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Abstract: How to evaluate the carbon emission efficiency of multimodal transport is an important
issue of public concern, and this article attempts to solve it with a network data envelopment analysis
(DEA) model. DEA is a method to evaluate the efficiency of homogeneous decision-making units
(DMUs). First, this article studies the efficiency decomposition and efficiency aggregation of the
general network structure for DEA model. In efficiency decomposition, the relationship between
system efficiency and division efficiency is discussed; whereas in efficiency aggregation, the division
tendency brought about by the definition of weights is analyzed. Then, a reasonable and single
compromise solution to division efficiency scores is investigated while the system efficiency remains
optimal. Finally, a two-stage network DEA model of rail-water intermodal transport is established
with carbon dioxide (CO2) emissions as an undesirable output. Based on this model, the rail-water
intermodal transport efficiencies of 14 ports in China in 2015 are evaluated by the methods of
efficiency decomposition, efficiency aggregation, and non-cooperation. The results show that Rizhao
Port, Tangshan Port, Nanjing Port, and Zhuhai Port have set an example to other ports. Qinhuangdao
Port, Ningbo-Zhoushan Port, Guangzhou Port, and Beiliang Port need to improve the efficiency of
railway transportation. Beibu Gulf port, Zhanjiang Port, Dalian Port, Lianyungang Port, Yantai Port,
and Yichang Port should optimize their intermodal system. In addition, Yantai Port and Yichang
Port urgently need to improve the port efficiency in low-carbon operation. The network DEA model
constructed in this article can be further applied to the efficiency evaluation of multi-link supply
chains, and the empirical results can provide a reference for the efficiency evaluation of ports in China.

Keywords: network DEA; carbon dioxide; rail-water intermodal transport; undesirable output

1. Introduction

In addition to global warming, glacier melting, and sea level rise, the greenhouse effect
has caused extreme weather disasters such as floods, droughts and hurricanes and thus
become the focus of the world’s attention. Among all the gases leading to the greenhouse
effect, CO2 accounts for the largest proportion and is the primary source of the greenhouse
effect [1]. The transportation sector is one of the major sectors of fossil fuel consumption
and a major source of greenhouse gases like CO2. Global transport emitted 8222 Mt of CO2
in 2019, making it the world’s second-largest source of carbon emissions after electricity
and heat producers, according to data from the International Energy Agency. Therefore,
reasonable planning of the transportation sector and active transformation to a low-carbon
development mode are of great significance to global CO2 emission reduction [2].

In China, roads, railways, waterways, and other modes of transportation all have a
considerable scale, but these modes are unbalanced in proportion. Low-carbon transport
modes such as railways and waterways are underutilized [3]. Compared with a single
method of transportation, multimodal transport has the advantages of larger transporta-
tion capacity, higher operation efficiency, fewer exhaust emissions, and lower cost, and
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has become a preferred transportation method, especially in medium- and long-distance
transportation. Therefore, the development of multimodal transport can not only relieve
traffic pressure and optimize transport structure, but also further enhance the economic
and environmental benefits of transport [4,5]. Multimodal transport can convert carbon
costs into economic benefits. Transportation companies should therefore try to formulate
reasonable transportation plans under the premise of low-carbon economy and low-carbon
transportation, which will largely contribute to the reduction in fossil fuel consumption
and CO2 emissions [6,7]. Multimodal transport has become an important means to achieve
sustainable economic and social development because of its inherent advantages. Rail-
water intermodal transport is a typical representative of multimodal transport. Thus, this
article will carry out a case study based on the rail-water intermodal transport in China.

To further improve operations and reduce transportation carbon emissions, it is im-
portant to identify specific divisions that lead to transportation inefficiencies by evaluating
the efficiency of rail-water intermodal transport. Most existing studies on the efficiency
evaluation of multimodal transport focus on land and air transportation, and few focus
on rail-water intermodal transport. Moreover, the existing studies mainly analyze the
overall situation of the multimodal transport system rather than the internal structure of
the system. The network DEA model can evaluate the relative effectiveness of comparable
units of the same type through linear programming, which has obvious advantages in
analyzing the internal structure and efficiency of the system [8,9]. At present, the DEA
is rarely used to study the internal structure of multimodal transport. Therefore, it is of
great theoretical and practical significance to adopt the network DEA model to evaluate
the efficiency of rail-water intermodal transport. This can expand the application of net-
work DEA. Moreover, it helps to identify inefficient divisions and links, so corresponding
improvement measures can be taken to further reduce CO2 emissions [10].

The research aim of this article is to evaluate the efficiency of rail-water intermodal
transport using a novel network DEA model, identify inefficient divisions, and propose
corresponding improvement measures. In this article, a network DEA model with an
intermediate product and undesirable output is established. The process of rail-water
intermodal transport is divided into two production stages: railway and port. The CO2
emissions from port are regarded as undesirable output. The system and stage efficiency of
rail-water intermodal transport is calculated by the methods of efficiency decomposition,
efficiency aggregation, and non-cooperation.

The rest of this article is arranged as follows. Section 2 is the literature review. Section 3
presents the efficiency decomposition and aggregation in the network DEA model. Section 4
introduces the non-cooperative two-stage network DEA model. Section 5 is an empirical
study on the rail-water intermodal transport in China. Section 6 shows the conclusion and
directions of future research.

2. Literature Review
2.1. Development of the Network DEA Model

Färe and Grosskopf [11] first named the DEA model, considering the system’s internal
structure as the network DEA model. Many scholars have conducted research on network
DEA models with different structural types. For example, Castelli et al. [12] discussed the
decision unit with a two-stage structure, which is a basic model, and Tone and Tsutsui [13]
took a more in-depth study of the basic model and proposed a slacks-based network DEA
model to study intermediate products. Then, Fukuyama and Weber [14] extended the
slacks-based network DEA model by adding undesirable outputs.

The efficiency measurement method of the network DEA model mainly includes
multiplication and addition. Many scholars have studied the application and deficiency
of multiplication and addition. When the network system is a simple series structure
and there is no external input in the second stage, the solution of the multiplication
method is relatively simple. For example, Kao and Hwang [15] proposed a multiplicative
decomposition method for two-stage models, in which the system efficiency is the product
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of the two-stage efficiencies. However, when there is external input in the second stage, the
efficiency evaluation model obtained by the multiplication method is highly nonlinear and
the solution is difficult. To solve this nonlinear model, Chen and Zhu [16] studied second-
order cone programming and demonstrated that it could be used to solve all two-stage
nonlinear network DEA models under the multiplication method.

In addition to the multiplication method, the addition method is also commonly used.
Chen et al. [17] proposed an additive decomposition method for two-stage models, which
was extended to general network structures by Cook et al. [18]. In the addition method,
the system efficiency is a weighted average of the stage efficiencies. Among them, the
weight can represent the relative importance of the stage, and there are different methods
for selecting the weight. Chen et al. [17] and Cook et al. [18] used the ratio of stage input to
total input to represent the weight. Nevertheless, Despotis et al. [19] and Ang and Chen [20]
both demonstrated that the weight selection method proposed by Chen et al. [17] tends to
favor the importance of the second stage. For this problem, Michali et al. [21] proved that
the favor of stage in the two-stage model does not exist under variable returns to scale.

In the research on network DEA models in recent years, some scholars have pro-
posed new efficiency measurement methods and network structure forms. For example,
Wu et al. [22] proposed a heuristic algorithm for transforming a nonlinear model into a
parametric linear model under a non-cooperative framework, and they also proposed
a two-stage network structure with shared input resources. Chao et al. [23] used a dy-
namic network DEA model to study the efficiency of large-container-shipping companies.
Sotiros et al. [24] proposed the notion of dominance in division efficiency in network DEA
models. Lozano and Khezri [25] proposed a minimal improvement method for network
DEA in both the cooperative and the non-cooperative cases. The minimal improvement
method refers to determining the projection direction to minimize the relative distance to
the boundary. Lee [26] defined loss as total input minus total output, and dissected network
systems based on the concept of loss. These new contents provide more possibilities for
the research of network DEA models. Previous studies have analyzed common network
structures and efficiency measurement methods, which have laid the foundation for devel-
oping network DEA models. However, these studies mainly focused on general structures
and cannot be applied to specific industries and production scenarios. This article expands
the method of Kao [27], Michali et al. [21], and Koronakos et al. [28], expands the research
scope, and applies it to the carbon emissions of multimodal transport.

2.2. Application of Network DEA in the Efficiency Evaluation of Transportation Carbon Emissions

Carbon emissions in the transportation sector are a crucial link in the world’s carbon re-
duction process. Using the network DEA model to evaluate the efficiency of transportation
carbon emissions can effectively identify the inefficient divisions within the transporta-
tion system, which is conducive to carbon emission reduction in the transportation sector.
Some scholars have studied the application of the network DEA model in the efficiency
evaluation of carbon emissions from transportation. In the aviation sector, Cui and Li [29]
evaluated the efficiency of 22 international airlines from 2008 to 2012 by using a network
DEA model including both an operational stage and a carbon reduction stage. Based on
efficiency evaluation, Cui [30] calculated the maximum expected output according to the
total reduced carbon emissions of 28 airlines. In the application process, there may be a
special case where the input or output is negative. For this special case, Cui and Jin [31]
adopted a new network DEA model that can handle negative data to measure the carbon
efficiency of 25 global airlines from 2008 to 2018.

In water transportation, the main players include ports, shipping companies, and
administrations. For the ports, Chang and Park [32] proposed a new DEA model for
measuring undesirable outputs such as carbon emissions and applied it to the ports of
South Korea. For the shipping companies, Chen et al. [33] used the network centralized
DEA model to analyze the route resource allocation of a Taiwanese shipping company.
For the administrations, Tovar and Wall [34] applied the DEA model to estimate the
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environmental efficiencies of 28 Spanish port authorities in 2016, with CO2 emissions as an
undesirable output.

In land transportation, for cargo transportation, Liu et al. [35] proposed a parallel
slack-based DEA model and used it to evaluate the overall efficiency of China’s land
transportation sector and the efficiency of railway and road transportation when CO2
emissions are considered. They found an obvious regional imbalance in the environmental
efficiency of land transport in China. For a more in-depth analysis, some scholars combine
the DEA model with other models. Liu et al. [36] combined the non-radial DEA model
with window analysis to measure the energy efficiency of the highway and railway sectors
in 30 provinces in China. They then used the Tobit regression model to analyze the
factors affecting energy environmental efficiency. In addition, for passenger transport,
Kang et al. [37] used a two-stage network DEA model to measure the efficiency of public
transport systems considering CO2 emissions.

At present, the application of network DEA in the efficiency evaluation of transporta-
tion carbon emission is concentrated on a single mode of transport, and the evaluation of
multimodal transport is lacking. Compared with a single mode of transport, multimodal
transport has higher operation efficiency, larger transportation volume, and lower cost. It
can reduce fossil fuel consumption and thus CO2 emissions. Evaluating the carbon emission
efficiency of multimodal transport is conducive to optimizing the transportation structure,
giving full play to the advantages of intermodal transport, and reducing transportation
carbon emissions.

2.3. Carbon Emissions in Multimodal Transport Research

Multimodal transport can improve economic and environmental benefits during trans-
portation and reduce CO2 emissions. Thus, the carbon emission in multimodal transport
has attracted increasing attention from scholars. Some scholars mainly consider the impact
of cost. For example, Kim et al. [38] studied the relationship between transportation cost
and CO2 emissions and proposed to balance the relationship. In transportation costs,
some scholars have conducted research on specific environmental costs. Stanley et al. [39]
introduced environmental costs into the freight dispatching system to form an integrated
network design model and verified the model with an actual railway freight network.
Qu et al. [40] considered the specific CO2 emission cost and constructed a nonlinear pro-
gramming model for demand determination. In addition to costs and carbon emissions,
transportation time is an important factor in multimodal transport. Bauer et al. [41] and
Demir et al. [42] added the analysis of transportation time. Bauer et al. [41] analyzed the
relationship between CO2 emissions, cost, and time; pointed out that a reasonable path can
reduce greenhouse gas emissions in the process of multimodal transport; and established
an optimization model under carbon emission constraints from the perspective of the
government and enterprises. Analyzing the relationship among cost, carbon emission,
and time is conducive to promoting their coordinated development, and modeling them
as an objective function can yield a more direct conclusion. Demir et al. [42] took the
minimum cost, time, and emission as the objective functions, considered the uncertainty of
travel time in a green multimodal transport service network, and then adopted a sample
approximation method to solve. In addition to transportation time, transportation distance
is also an important factor. Accorsi et al. [43] studied the site selection of outlets in the food
supply chain from the perspective of low-carbon economy and discussed the relationship
among carbon emission, cost, and the transportation distance of goods.

Some scholars have compared the carbon emissions of different modes of transporta-
tion. Both the choice of transport mode and the coordination of companies have a certain
impact on CO2 emissions; Benjaafar et al. [44] pointed this out and combined low-carbon
issues with logistics operations, using a mathematical model to demonstrate the signifi-
cance of decision making in logistics operations for carbon reduction. Among all modes of
transport, road transport has the highest carbon emissions; Gerilla et al. [45] demonstrated
this with the example of CO2 emissions from manufacturers to middlemen. To reduce
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road transport to reduce carbon emissions, Liao et al. [46] took carbon emissions as an
optimization objective and designed a transport mode selection model that can reduce road
transport. It is an effective means to replace road transport with other transport modes
such as shipping and railways. Chen et al. [47] focused on coastal shipping services, a
low-carbon alternative to road transport. As for the railways, Rodrigues et al. [48] demon-
strated that the use of railways instead of road transport could significantly reduce the total
carbon emissions from transport, then Rodrigues et al. [49] conducted an empirical analysis
using British container shipping as an example. Compared with single-road transport,
multimodal transport is more effective in reducing emissions. Mostert et al. [50] conducted
a comparative analysis of multimodal transport and road transport from both economic and
environmental aspects, reflecting the advantages of multimodal transport. Then, Heinold
and Meisel [51] conducted large-scale simulations of road transport and multimodal trans-
port and estimated emission rates, further demonstrating the emission reduction effect of
multimodal transport. Among different transport modes, road transport has the highest
carbon emissions, railway and shipping have lower emissions, and multimodal transport
has the most obvious emission reduction effect.

Currently, in the research on the carbon emission of multimodal transport, the network
DEA model is rarely used to evaluate the carbon emission efficiency. Multimodal transport
is a multi-link process, and the links can be regarded as multiple evaluation units. Therefore,
network DEA is suitable for evaluating the efficiency of multimodal transport.

In previous studies, some scholars applied the network DEA model to evaluate the
transportation sector’s carbon emission efficiency, but most focused on a single mode of
transportation. Few scholars have used the network DEA model in the research on the
carbon emission of multimodal transport. This article chooses the network DEA model to
evaluate the carbon emission efficiency of multimodal transport for these reasons: First,
DEA is widely used to measure the efficiency of decision-making units relative to the
production frontier. Its most significant advantage is that it is nonparametric, allowing
multiple inputs and outputs to be included in the production model. Second, compared
with other methods, network DEA considers the intermediate products and the relationship
between sub-divisions and provides more diagnostic information and a more detailed
analysis level for the system. The network DEA model’s efficiency evaluation results are
also considered more effective [13,52]. Third, the inefficient rail-water intermodal transport
system and the corresponding inefficient divisions can be found using the network DEA
model. The inefficient divisions are the resources for the whole system’s inefficiency, which
helps propose targeted improvement measures.

The possible innovations of this article are as follows. First, this article studies the
efficiency decomposition and efficiency aggregation of the general network structure for the
DEA model. In efficiency decomposition, the relationship between system efficiency and
division efficiency is discussed, whereas in efficiency aggregation, the division tendency
brought about by the definition of weights is analyzed. Second, a reasonable and single
compromise solution for the division efficiency score is investigated under the condition
that the system efficiency of the multi-stage network DEA model remains optimal. Third,
the CO2 emission efficiency of rail-water intermodal transport is evaluated by using the
efficiency decomposition, efficiency aggregation, and non-cooperative methods of the
network DEA model.

3. Efficiency Decomposition and Aggregation in the Network DEA Model

The system’s internal structure contains intermediate products and the relationships
between sub-divisions, and the model considering the internal structure can provide more
diagnostic information and a more detailed analysis level. The efficiency evaluation results
are also considered to be more accurate. Ignoring the internal structure of the system can
lead to different and sometimes misleading results [13,52]. To evaluate the efficiency of a
rail-water intermodal transport system with and without considering the internal structure,
respectively, the methods of efficiency decomposition and efficiency aggregation were
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selected for the study. The efficiency decomposition measures the system efficiency from
the inputs supplied from outside and the outputs produced to outside, and then derives
the relationships between the system efficiency and the division efficiencies. The efficiency
aggregation defines the relationships first, and then measures the system and division
efficiencies based on these [27].

Consider the general structure for network systems composed of Q divisions in
Kao [27]. Denote Xq

ij and Yq
sj as the ith input, i ∈ {1, 2, . . . , I}, supplied from outside, and

the sth final output, s ∈ {1, 2, . . . , S}, produced from the qth division, q = 1, . . . , Q, of the
jth DMU, j = 1, . . . , n, respectively. Further, denote Zab

gj as the gth intermediate product
produced by division a for division b to use, g ∈ {1, 2, . . . , G}. Denote vi, es, and wg as the
weights of variables and uq as the free variable under variable returns to scale. The specific
structure is shown in Figure 1.
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3.1. Efficiency Decomposition

The input-oriented efficiency decomposition model for measuring the system efficiency
under variable returns to scale can be formulated as:

ED∗
o = max

∑Q
q=1(∑S

s=1 esYq
so+uq)

∑Q
q=1 ∑I

i=1 viX
q
io

s.t. Eqj =
∑S

s=1 esYq
sj+∑G

g=1 wg

(
∑Q

b=1 Zqb
gj

)
+uq

∑I
i=1 viX

q
ij+∑G

g=1 wg(∑
Q
a=1 Zaq

gj )
≤ 1

uq free in sign q = 1, . . . , Q j = 1, . . . , n
vi, es, wg ≥ 0

(1)

The objective function ED
o of the model (1) is the ratio of the final output to the

outside input. Each constraint represents the division efficiency Eqj, respectively. Note
that the multipliers v, e, and w of X, Y, and Z are the same in all divisions, and the
same intermediate product Z has the same multiplier w no matter whether it plays the
role of an input or output. Because all the intermediate inputs are equal to all the in-
termediate outputs, ∑Q

q=1

[
∑G

g=1 wg(∑
Q
a=1 Zaq

gj )
]
= ∑Q

q=1

[
∑G

g=1 wg(∑
Q
b=1 Zqb

gj )
]
. The con-

straint
∑Q

q=1

(
∑S

s=1 esYq
sj+uq

)
∑Q

q=1 ∑I
i=1 viX

q
ij

≤ 1 is redundant because it can be derived from the division

efficiency constraint.

Definition 1. DMUo is considered to be system-efficient if and only if ED∗
o = 1.

Kao [27] discussed the relationship between system efficiency and division efficiency in three
special network structures; this article will discuss the relationship between system efficiency
and division efficiency in the general network structure. Because ∑Q

q=1

[
∑G

g=1 wg(∑
Q
a=1 Zaq

gj )
]
=
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∑Q
q=1

[
∑G

g=1 wg(∑
Q
b=1 Zqb

gj )
]
, for the DMUo:

[
∑Q

q=1 ∑I
i=1 viX

q
io −∑Q

q=1

(
∑S

s=1 esY
q
so + uq

)]
=

∑Q
q=1

[
∑I

i=1 viX
q
io + ∑G

g=1 wg(∑
Q
a=1 Zaq

go)−
(

∑S
s=1 esY

q
so + uq

)
−∑G

g=1 wg(∑
Q
b=1 Zqb

go)
]
. Divide

both sides of this formula by ∑Q
q=1 ∑I

i=1 viX
q
io at the same time and the relationship between

system efficiency and division efficiency can be obtained as follows:(
1− ED

o
)
= ∑Q

q=1
(
1− Eqo

)
P′q

where P′q =
∑I

i=1 viX
q
io+∑G

g=1 wg(∑
Q
a=1 Zaq

go)

∑Q
q=1 ∑I

i=1 viX
q
io

(2)

The three network systems mentioned in Kao [27] also meet Formula (2).

3.2. Efficiency Aggregation

In efficiency decomposition, the system efficiency is the ratio of the final output to
the outside input. In efficiency aggregation, system efficiency is defined as a function of
division efficiencies. For the additive form, the system efficiency is defined as a weighted
average of the division efficiencies, EA

o = ∑Q
q=1 PqEqo, where Pq ≥ 0, with ∑Q

q=1 Pq = 1.
Kao [27] defined the weight associated with a division as the proportion of the aggregate

input of this division in that of all divisions, that is, Pq =
∑I

i=1 viX
q
io+∑G

g=1 wg(∑
Q
a=1 Zaq

go)

∑Q
q=1

[
∑I

i=1 viX
q
io+∑G

g=1 wg(∑
Q
a=1 Zaq

go)
] .

Ang and Chen [20] and Despotis et al. [19] showed that, under constant returns to
scale, this definition of the weights results in a non-increasing relationship between them,
i.e., P1 ≥ P2, for some network systems. This results in giving higher priority to the
first division.

Due to this problem, this article will study the weighting relationship under variable
returns to scale. The system efficiency is:

EA
o = ∑Q

q=1 PqEqo

= ∑Q
q=1

{
∑I

i=1 viX
q
io+∑G

g=1 wg

(
∑Q

a=1 Zaq
go

)
∑Q

q=1

[
∑I

i=1 viX
q
io+∑G

g=1 wg

(
∑Q

a=1 Zaq
go

)] × ∑S
s=1 esYq

so+∑G
g=1 wg

(
∑Q

b=1 Zqb
go

)
+uq

∑I
i=1 viX

q
io+∑G

g=1 wg

(
∑Q

a=1 Zaq
go

)
}

=
∑Q

q=1

[
∑S

s=1 esYq
so+∑G

g=1 wg(∑
Q
b=1 Zqb

go)+uq

]
∑Q

q=1

[
∑I

i=1 viX
q
io+∑G

g=1 wg(∑
Q
a=1 Zaq

go)
]

(3)

The efficiency aggregation model is as follows:

EA∗
o = max

∑Q
q=1

[
∑S

s=1 esYq
so+∑G

g=1 wg(∑
Q
b=1 Zqb

go)+uq

]
∑Q

q=1

[
∑I

i=1 viX
q
io+∑G

g=1 wg(∑
Q
a=1 Zaq

go)
]

s.t. Eqj =
∑S

s=1 esYq
sj+∑G

g=1 wg(∑
Q
b=1 Zqb

gj )+uq

∑I
i=1 viX

q
ij+∑G

g=1 wg(∑
Q
a=1 Zaq

gj )
≤ 1

uq free in sign q = 1, . . . , Q j = 1, . . . , n
vi, es, wg ≥ 0

(4)

Applying the Charnes–Cooper transformation [53], the model (4) can be transformed
into a linear one and solved.

Definition 2. DMUo is considered to be system-efficient if and only if EA∗
o = 1.

According to the inequality constraint of the model (4), the following formula can
be obtained:

I

∑
i=1

viX
q
ij +

G

∑
g=1

wg(
Q

∑
a=1

Zaq
gj ) ≥

S

∑
s=1

esY
q
sj +

G

∑
g=1

wg(
Q

∑
b=1

Zqb
gj ) + uq (5)
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Consider any two divisions, i.e., q1 and q2, using Formula (5), and the following
inequality can be obtained:

Pq1 − Pq2

=
∑I

i=1 viX
q1
ij +∑G

g=1 wg(∑
Q
a=1 Z

aq1
gj )

∑Q
q1=1

[
∑I

i=1 viX
q1
ij +∑G

g=1 wg(∑
Q
a=1 Z

aq1
gj )

]− ∑I
i=1 viX

q2
ij +∑G

g=1 wg(∑
Q
a=1 Zaq2

gj )

∑Q
q1=1

[
∑I

i=1 viX
q1
ij +∑G

g=1 wg(∑
Q
a=1 Z

aq1
gj )

]
=

∑I
i=1 viX

q1
ij +∑G

g=1 wg(∑
Q
a=1 Z

aq1
gj )−∑I

i=1 viX
q2
ij −∑G

g=1 wg(∑
Q
a=1 Zaq2

gj )

∑Q
q1=1

[
∑I

i=1 viX
q1
ij +∑G

g=1 wg(∑
Q
a=1 Z

aq1
gj )

]
≥ ∑S

s=1 esY
q1
sj +∑G

g=1 wg(∑
Q
b=1 Z

q1b
gj )+uq1−∑I

i=1 viX
q2
ij −∑G

g=1 wg(∑
Q
a=1 Zaq2

gj )

∑Q
q1=1

[
∑I

i=1 viX
q1
ij +∑G

g=1 wg

(
∑Q

a=1 Z
aq1
gj

)] = H

(6)

In inequality (6), for convenience, use H to represent the last fraction. The denominator
of H is positive, and the sign of the numerator depends on the values of the optimal weights
and the scalar uq. Therefore, the sign of H is different for the different DMUs. That means
that there is no non-increasing relationship between weights, and the definition of the
weights will not give higher priority to any division under variable returns to scale.

In efficiency aggregation, the system efficiency is a weighted average of division
efficiencies, and Kao [27] defined the weight as a proportion. Under constant returns to
scale, this definition will give higher priority to some divisions for some network systems.
However, under variable returns to scale, this definition will not lead to any tendency in
the production process [21]. As such, the empirical study is carried out under variable
returns to scale.

3.3. A Single Compromise Solution for the Division Efficiency Score

In a network structure, through the evaluation of system efficiency and division
efficiency, inefficient divisions that affect the system efficiency can be identified, and
targeted improvement suggestions can be put forward. However, the division efficiency
scores may not be unique when the system efficiency is optimal. The non-uniqueness of
division efficiency is not conducive to the identification of inefficient divisions, so it is
necessary to find a way to obtain a reasonable compromise solution for division efficiency.
Koronakos et al. [28] proposed a compromise programming method to obtain a reasonable
compromise division efficiency. This article adopts the weighted min–max method to
make the compromise division efficiency as close as possible to the highest efficiency score
that the division can achieve and as far away from the lowest efficiency score as possible.
Koronakos et al. [28] analyzed 2 and 3 divisions, and we now consider multiple divisions.
The following section takes the efficiency decomposition of a multi-division series structure
as an example to study.

Consider a series network structure with Q divisions, as shown in Figure 2. Denote Xij
as the ith outside input in the first division, i ∈ {1, 2, . . . , I}, of the jth DMU, j = 1, . . . , n,
respectively, and Ysj as the sth final output in the Qth division, s ∈ {1, 2, . . . , S}. Further,
denote Zq

gj as the gth intermediate product produced by the qth division for the q + 1th
division to use, g ∈ {1, 2, . . . , G}. Denote vi, es, and wg as the weights of the variables and
v′i, e′s, and w∗g as the corresponding weights after Charnes–Cooper transformation.
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Figure 2. A series network structure.

Using the efficiency decomposition model for measuring the system efficiency (model 1),
the optimal system efficiency E∗o can be obtained. By maximizing the efficiency of a division
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under the condition of keeping the system efficiency optimal, the highest efficiency score
E+

q′o of the division can be obtained. When q′ = 2, . . . , Q− 1, the specific model is as follows:

E+
q′o = max

∑G
g=1 wq′

g Zq′
go

∑G
g=1 wq′−1

g Zq′−1
go

s.t. E1j =
∑G

g=1 w1
gZ1

gj

∑I
i=1 viXij

≤ 1

Eqj =
∑G

g=1 wq
gZq

gj

∑G
g=1 wq−1

g Zq−1
gj

≤ 1 q = 2, . . . , Q− 1

EQj =
∑S

s=1 esYsj

∑G
g=1 wQ−1

g ZQ−1
gj
≤ 1

j = 1, . . . , n
∑S

s=1 esYso

∑I
i=1 viXio

= E∗o
vi, es, wg ≥ 0

(7)

When q′ = 1, the objective function is E+
1o = max

∑G
g=1 w1

gZ1
go

∑I
i=1 viXio

. When q′ = Q, the

objective function is E+
Qo = max ∑S

s=1 esYso

∑G
g=1 wQ−1

g ZQ−1
go

. The constraints remain the same.

Using the Charnes-Cooper transformation, the linear form of model (7) is as follows:

E+
q′o = max ∑G

g=1 w∗q
′

g Zq′
go

s.t. ∑G
g=1 w∗q

′−1
g Zq′−1

go = 1
∑G

g=1 w∗1g Z1
gj −∑I

i=1 v′iXij ≤ 0

∑G
g=1 w∗qg Zq

gj −∑G
g=1 w∗q−1

g Zq−1
gj ≤ 0 q = 2, . . . , Q− 1

∑S
s=1 e′sYsj −∑G

g=1 w∗Q−1
g ZQ−1

gj ≤ 0
j = 1, . . . , n

∑S
s=1 e′sYso

∑I
i=1 v′i Xio

= E∗o
v′i, e′s, w∗g ≥ 0

(8)

Similarly, the lowest efficiency score E−q′o of each division can be obtained while
keeping the system efficiency optimal. When q′ = 2, . . . , Q − 1, the specific model is
as follows:

E−q′o = min ∑G
g=1 w∗q

′
g Zq′

go

s.t. ∑G
g=1 w∗q

′−1
g Zq′−1

go = 1
∑G

g=1 w∗1g Z1
gj −∑I

i=1 v′iXij ≤ 0

∑G
g=1 w∗qg Zq

gj −∑G
g=1 w∗q−1

g Zq−1
gj ≤ 0 q = 2, . . . , Q− 1

∑S
s=1 e′sYsj −∑G

g=1 w∗Q−1
g ZQ−1

gj ≤ 0
j = 1, . . . , n

∑S
s=1 e′sYso

∑I
i=1 v′i Xio

= E∗o
v′i, e′s, w∗g ≥ 0

(9)

When q′ = 1 or Q, the model is similar to the highest efficiency. Thus, when the system
efficiency is kept optimal, the highest efficiency score E+

q and the lowest efficiency score
E−q of each division are obtained, q = 1, 2, . . . , Q. Note that the division efficiency score is
unique when E+

q and E−q are equal. Then, the weighted min-max method is used to obtain
a reasonable compromise division efficiency. The specific model is as follows:
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min
{

max
[

λ1

(
E+

1o −∑G
g=1 w∗1g Z1

go

)
, λ2

(
E+

2o −
∑G

g=1 w∗2g Z2
go

∑G
g=1 w∗1g Z1

go

)
, . . . , λQ

(
E+

Qo −
∑S

s=1 e′sYso

∑G
g=1 w∗Q−1

g ZQ−1
go

)]}
s.t. ∑I

i=1 v′iXio = 1
∑G

g=1 w∗1g Z1
gj −∑I

i=1 v′iXij ≤ 0

∑G
g=1 w∗qg Zq

gj −∑G
g=1 w∗q−1

g Zq−1
gj ≤ 0 q = 2, . . . , Q− 1

∑S
s=1 e′sYsj −∑G

g=1 w∗Q−1
g ZQ−1

gj ≤ 0
j = 1, . . . , n

∑S
s=1 e′sYso

∑I
i=1 v′i Xio

= E∗o
v′i, e′s, w∗g ≥ 0

(10)

In model (10), the weight λq = 1
E+

qo−E−qo
, q = 1, 2, . . . , Q. By introducing an auxiliary

variable δ, the model (10) can be equivalently transformed into the following model:

minδ

s.t. λ1

(
E+

1o −∑G
g=1 w∗1g Z1

go

)
≤ δ

λq

(
E+

qo −
∑G

g=1 w∗qg Zq
go

∑G
g=1 w∗q−1

g Zq−1
go

)
≤ q = 2, . . . , Q− 1

λQ

(
E+

Qo −
∑S

s=1 e′sYso

∑G
g=1 w∗Q−1

g ZQ−1
go

)
≤ δ

∑I
i=1 v′iXio = 1

∑G
g=1 w∗1g Z1

gj −∑I
i=1 v′iXij ≤ 0

∑G
g=1 w∗qg Zq

gj −∑G
g=1 w∗q−1

g Zq−1
gj ≤ 0 q = 2, . . . , Q− 1

∑S
s=1 e′sYsj −∑G

g=1 w∗Q−1
g ZQ−1

gj ≤ 0
j = 1, . . . , n

∑S
s=1 e′sYso

∑I
i=1 v′i Xio

= E∗o
v′i, e′s, w∗g ≥ 0

(11)

The model can be solved by bisection search, that is, searching the value of δ in
[0, 1] [54]. Assuming that the optimal solution of model (11) is

(
v̂′i, ê′s, ŵ∗g

)
, the system

efficiency and the single compromise division efficiency are as follows:

Êo =
∑S

s=1 ê′sYso

∑I
i=1 v̂′i Xio

= E∗o

Ê1o =
∑G

g=1 ŵ∗1g Z1
go

∑I
i=1 v̂′i Xio

Êqo =
∑G

g=1 ŵ∗qg Zq
go

∑G
g=1 ŵ∗q−1

g Zq−1
go

q = 2, . . . , Q− 1

ÊQo =
∑S

s=1 ê′sYso

∑G
g=1 ŵ∗Q−1

g ZQ−1
go

(12)

Ê1o, Êqo and ÊQo are reasonable and single compromise solutions for the division
efficiency scores while the system efficiency remains optimal.

4. Non-Cooperative Two-Stage Network DEA Model

Efficiency decomposition and efficiency aggregation are two methods of measuring
system efficiency. This section considers a two-stage system with undesirable output
(see Figure 3). Denote X1

ij as the ith outside input in the first stage, i ∈ {1, 2, . . . , I},
of the jth DMU, j = 1, . . . , n, respectively, and X2

dj as the dth outside input in the sec-

ond stage, d ∈ {1, 2, . . . , D}. Then, denote Y1
sj as the sth final output in the second stage,

s ∈ {1, 2, . . . , S}, and Y2
l j as the lth undesirable output in the second stage, l ∈ {1, 2, . . . , L}.
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Further, denote Zgj as the gth intermediate product produced by the first stage for the
second stage to use, g ∈ {1, 2, . . . , G}. Denote vi, kd, es, ml and wg as the weights of the vari-
ables, u1 and u2 as the free variables under variable returns to scale, and v′i, k′d, e′s, m′l , w′g, u′1
and u′2 as the corresponding weights and free variables after Charnes-Cooper transformation.
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Figure 3. A two-stage system with undesirable output.

This article treats undesirable outputs as normal inputs. This is a common practice
for dealing with undesirable outputs, and the model aims to decrease normal inputs and
undesired outputs [21,55,56]. The efficiency decomposition model under variable returns
to scale can be formulated as:

ED∗
o = max ∑S

s=1 esY1
so+u1+u2

∑I
i=1 viX1

io+∑D
d=1 kdX2

do+∑L
l=1 mlY2

lo

s.t.
∑G

g=1 wgZgj+u1

∑I
i=1 viX1

ij
≤ 1

∑S
s=1 esY1

sj+u2

∑G
g=1 wgZgj+∑D

d=1 kdX2
dj+∑L

l=1 mlY2
l j
≤ 1

vi, kd, es, ml , wg ≥ 0
j = 1, . . . , n u1, u2 free in sign.

(13)

Similar to model (1), the constraint
∑S

s=1 esY1
sj+u1+u2

∑I
i=1 viX1

ij+∑D
d=1 kdX2

dj+∑L
l=1 mlY2

l j
≤ 1 is redundant.

Applying the Charnes-Cooper transformation, the model (13) can be transformed into a
linear one:

ED∗
o = max ∑S

s=1 e′sY1
so + u′1 + u′2

s.t. ∑G
g=1 w′gZgj −∑I

i=1 v′iX
1
ij + u′1 ≤ 0

∑S
s=1 e′sY1

sj −∑G
g=1 w′gZgj −∑D

d=1 k′dX2
dj −∑L

l=1 m′lY
2
l j + u′2 ≤ 0

∑I
i=1 v′iX

1
io + ∑D

d=1 k′dX2
do + ∑L

l=1 m′lY
2
lo = 1

v′i, k′d, e′s, m′l , w′g ≥ 0
j = 1, . . . , n u′1, u′2 free in sign.

(14)

The efficiency aggregation model can be formulated as:

EA∗
o = max

∑G
g=1 wgZgo+u1+∑S

s=1 esY1
so+u2

∑I
i=1 viX1

io+∑G
g=1 wgZgo+∑D

d=1 kdX2
do+∑L

l=1 mlY2
lo

s.t.
∑G

g=1 wgZgj+u1

∑I
i=1 viX1

ij
≤ 1

∑S
s=1 esY1

sj+u2

∑G
g=1 wgZgj+∑D

d=1 kdX2
dj+∑L

l=1 mlY2
l j
≤ 1

vi, kd, es, ml , wg ≥ 0
j = 1, . . . , n u1, u2 free in sign.

(15)

Similarly, the model (15) can be transformed into a linear one by the Charnes–Cooper
transformation.
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In practice, the importance of the two stages in the system may not be the same,
and one stage may be a more important leader stage and the other a secondary follower
stage. For example, cargo handling is primary in the port production process and the port
collecting and distributing are secondary. This leader–follower two-stage structure is called
the non-cooperative network DEA model [22]. In the non-cooperative network DEA model,
first calculate the optimal efficiency of the leader stage, then calculate the efficiency of
the follower stage when the efficiency of the leader stage remains optimal (adding it to
the constraints).

Assuming stage 1 as the leader, under variable returns to scale, the efficiency of stage
1 is as follows:

E1∗
1o = max

∑G
g=1 wgZgo+u1

∑I
i=1 viX1

io

s.t.
∑G

g=1 wgZgj+u1

∑I
i=1 viX1

ij
≤ 1

vi, wg ≥ 0
j = 1, . . . , n u1 free in sign.

(16)

Using the Charnes-Cooper transformation, the linear form of model (16) is as follows:

E1∗
1o = max ∑G

g=1 w′gZgo + u′1
s.t. ∑G

g=1 w′gZgj −∑I
i=1 v′iX

1
ij + u′1 ≤ 0

∑I
i=1 v′iX

1
io = 1

v′i, w′g ≥ 0
j = 1, . . . , n u′1 free in sign.

(17)

The efficiency of stage 2 (follower) is calculated as follows:

E1∗
2o = max ∑S

s=1 esY1
so+u2

∑G
g=1 wgZgo+∑D

d=1 kdX2
do+∑L

l=1 mlY2
lo

s.t.
∑G

g=1 wgZgo+u1

∑I
i=1 viX1

io
= E1∗

1o

∑G
g=1 wgZgj+u1

∑I
i=1 viX1

ij
≤ 1

∑S
s=1 esY1

sj+u2

∑G
g=1 wgZgj+∑D

d=1 kdX2
dj+∑L

l=1 mlY2
l j
≤ 1

vi, kd, es, ml , wg ≥ 0
j = 1, . . . , n u1, u2 free in sign.

(18)

where E1∗
1o is the optimal efficiency of stage 1. Similarly, model (18) can be transformed into

the linear form using the Charnes-Cooper transformation:

E1∗
2o = max ∑S

s=1 e′sY1
so + u′2

s.t. ∑G
g=1 w′gZgo − E1∗

1o ∑I
i=1 v′iX

1
io + u′1 = 0

∑G
g=1 w′gZgj −∑I

i=1 v′iX
1
ij + u′1 ≤ 0

∑S
s=1 e′sY1

sj −∑G
g=1 w′gZgj −∑D

d=1 k′dX2
dj −∑L

l=1 m′lY
2
l j + u′2 ≤ 0

∑G
g=1 w′gZgo + ∑D

d=1 k′dX2
do + ∑L

l=1 m′lY
2
lo = 1

v′i, k′d, e′s, m′l , w′g ≥ 0
j = 1, . . . , n u′1, u′2 free in sign.

(19)

Definition 3. DMUo is stage-k-efficient if and only if E1∗
ko = 1, k = 1, 2.
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When stage 2 is the leader, the efficiency of stage 2 is:

E2∗
2o = max ∑S

s=1 esY1
so+u2

∑G
g=1 wgZgo+∑D

d=1 kdX2
do+∑L

l=1 mlY2
lo

s.t.
∑S

s=1 esY1
sj+u2

∑G
g=1 wgZgj+∑D

d=1 kdX2
dj+∑L

l=1 mlY2
l j
≤ 1

kd, es, ml , wg ≥ 0
j = 1, . . . , n u2 free in sign.

(20)

The efficiency of stage 1 (follower) is calculated as follows:

E2∗
1o = max

∑G
g=1 wgZgo+u1

∑I
i=1 viX1

io

s.t. ∑S
s=1 esY1

so+u2

∑G
g=1 wgZgo+∑D

d=1 kdX2
do+∑L

l=1 mlY2
lo
= E2∗

2o

∑G
g=1 wgZgj+u1

∑I
i=1 viX1

ij
≤ 1

∑S
s=1 esY1

sj+u2

∑G
g=1 wgZgj+∑D

d=1 kdX2
dj+∑L

l=1 mlY2
l j
≤ 1

vi, kd, es, ml , wg ≥ 0
j = 1, . . . , n u1, u2 free in sign.

(21)

Similar to the previous, models (20) and (21) can be solved in linear form by the
Charnes-Cooper transformation.

5. Empirical Study
5.1. Rail-Water Intermodal Transport in China

In recent years, China has vigorously promoted port rail-water intermodal transport,
such as the automatic transformation of terminals, the breaking of information barriers
for intermodal transport, and the upgrading of transfer equipment, which has further
improved the matching degree of vehicles, ships, and cargoes. Faced with the complex
and changeable external environment, local port groups have actively coordinated with
local governments and railway departments to ensure the stable operation of port rail-
water intermodal transport through the introduction of relevant policies [57,58]. Using
the DEA model to evaluate the efficiency of China’s rail-water intermodal transport can
identify specific divisions that lead to inefficiencies in transportation, further improve
operations, promote the development of multimodal transport, and reduce transport
carbon emissions [59].

5.2. Rail-Water Intermodal Transport Model Considering CO2 Emission

A two-stage network DEA model of rail-water intermodal transport is constructed,
and the port CO2 emission is regarded as an undesirable output, as shown in Figure 4.
Rail-water intermodal transport includes two parts: railway transportation and waterway
transportation. The two parts are connected and transshipped to complete the transporta-
tion together. Stage 1 of the network system is transporting goods by rail, and stage 2 is
loading and unloading goods in ports.

This article summarizes the relevant literature, as shown in Table 1. Based on this
literature, combined with the actual situation of this case and the availability of data, the
specific variables of the rail-water intermodal transport system have been determined.
The length of railways and railway labor are the inputs of stage 1. The railway−port
freight volumes are considered the intermediate products and refer to the volume of goods
transported by railway to the port. The berth quantity and port labor are the outside inputs
of stage 2. The port cargo throughput and carbon dioxide emissions are the desirable output
and undesirable output of stage 2, respectively. In the rail-water intermodal transport
system, the carbon emission mainly comes from the port. Compared with the port, the
carbon emission of the railway is very small and is not considered here.
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Table 1. References for variable selection [21,60–65].

Literature System Variables Orientation Area

Cantos et al., 1999 Railway

Inputs:

n Number of workers
n Consumption of energy
n Number of locomotives
n Number of passenger carriages
n Number of freight cars
n Number of kilometers of track

Outputs:

n Passenger-km
n Tonnes-km

Input-oriented Europe

Wanke and Kalam
Azad, 2018 Railway

Inputs:

n Railway route length
n Number of locomotives
n Number of freight wagons

Outputs:

n Freight (thousand tonnes)
n Freight km

Input-oriented Asia

Michali et al., 2021 Railway

Inputs:

n Costs
n Length of Lines
n Total Wagons

Outputs:

n Freight MT-km
n Passengers M-km
n Lden ≥ 55 dB

Input-oriented Europe

Tongzon, 2001 Port

Inputs:

n Number of berths
n Number of cranes
n Number of tugs
n Stevedoring labor
n Terminal area

Outputs:

n Throughput
n Ship working rate (TEU/h)

Input-oriented Worldwide
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Table 1. Cont.

Literature System Variables Orientation Area

Barros, 2003 Port

Inputs:

n Number of workers
n Book value of the assets

Outputs:

n Ships
n Movement of freight
n Gross gage
n Break-bulk cargo
n Containerized freight
n Solid bulk
n Liquid bulk

Input-oriented Portugal

Almawsheki and Shah,
2015 Port

Inputs:

n Terminal area
n Quay length
n Quay crane
n Yard equipment
n Maximum draft

Outputs:

n Throughput

Input-oriented Middle-east

Saeedi et al., 2019 Multimodal
transport

Inputs:

n Total terminal area
n Length of tracks
n No. of tracks
n No. of cranes
n No. of stackers

Outputs:

n Value of intermodal freight
transport service

Input-oriented Europe

This article evaluates the CO2 emission efficiency of rail-water intermodal transport
systems in 14 Chinese ports in 2015. The 14 ports are members of the China Association
of Port Railway Branch (a branch of the China Ports & Harbours Association). The China
Ports & Harbours Association is the only national industry organization in the Chinese
port industry, and its members are all over the coastal and riverine regions of China. It
is typical and representative to study the 14 members of the China Association of Port
Railway Branch.

The data sources and specific values of variables are shown in Tables 2 and 3. Since
there is no official authoritative port carbon emission data, and only “China City CO2
Emissions Dataset (2012)” and “China City Greenhouse Gases Emissions Dataset (2015)”
have been published so far, the data of Emissions Dataset (2015) is used. Since 2015, there
has been no significant change in the data of many variables. Recently, much of the relevant
literature has also used the data of the 2010s. As such, the data for 2015 is still of reference
value. Note that the carbon emission in the Emissions Dataset (2015) is part of all, and is not
completely accurate. However, it has little impact on the whole, and the data can still reflect
the general situation of port emissions. Moreover, this study can provide an illustrative
case for the novel network DEA model and a practical idea for future related research.
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Table 2. Data sources.

Variable Data Sources

Length of railways China Ports Yearbook
Railway labor Annual Report

Railway−
port freight volumes China Ports Yearbook

Berth quantity China Statistical Yearbook
Port labor Annual Report

Port cargo throughput China Statistical Yearbook

Carbon dioxide emissions China City Greenhouse Gases Emissions
Dataset (2015)

Table 3. Specific values of variables.

2015 Length of
Railways (km)

Railway
Labor

Railway
−Port Freight

Volumes
(10,000 Tons)

Berth
Quantity

Port
Labor

Port Cargo
Throughput
(10,000 Tons)

Carbon
Dioxide

Emissions
(10,000 Tons)

Qinhuangdao Port 170.00 1692 4328.00 72 11,993 25,309.00 23.90
Rizhao Port 158.00 1100 4400.00 53 5389 33,707.36 52.90

Beibu Gulf port 85.50 353 3229.00 256 3119 20,482.00 44.52
Zhanjiang Port 110.00 976 3038.00 174 6765 22,036.11 37.76
Tangshan Port 19.86 412 2780.00 97 2675 49,285.00 132.92

Dalian Port 124.85 830 2270.00 222 8235 41,482.00 136.28
Lianyungang Port 86.30 455 2733.00 77 8982 21,074.90 29.87

Ningbo-Zhoushan Port 54.50 521 2016.20 624 12,289 88,929.50 654.49
Yantai Port 24.50 335 1794.25 98 8995 25,163.00 142.18

Guangzhou Port 41.70 366 910.00 715 9970 52,095.67 35.01
Beiliang Port 51.00 101 432.10 11 819 1368.00 3.73
Yichang Port 21.00 154 335.10 579 3022 7776.00 18.44
Nanjing Port 15.00 823 161.65 346 2745 22,218.00 12.12
Zhuhai Port 17.69 73 289.00 147 2883 11,208.78 137.08

5.3. Results

In the above model, stage 1 measures the efficiency of railways in China’s rail-water
intermodal transport system, and stage 2 evaluates the efficiency of ports, taking into
account CO2 emissions. The railway can concentrate the goods from the hinterland to the
port and transport them out by ships. The railway guarantees the smooth operation of the
port, which is conducive to improving the shipping capacity. In the rail-water intermodal
transport system of this article, the 14 selected railway companies are all subsidiaries of the
corresponding port enterprises. The port is the main transportation link, and the railway
is the subsidiary link. Therefore, it is assumed that stage 2 is the leader and stage 1 is the
follower. Under variable returns to scale, the efficiency of the system and the two stages is
evaluated using the efficiency decomposition, efficiency aggregation, and non-cooperative
methods described above. The specific calculation results are shown in Figure 5.

According to the calculation results and definitions 1, 2, and 3, the following conclu-
sions can be drawn. In the cases of efficiency decomposition and efficiency aggregation,
the system efficiency value is 1 or less than 1 at the same time, and the effectiveness of the
system is consistent. However, the system efficiency obtained by the efficiency decompo-
sition model is equal to or lower than that by the efficiency aggregation model because
the system efficiency of the efficiency decomposition model ignores the internal process
of the network system. It can be seen that the results of the efficiency aggregation model
considering the internal structure are more accurate and realistic. The system’s internal
structure contains intermediate products and the relationships between sub-divisions, and
the model considering the internal structure can provide more diagnostic information and
a more detailed analysis level. The efficiency evaluation results are also considered to
be more accurate. Ignoring the internal structure of the system can lead to different and
sometimes misleading results.
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The system efficiency values of Qinhuangdao Port, Rizhao Port, Tangshan Port,
Ningbo-Zhoushan Port, Guangzhou Port, Beiliang Port, Nanjing Port, and Zhuhai Port
are 1, indicating that they are efficient. By contrast, the system efficiency values of Beibu
Gulf port, Zhanjiang Port, Dalian Port, Lianyungang Port, Yantai Port, and Yichang Port
are smaller than 1, indicating that they are inefficient. This implies that the operation
and management of the entire multimodal transport system are at a low level, and the
cooperation between different modes of transport is not ideal. The main reasons are the low
operation efficiency and high cost of each logistics link, the lack of a unified multimodal
transport information platform, and the low level of logistics information services. In
addition, the lack of unified multimodal industry standards and regulations is also an
important reason for the inefficiency of the system.

As for Rizhao Port, Tangshan Port, Nanjing Port, and Zhuhai Port, the efficiency values
of the system and two stages are 1, indicating that they are efficient. As for Qinhuangdao
Port, Ningbo-Zhoushan Port, Guangzhou Port, and Beiliang Port, the efficiency values of
the system and stage 2 are 1 and efficient, yet the efficiency value of stage 1 is below 1 and
inefficient. These indicate that railways are under-resourced in railway lines and workers,
the management level of the railway transport is low, and the management department
does not pay enough attention to the railway stage. With stage 2 as the leader and stage
1 as the follower, for Yantai Port and Yichang Port, the efficiency of stage 2 is lower than
that of stage 1. This indicates that the port’s facilities and manpower input are insufficient
and the low-carbon operation performance is poor. The main reasons are that the energy
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structure of the port needs to be optimized, the utilization rate of electric energy needs to
be improved, and there is a lack of new technology and equipment. In addition, the weak
low-carbon awareness of employees is also an important reason for the poor performance
of operations.

5.4. Discussion

According to the calculation results, Qinhuangdao Port, Ningbo-Zhoushan Port,
Guangzhou Port, and Beiliang Port are only inefficient at the railway stage. To improve
the efficiency of railway transport, it is necessary to increase the number of railway special
lines and vehicles. In addition, the government should introduce encouraging policies to
improve the management level of railway transport.

Beibu Gulf port, Zhanjiang Port, Dalian Port, Lianyungang Port, Yantai Port, and
Yichang Port are smaller than 1 in system efficiency, which means they are inefficient.
Thus, they need to optimize the entire multimodal transport system from the following
aspects. First, it is necessary to optimize the operation mode of rail-water intermodal
transport, improve the operation efficiency of logistics links such as ports and railways, and
shorten railway transportation time to reduce transportation costs. Second, railways and
ports should jointly build a multimodal transport information platform, unify multimodal
transport standards, realize data interconnection and sharing, and enhance the logistics
information services throughout the rail-water intermodal transport. Third, industry
standards for multimodal transport should be introduced and relevant state departments
should formulate laws and regulations applicable to multimodal transport to improve the
standard specifications for different goods and operations and strengthen the coordination
between different modes of transport.

With the port as the leader, the port efficiency of Yantai Port and Yichang Port is lower
than the railway efficiency. This shows that they need to enhance the low-carbon operation
efficiency of the ports from the following aspects. First, it is necessary to optimize the energy
structure of ports, enhance the construction and upgrading of shore power, and promote
the electrification of mechanical equipment such as port vehicles and container-handling
equipment. Second, it is necessary to strengthen new technology research and equipment
upgrading, introduce the Internet of Things and energy-saving equipment into the port, re-
duce unreasonable work procedures and plans, and optimize management methods. Third,
the low-carbon awareness of personnel should be enhanced by introducing the low-carbon
concept into on-the-job training and strengthening environmental protection publicity.

Overall, Rizhao Port, Tangshan Port, Nanjing Port, and Zhuhai Port are efficient in
the whole system and both stages. Other ports should learn from them and take measures
from the aspects of energy structure, technological innovation, and management standards
to promote green and low-carbon development of multimodal transport.

6. Conclusions

This article constructs a specific network DEA model to evaluate the efficiency of rail-
water intermodal transport in China. The main contributions of this article are as follows.
First, in the general network structure, the efficiency decomposition, efficiency aggrega-
tion, and single compromise division efficiency are discussed. Second, the CO2 emission
efficiency in rail-water intermodal transport is evaluated by the efficiency decomposition,
efficiency aggregation, and non-cooperative methods of network DEA.

First, this article studies the efficiency decomposition and efficiency aggregation of
general network structures. Specifically, in efficiency decomposition, the relationship be-
tween system efficiency and division efficiency is discussed. In efficiency aggregation,
the division tendency brought about by the definition of weights is discussed. Subse-
quently, a reasonable and single compromise solution for the division efficiency score is
discussed under the condition that the system efficiency remains optimal. Finally, this
article establishes a two-stage network DEA model for rail-water intermodal transport with
CO2 emission as an undesirable output. Based on this model, the rail-water intermodal
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transport efficiency of 14 ports in China in 2015 is evaluated by the methods of efficiency
decomposition, efficiency aggregation, and non-cooperation. According to the calculation
results, Qinhuangdao Port, Ningbo-Zhoushan Port, Guangzhou Port, and Beiliang Port are
only inefficient at the railway stage, so it is necessary to improve the efficiency of railway
transportation. Moreover, the system efficiency of Beibu Gulf port, Zhanjiang Port, Dalian
Port, Lianyungang Port, Yantai Port, and Yichang Port is less than 1, which indicates that
they are inefficient and thus need to optimize the entire multimodal transport system. With
the port as the leader, the port efficiency of Yantai Port and Yichang Port is lower than the
railway efficiency. In this case, they are in urgent need of improvement of the low-carbon
operation efficiency of the port. In general, Rizhao Port, Tangshan Port, Nanjing Port,
and Zhuhai Port are efficient in the system and two stages, so other ports need to learn
from them.

In the future, further research can be carried out in the following aspects. First, a more
practical network DEA model considering more stages can be established, and the model
can be used to analyze the multimodal transport chains with multiple transshipment and
transport links. Second, the model can be applied to other efficiency evaluations of supply
chains. For example, the network DEA model could be used to evaluate the performance
of manufacturers and sellers or analyze the environmental performance of goods storage
and logistics. Third, the multi-period model can be used to analyze the dynamic trend
of multimodal transport efficiency. Multi-period network DEA can not only horizontally
compare the efficiency of different multimodal transport systems in the same time period,
but also vertically compare the efficiency of a multimodal transport system in different
time periods.
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