angle prediction.

Dataset Model RMSE (°) MAE (°) MAPE (%)

Pitch LSTM 0.0050 0.0038 0.1274
Bi-LSTM 0.0024 0.0020 0.1269

Roll LSTM 0.0086 0.0067 0.6422
Bi-LSTM 0.0018 0.0013 0.1054

The smaller the error evaluation index is, the better the prediction results are. From the
results of Table 2 and Figure 6, the Bi-LSTM neural network prediction model is compared
with LSTM neural network prediction model. The former is used in the pitch angle
prediction results, where evaluation index RMSE, MAE, MAPE decreased 51.27%, 47.44%,
0.4%, respectively; in terms of the roll angle prediction results, the evaluation indexes RMSE,
MAE, MAPE decrease 79.70%, 80.13%, 83.59%, respectively. The results of the evaluation
indexes show that the prediction results of the Bi-LSTM neural network model are more
accurate and can better fit the actual attitude value of USV, which is more suitable for the
UAV–USV synchronous motion landing control method in this paper.

5.2. USV Pitching Motion

This section analyzes the landing situation of a UAV under the pitch motion condition
under the influence of waves. In this scenario, the pitching motion of the USV is greater
than the rolling motion, and the USV moves mainly along the XA direction. Ten UAV–USV
synchronous motion landing experiments and ten UAV–USV conventional motion landing
experiments [16] were conducted separately, and the landing accuracy was analyzed in
comparison. Figure 7 shows the failure situation of UAV landing under the condition of
USV pitching motion using the UAV–USV conventional motion landing method. Figure 8
reflects the three-dimensional trajectories of the UAV and USV, and the variation of UAV-
USV pitch angle. Figure 9 reflects the variation of the UAV landing position under USV
pitching motion. Figure 10 shows the important moments in the simulation of USV pitching
motion. Figure 11 analyzes the landing accuracy of UAV–USV synchronous movement and
conventional movement under the condition of USV pitching motion.

(a) (b) (c) (d)

Figure 7. USV pitching motion−failure situation of UAV landing.The UAV did not respond to the
attitude change of the USV, and the landing process was a vertical landing (a–c). When the USV pitch
angle changed greatly, the UAV collided with the stern of the USV, resulting in the failure of the UAV
landing (c,d).

As shown in Figure 7, the UAV landed using the UAV–USV conventional motion
landing method under the USV pitch motion condition. The UAV did not respond to the
attitude change of the USV, and the landing process was a vertical landing (Figure 7a–c).
When the USV pitch angle changed greatly, the UAV collided with the stern of the USV,
resulting in the failure of the UAV landing (Figure 7c,d).
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(a)

(b)

Figure 8. (a) USV pitching motion−UAV–USV three−dimensional trajectories; (b) the variation of
UAV–USV pitch angle.

Figure 9. The position change of UAV during landing under USV pitching motion. The UAV can land
in pitch motion within 14 s. The landing errors of the UAV final landing point and USV deck center
in the XM, YM direction are 0.0562 m and 0.0117 m, respectively. The two−dimensional Euclidean
distance between the UAV’s final landing point and the USV deck center is 0.0574 m.



J. Mar. Sci. Eng. 2022, 10, 1214 13 of 19

(a) (b) (c)

(d) (e) (f)

Figure 10. UAV landing autonomously on USV, affected only by USV pitching motion. The UAV
altitude does not reach the altitude threshold h1 (set to 2 m), the UAV continues to descend in
altitude (a,b); the UAV altitude is less than the altitude threshold h1, the UAV and the USV attitude
remain synchronized (c,d); the UAV altitude is less than the altitude threshold h2 (set to 0.2 m), the
UAV accelerates to land on the USV (e); the UAV completes landing on the USV operation (f).

As seen in Figures 8–10, the UAV can land in pitch motion within 14 s. The UAV
remains in hover until the landing command is received. When the landing instruction is
sent at time t = 1 s, the UAV rises to a certain altitude to adjust its attitude, and the landing
sign is located in the field of vision. At time t = 2.5 s, when the UAV height is less than
the height threshold h1, it enters the first stage of landing. The UAV takes the predicted
USV elevation angle as the reference signal, keeps real-time synchronization with USV, and
reduces its height. When the UAV moves to 12.5 s, the current UAV height is 0.35 m, and
it will land on the USV at this time. Therefore, the variation of the pitch angle is reduced
accordingly, which is prepared for the smooth landing on the USV. At time t = 14.5 s,
when the UAV enters the second stage of landing, the UAV height is less than the height
threshold h2, the UAV offset in the XA, YA direction is within the threshold range, and the
UAV accelerates to land on the USV deck to complete the landing operation. The landing
errors of the UAV final landing point and USV deck center in the XM, YM direction are
0.0562 m and 0.0117 m, respectively. The two-dimensional Euclidean distance between
the UAV’s final landing point and the USV deck center is 0.0574 m. As shown in Figure 9,
the USV pitching motion will produce the position change in the XA direction, and the
UAV and the USV attitude remain synchronized, so the UAV position will also change
accordingly. At this time, the USV does not occur in roll motion, so the position of the UAV
in the YA direction remains relatively static, which is conducive to the accurate landing of
the UAV.
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Figure 11. Landing accuracy of UAV–USV synchronous movement and conventional movement
under the condition of USV pitching motion.

The landing accuracy of different control strategies can be obtained by calculating the
two-dimensional Euclidean distance between the final landing point of the UAV and the
center point of the USV deck. As shown in Figure 11 (left), the UAV–USV synchronous
motion landing point is located in range 0.2 m × 0.12 m and the UAV–USV conventional
motion landing point is located in range 0.9 m × 0.3 m. To facilitate the analysis, the
mean square error (MSE) is introduced to determine the error from the landing center
point. As shown in Figure 11 (right), the mean MSE of UAV–USV synchronous movement
landing is 0.0731, and the mean MSE of UAV–USV conventional movement landing is
0.3509. According to the analysis results, in the case of USV pitching motion, the UAV–USV
synchronous movement landing method proposed in this paper can achieve more accurate
autonomous landing of the UAV.

5.3. USV Roll Motion

This section analyzes the landing situation of UAV under the roll motion condition
under the influence of waves. In this scenario, the rolling motion of the USV is greater than
the pitching motion, and the USV moves mainly in the YA direction. We perform the same
number of experiments under USV pitching motion. Figure 12 shows the failure situation
of UAV landing under the condition of USV roll motion using UAV–USV conventional
motion landing method. Figure 13 reflects the 3D trajectories of the UAV and USV, and
the variation of UAV–USV roll angle. Figure 14 reflects the variation of the UAV landing
position under USV roll motion. Figure 15 shows the important moments in the simulation
of USV roll motion. Figure 16 analyzes the landing accuracy of UAV–USV synchronous
movement and conventional movement under the condition of USV roll motion.

As shown in Figure 12, the UAV landed using the UAV–USV conventional motion
landing method under the USV roll motion condition. The UAV did not respond to the
attitude change of the USV, and the landing process was a vertical landing (Figure 12a–c).
When the USV roll angle changed greatly, the UAV collided with the side of the USV,
resulting in the failure of the UAV landing (Figure 12c,d).
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(a) (b) (c) (d)

Figure 12. USV roll motion−failure situation of UAV landing.The UAV did not respond to the
attitude change of the USV, and the landing process was a vertical landing (a–c). When the USV roll
angle changed greatly, the UAV collided with the side of the USV, resulting in the failure of the UAV
landing (c,d).

(a)

(b)

Figure 13. (a) USV roll motion−UAV–USV 3D trajectories; (b) the variation of UAV–USV roll angle.
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Figure 14. The position change of UAV during landing under USV roll motion. The landing errors of
the UAV final landing point and USV deck center in the XM, YM direction are 0.02095 m and 0.0289 m,
respectively. The two−dimensional Euclidean distance between the UAV’s final landing point and
the USV deck center is 0.0357 m.

(a) (b) (c)

(d) (e) (f)

Figure 15. UAV landing autonomously on USV, affected by USV roll motion only. The UAV altitude
does not reach the altitude threshold h1 (set to 2 m), the UAV continues to descend in altitude (a,b); the
UAV altitude is less than the altitude threshold h1, the UAV and the USV attitude remain synchronized
(c,d); the UAV altitude is less than the altitude threshold h2 (set to 0.2 m), the UAV accelerates to land
on the USV (e); the UAV completes landing on the USV operation (f).

It can be seen from Figures 13–15 that under the condition of USV roll motion, the UAV
can complete the autonomous landing within 12 s. At time t = 1 s, the UAV receives the
landing command, and the UAV angle is used to adjust the field of vision. At time t = 2 s,
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the UAV height is less than the height threshold h1. The UAV uses the predicted USV roll
angle as the reference signal, and the UAV–USV maintains synchronous movement while
reducing the UAV height. When t = 12 s, the UAV height is less than the height threshold
h2, and the UAV is located above the landing point center, then the UAV accelerates to land
on the USV deck to complete the autonomous landing. The landing errors of the UAV final
landing point and USV deck center in the XM, YM direction are 0.02095 m and 0.0289 m,
respectively. The two-dimensional Euclidean distance between the UAV’s final landing
point and the USV deck center is 0.0357 m. As shown in Figure 14, the USV roll motion will
produce the position change in the YA direction, and the UAV and the USV attitude remain
synchronized, so the UAV position will also change accordingly. At this time, the USV does
not occur in pitch motion, so the position of the UAV in the XA direction remains relatively
static, which is conducive to the accurate landing of the UAV.

Figure 16. Landing accuracy of UAV–USV synchronous movement and conventional movement
under the condition of USV roll motion.

The analysis of the landing accuracy under USV roll motion and pitching motion is
consistent. As shown in Figure 16 (left), the UAV–USV synchronous motion landing point
is located in range 0.06 m× 0.13 m and the UAV–USV conventional motion landing point is
located in range 0.12 m× 0.75 m. As shown in Figure 16 (right), the mean MSE of UAV–USV
synchronous movement landing is 0.0429, and the mean MSE of UAV–USV conventional
movement landing is 0.3361. The analysis results show that the landing accuracy of the
UAV–USV synchronous motion landing method has higher landing accuracy under USV
transverse rocking conditions and is more suitable for autonomous UAV landing in a
complex marine environment.

6. Conclusions and Future Directions

In this paper, a UAV–USV synchronous motion control method for UAV autonomous
landing is studied. The USV attitude prediction controller is designed by a Bi-LSTM neural
network, and the UAV pose controller is designed by a PID algorithm to guarantee the
real-time synchronization movement of the UAV–USV.

In order to verify the advancedness of the proposed method, several sets of com-
parison experiments were conducted between the proposed method and the UAV–USV
conventional motion landing method. UAV–USV conventional motion means that the the
UAV does not respond to a USV attitude change, and the landing process is vertical land-
ing. Simulation results show that compared with the UAV–USV conventional movement
landing method, the UAV–USV synchronous movement landing method can effectively
improve the landing accuracy, which is more suitable for the UAV to realize autonomous
and accurate landing in a harsh marine environment.
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This paper mainly proposes an autonomous UAV landing control strategy without
further optimization of the controller. Future research should focus on developing and
optimizing the controller and comparing it with other control methods (e.g., robust control
or nonlinear control). Due to the complexity of the scenario in which the USV pitch motion
is coupled with the roll motion, the landing of the UAV in this scenario is not discussed
in this paper, which is an essential consideration for future research. In this paper, we
focus on the influence of wave motion on the landing process of the UAV, without further
considering the more complex marine environment such as the sea breeze, which is an
important aspect of future research.
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