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Abstract: Payload lifting is inefficient and high-risk under rough sea conditions. Thus, it is not easy
to achieve precise assembly, and the swing payload is liable to collide with other structures on deck
and cause damage. In this paper, to explore the complex dynamic characteristics of a triple-tagline
anti-swing system (TTAS) for marine cranes in an offshore environment, an irregular wave model
was first integrated into a dynamic system model of TTAS, and the TTAS for offshore payload
lifting was simplified as a constrained-pendulum system with moving base excitations. Further,
the dynamic system model was established by applying the methods in robotics. Meanwhile, the
dynamic characteristics were simulated and analyzed using Matlab/Simulink. The simulation results
show that the in-plane angle and out-of-plane angle of the payload can be effectively suppressed, and
the range of the two-dimensional trajectory of the payload is greatly reduced. The research results
provide a theoretical basis for optimizing the mechanical structures of TTAS or similar equipment.

Keywords: modeling; dynamics; constrained pendulum; anti-swing; two-dimensional trajectory of
the payload

1. Introduction

As one of the most significant pieces of deck equipment, the ship crane is a necessary
piece of mechanical equipment for cargo handling, pipe installation, replenishment, etc.
Due to the unique working environment, marine cranes have more complex external exci-
tation than onshore cranes. Due to offshore environment loads such as wind, waves, flow,
and surge, a ship’s six-degree-of-freedom movement is induced persistently, resulting in
significant payload swing during lifting operations. This reduces the operational efficiency
of the crane but also threatens the operators’ safety. Therefore, the swing control of marine
cranes is of great significance for the protection and efficiency of crane operations.

Over the past several decades, the study and design of anti-swing control strategies
for cranes have greatly interested researchers. Smoczek [1] proposed a swing control
technique based on the fuzzy logic and pole configuration methods, and a crane workspace
identification method based on a stereo vision system. Chang [2] used a specific mechanical
structure to consume the payload’s swinging energy by reducing the payload’s kinetic
energy or increasing the crane system’s rigidity. Mc [3] introduced a controller design
method considering the variation in wire-rope length. Andres [4] proposed a control
technique to prevent payload swing, which can quickly locate the moving payload. Tran [5]
established a ship-to-shore container crane model through sensitivity analysis of the input
parameters of the structural response. Maghsoudi [6] proposed an improved single-degree-
of-freedom swing control scheme, which can effectively adapt to the dynamic change in
wire-rope length. However, due to the complexity of the offshore environment, the anti-
swing control method developed based on land-based cranes cannot be directly applied to
marine cranes.

Regarding research on the anti-swing technology of marine cranes, researchers world-
wide have made some achievements in dynamic analysis and control algorithms. In 1997,

J. Mar. Sci. Eng. 2022, 10, 1146. https://doi.org/10.3390/jmse10081146 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10081146
https://doi.org/10.3390/jmse10081146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-4341-2307
https://orcid.org/0000-0001-6927-7188
https://doi.org/10.3390/jmse10081146
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10081146?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 1146 2 of 18

Guo [7] designed a mechanical anti-swing device called the Maryland Rig (Maryland
Rigging), which uses friction between the pulley and ropes to suppress the payload swing.
Bing [8] proposed an optimal control scheme for Maryland Rigging. A feedforward control
loop to the control system, proposed by Kimiaghalam [9], and the luff angle of the boom
were employed as the control output to compensate for the ship’s roll motion. Numerical
simulation results showed that the control effect of payload swing could be improved from
50% to 98% by the combination of feedforward and feedback control. Van [10] proposed a
mechanical control device based on energy dissipation to reduce the influence of waves on
marine crane operation, and a simulation verified the proposed mechanism’s effectiveness.
Yan [11] studied the dynamics of cranes and proposed modeling methods to describe their
behaviors in the waves. Fragopoulos [12] proposed a generalized predictive control (GPC)
method, and the simulation results showed that the control system’s performance can be
improved. Ren [13] proposed a general model-free anti-swing control scheme that achieves
the control effect when the model parameters are unknown without considering the state-
space equation. Küchler [14,15] developed a control system to reduce the swing of payload
in an offshore environment. He proposed a prediction algorithm for the linear model to
suppress the payload swing through active compensation. Hong and Ngo [16] designed
a sliding-mode controller for a mobile harbor crane. The simulation results showed that
the proposed method has a good suppression effect on the lateral swing of the payload
but a poor suppression effect on the longitudinal swing. Kharola [17] established a fuzzy
controller for the swing of the crane load and analyzed the influence of load mass and
the crane boom’s length on the crane’s stability. Ismail [18] studied the robust control
method of the marine crane systems under bounded disturbance and high sea states. The
proposed quadratic optimal method of solving the sliding surface parameters can achieve
good tracking performance for the predetermined trajectory of the marine crane. Ku [19]
used a PD controller to control the tagline’s tension in real-time, built a 1:100 floating
crane model, and verified the payload anti-swing effect through simulation analysis and
experiments. An analytical model of marine crane dynamics based on a rigid–flexible cou-
pling virtual prototype, which provides a reference significance for the design of maritime
cranes, was proposed by He [20]. Martin [21,22] considered a shipboard 5-DOF gantry
and even a 6-DOF and 7-DOF knuckle boom crane, developing a sliding-mode controller
and anti-swing trajectory modification system that provided anti-swing control in the deck
coordinate frame tracking real-time, time-varying trajectories. The automatic control of
marine cranes working under harsh sea conditions was studied by Liu [23]; using the
composite signal as feedback, a nonlinear controller that can respond to the uncertainty
of the crane’s swing was constructed, achieving better overall control performance and
stronger robustness. Lu [24] proposed a marine crane nonlinear control strategy that can
also ensure the asymptotic stability of the equilibrium point of the closed-loop system
under continuous ship-swing interference. The feasibility and effectiveness of the proposed
method were verified experimentally. In recent years, offshore replenishment, wind farm
installation, and other operations have become more frequent, often carried out under high
sea conditions. Such lifting operations are often inefficient and risky. There are few studies
on the dynamics and motion compensation control of the payload under the excitation of a
moving base.

The complex dynamic characteristics of TTAS in the offshore environment are deeply
explored, and the contributions of this paper are reflected in three aspects:

(1) The irregular wave model is first integrated into the dynamic system model of
TTAS. Based on this, the system’s dynamic characteristics are simulated and analyzed, and
the tendency of the payload swing angle and the two-dimensional trajectory of the payload
are explored.

(2) Under irregular environment excitation, the effect of payload swing reduction is
simulated and analyzed comparatively for scenarios with or without anti-swing control.
The results show that the average amplitude of the in-plane angle is reduced by 63%, and
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that of the out-of-plane angle is reduced by 82% by using TTAS, which verifies its fidelity
in the offshore environment.

(3) It is found that under irregular environment excitation, the shape of the two-
dimensional trajectory of the payload is elliptic without anti-swing control, and it is
8-shaped or triangular with anti-swing control. Compared with no anti-swing control, the
two-dimensional trajectory of the payload is reduced by more than 90% with anti-swing
control, which can provide a theoretical basis for the optimization of the TTAS structure in
the later period.

This paper is outlined as follows. The “TTAS overall architecture” section introduces
the anti-swing principle of the system. The “Structure of TTAS” section briefly introduces
the structure of the TTAS. The “Dynamic modeling of TTAS” section is derived from the
dynamic models of the TTAS. The “Dynamic analysis” section compares the payload swing
angle’s tendency and the payload’s two-dimensional trajectory with or without TTAS
control. The “conclusion” section draws the research conclusion and explains the future
research work.

2. TTAS Overall Architecture

TTAS comprises I—a hydraulic drive system, II—a control system, and III—a mechan-
ical structure. The mechanical design mainly includes the anti-swing knuckle jib, guide
wheels, motor, tension sensor, etc., and especially realizes the fixing and guiding of the
tagline position in space. At the same time, the measuring unit on the mechanical structure
detects the crane action, the winch angle, the tension of the anti-swing taglines, and the
swing angle of the payload. The driving system provides the power for the winch to ro-
tate; The control system reads each sensor’s parameters and calculates the crane’s altitude
and tagline-driven parallel mechanism. According to the dynamics model of the TTAS,
the real-time length and tension values of the tagline are calculated. Then, the real-time
control instructions of the winch are calculated using the anti-swing control measures. The
main principle of TTAS is to increase three anti-swing knuckle jibs, and the ends of the
anti-swing taglines merge at the hook to form a stable force triangle to achieve payload
swing suppression.

3. Structure of TTAS

Three taglines and a hoist cable must be synchronously retracted when the marine
crane is luffing, lifting, or slewing to avoid disturbance to the crane itself. So, we designed
a cable-driven anti-swing system for payload lifting, as shown in Figure 1. The marine
crane is equipped with TTAS, and the crane comprises a hook, a hoist cable, the main jib,
and the crane housing. The TTAS contains three anti-swing knuckle jibs, three anti-swing
taglines, and a driving system. The TTAS can suppress the payload swing in any direction.
Meanwhile, the direction of the hoist cable can be kept in a vertical or near-vertical state.
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4. Dynamic Modeling of TTAS

Figure 2 shows the mechanical structure. The following assumptions are made for
this system:

(1) The jibs of marine cranes equipped with TTAS are rigid bodies.
(2) The elastic deformation of the three taglines and the hoist cable is ignored.
(3) The hook and payload can be considered a mass point.
(4) The dynamic model of TTAS is established when the crane is stationary. It does not

consider the crane’s own rotation and luffing.
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4.1. Wave-Load Model

In an ideal incompressible fluid in a irrotational field, the velocity potential satisfies
the Laplace Equation and can be written as:

∇2φ = 0 (1)

The velocity potential can be solved according to the equation:

ν = ∇φ (2)

To obtain the speed distribution, we can use the Lagrange equation:

∂ϕ

ϕt
+

p
ρ
+

1
2

ν2 + gz = f (t) (3)

It is assumed that the flow field of the floating body is non-rotational, non-viscous,
and incompressible, the wave is a micro-wave, and the velocity potential of the flow field
around the floating body is composed of three parts:

φ = φ−iωt =

[
(φI + φD) +

6

∑
j=1

φjxj

]
e−iωt (4)

The wave frequency is ϕ for the rule; ϕI is the potential for the incident wave speed;
ϕD is the potential for the diffraction wave speed; ϕj is the six degrees of freedom in the
direction of the velocity potential (j = 1, 2, 3, 4, 5, 6).
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The incident wave velocity potential can be expressed as:

φIe−iωt = − igA cosh(k(z + h))
ω cosh(kh)

e−i[ωt+k(x cos β+y sin β)+α] (5)

h is the depth of the water, and the incident wave amplitude is A. K is the wave
number, which satisfies the dispersion relation:

ω2 = gktanh(kh) (6)

The wave excitation force and hydrostatic pressure caused by the incident potential
and diffraction potential of the floating-body structure in waves can be expressed as:

p = −ρW

(
∂φI
∂t

+
∂φD
∂t

)
− ρwgz (7)

The wave force and moment of the floating body in the water are, respectively:

Fd
wa = −

x

S

(p · nd) · ds (8)

Md
wa = −

x

S

(r× nd) · ds (9)

Fd
wa and Md

wa are the wave forces on the floating body in the D-axis direction, respec-
tively; d takes x, y and z, respectively, to represent the load components in the direction of
each coordinate axis; S is the wet surface of floating body; r is the action moment arm; nd is
the component of the normal vector in the floating body pointing to the flow field in the
D-axis direction.

4.2. Kinematic Model

Geometrically, Figure 3 shows the simplified diagram of the marine crane with TTAS,
and Figure 4 shows the top view of mechanical structure. As illustrated, x0y0z0 is defined
as the inertial frame, x1y1z1 the ship-based frame, and x2y2z2 the crane-based frame. It is
assumed that the hook is close enough to the payload. The hook and the payload can be
expressed as P. O2E represents the main jib, and PD the hoist cable; EF, HMN, and HRS
represent anti-swing knuckle jibs I, II, and III, respectively; and PF, PN, and PS represent
taglines I, II, and III, respectively. The top view shows that HRS and HMN are symmetrical
about O2E. Meanwhile, θ2y is defined as the main jib luff angle; θ2z as the crane’s slew
angle; θ1x and θ1y as the ship’s pitch and roll angle, respectively; β1 and β2 as the luff
angle of anti-swing knuckle jibs I and II, respectively; and θ as the payload swing angle.
Moreover, 0PP1= [xP yP zP]T is defined as the coordinates of P in x0y0z0, and LPF as the
spatial distance from F to P. l is the distance from D to the center of mass of the payload.
Other expressions can be obtained similarly.
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As shown in Figure 3, it is easy to obtain the coordinates of P in x2y2z2 via
geometrical relations:

PP =
[
xD + l cos ψ sin θ yD − l sin ψ zD − l cos ψ cos θ

]T (10)

The coordinates of D in x2y2z2 via geometrical relations are:

PD =
[
LO2D cos θ2y 0 LO2D sin θ2y

]T (11)

Similarly, the coordinates of F, N, and S can be easily obtained:

PF =
[
LOE cos θ2y + LEF cos β1 0 LOE sin θ2y − LEF sin β1

]T (12)

PN =
[
LOH cos θ2y + LMN sin β2 cos θ2y −LHM − LMN cos β2 LOH sin θ2y + LMN sin β2 sin θ2y

]T (13)

PS =
[
LOH cos θ2y + LMN sin β2 cos θ2y LHM + LMN cos β2 LOH sin θ2y + LMN sin β2 sin θ2y

]T (14)
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If it is assumed that the taglines are always in tension, then the length of the tagline I
is the distance from P to F, and the length of tagline II is the distance from P to N:

LPF =

√(
LO2D cos θ2y + l cos ψ sin θ

−LOE cos θ2y − LEF cos β1

)2

+ (l sin ψ) +

(
LO2D sin θ2y − l cos ψ cos θ

−LOE sin θ2y + LEF sin β1

)2

(15)

LPN =

√(
LO2D cos θ2y + l sin θ1

−LOH cos θ2y − LMN sin β2 cos θ2y

)2

+ (LHM + LMN cos β2)
2 +

(
LO2D sin θ2y − l cos θ1

−LOH sin θ2y − LMN sin β2 cos θ2y

)2

(16)

If it is assumed that θ = 0, taking the second derivative of the spatial distance between
PF and PN, then the velocity of tagline I and tagline II can be obtained:

.
LPF = (−LOE − LO2D)

2 .
θ2y cos θ2y sin θ2y/LPF + (LO2D sin θ2y − l

−LO2F sin θ2y)(LOH
.
θ2y cos θ2y + LMN

.
θ2y sin β1 cos θ2y +

.
l − LO2D

.
θ2y cos θ2y)/LPF

(17)

.
LPN = −

.
θ2y(LO2 H + LMN sin θ − LO2D)

2 cos θ2y sin θ2y/LPN + (LO2 H sin θ2y + LMN sin θ sin θ2y

+l − LO2D sin θ2y)(LO2 H
.
θ2y cos θ2y + LMN

.
θ2y sin θ cos θ2y +

.
l − LO2D

.
θ2y cos θ2y)/LPN

(18)

Rx, Ry, and Rz are defined as simple rotation matrices about the x-axis, y-axis, and
z-axis, respectively, and they can be expressed as:

Rx =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 (19)

Ry =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 (20)

Rz =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 (21)

This defines the rotation matrix from xn yn zn to xm ym zm. The rotation matrixes from
the inertial frame to the ship-based frame and the crane-based frame are:

1
0R = Rx(θ1x)Ry(θ1y) (22)

2
0R = Rx(θ1x)Ry(θ1y)Rz(θ2z) (23)

The following equation can calculate the coordinates of P in the inertial frame:

0PP1 =0 P1 +
1
0 RT1P2 +

2
0 RT2PP1 (24)

where 0P1 = [0 0 0]T is coordinate O1 in x0y0z0, and 1P2 = [Lx Ly Lz]T is coordinate O
in x2y2z2, Substitute Equation (10). In Equations (22) and (23) into Equation (24), the
expressions of xP, yP, and zP in the inertial frame can be described as:

xP = Lx cos θ1y + cos θ2z
(
l cos ψ sin θ + LO2D cos θ2y

)
cos θ1y + Lz cos θ1x sin θ1y + Ly sin θ1x sin θ1y+

l sin ψ
(
cos θ1x sin θ2z − cos θ2z sin θ1x sin θ1y

)
+
(

LO2D sin θ2y − l cos ψ cos θ
)(

cos θ1x cos θ2z sin θ1y + sin θ1x sin θ2z
) (25)

yP = cos θ1y
(
l cos ψ sin θ + cos θ2yLO2D

)
sin θ2z − l sin ψ

(
cos θ1x cos θ2z + sin θ1x sin θ1y sin θ2z

)
+(

l cos θ cos ψ− LO2D sin θ2y
)(

cos θ2z sin θ1x − cos θ1x sin θ1y sin θ2z
)
+ Ly cos θ1x − Lz sin θ1x

(26)

zP = cos θ1x cos θ1y
(
−l cos θ cos ψ + Lz + LO2D sin θ2y

)
−
(

Lx + l sin θ cos ψ + LO2D cos θ2y
)

sin θ1y+(
Ly − l sin ψ

)
cos θ1y sin θ1x

(27)

Taking the second derivative of the coordinates of D, the acceleration of D in x0y0z0 is:
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..
xD =

..
θ1y
(

Ly cos θ1y sin θ1x −
(

Lx + LO2D cos θ2y cos θ2z
)

sin θ1y + cos θ1x cos θ1y
(

Lz + LO2D cos θ2z sin θ2y
))

+
.
θ1y

 cos θ1y
.
θ1x
(

Ly cos θ1x − sin θ1x
(

Lz + LO2D cos θ2z sin θ2y
))

−
.
θ1y

(
cos θ1y

(
Lx + LO2D cos θ2y cos θ2z

)
+ sin θ1y

(
Ly sin θ1x + cos θ1x

(
Lz + LO2D cos θ2z sin θ2y

)) )


+
..
θ1x
(
cos θ1x

(
Ly sin θ1y + LO2D sin θ2y sin θ2z

)
− sin θ1x sin θ1y

(
Lz + LO2D cos θ2z sin θ2y

))
+

.
θ1x

 cos θ1y
.
θ1y
(

Ly cos θ1x − sin θ1x
(

Lz + LO2D cos θ2z sin θ2y
))

−
.
θ1x

(
cos θ1x sin θ1y

(
Lz + LO2D cos θ2z sin θ2y

)
+ sin θ1x

(
Ly sin θ1y + LO2D sin θ2y sin θ2z

) )


(28)

..
yD =

(
sin θ1x

(
Lz + LO2D cos θ2z sin θ2y

)
− cos θ1x

(
Ly + LO2D sin θ1y sin θ2y sin θ2z

)) .
θ1x

2

−LO2D

((
cos θ1y cos θ2y + cos θ1x sin θ1y sin θ2y

) .
θ1y

2 +
..
θ1y
(
cos θ2y sin θ1y − cos θ1x cos θ1y sin θ2y

))
sin θ2z

−
..
θ1x
(
cos θ1x

(
Lz + LO2D cos θ2z sin θ2y

)
+ sin θ1x

(
Ly + LO2D sin θ1y sin θ2y sin θ2z

))
−2

.
θ1y

.
θ1xLO2D cos θ1y sin θ1x sin θ2y sin θ2z

(29)

..
zD =

.
θ1y

.
θ1x sin θ1y

(
sin θ1x

(
Lz + LO2D sin θ2y

)
− Ly cos θ1x

)
−

.
θ1x

2 cos θ1y
(

Ly sin θ1x + cos θ1x
(

Lz + LO2D sin θ2y
))

+
..
θ1x cos θ1y

(
Ly cos θ1x − sin θ1x

(
Lz + LO2D sin θ2y

))
−

..
θ1y
(
cos θ1y

(
Lx + LO2D cos θ2y

)
+ sin θ1y

(
Ly sin θ1x + cos θ1x

(
Lz + LO2D sin θ2y

)))
−

.
θ1y

( .
θ1y
(

Ly cos θ1y sin θ1x −
(

Lx + LO2D cos θ2y
)

sin θ1y + cos θ1x cos θ1y
(

Lz + LO2D sin θ2y
))

+
.
θ1x sin θ1y

(
Ly cos θ1x − sin θ1x

(
Lz + LO2D sin θ2y

)) ) (30)

4.3. Statics Model

The free-body diagram of the payload is shown in Figure 5, where F1, F2, and F3 are
the tensions of taglines I, II, and III, respectively; GP is the gravity of the payload; and FR is
the tension of the hoist cable. The payload mass is m, respectively, and the payload stays
in static equilibrium under the action of its gravity, the tension of the hoist cable, and the
tension of taglines I, II, and III.
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Figure 5. Schematic diagram of statics model: (a) schematic diagram of three-dimensional statics
model; (b) stress analysis diagram of two-dimensional statics model.

In defining F1 = [F1x F1y F1z]T, F2 = [F2x F2y F2z]T, F3 = [F3x F3y F3z]T, FR = [FRx FRy FRz]T,
m is the payload mass, and g is the gravitational acceleration. Due to the symmetry of
taglines II and III, if their tensions are equal, then F3y = −F2y. Meanwhile, since P, D, and
F are in the same vertical plane, F1y = 0 and FRy = 0. Thus the forces in the y0 direction
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satisfy static equilibrium. The tension components of taglines I, II, and III, in the x0 and z0
directions are defined as:

F1x = |F1| · i1x
F1y = |F1| · i1y
F1z = |F1| · i1z

i1x =
(xF − xP)

LPF
i1y =

(yF − yP)

LPF
i1z =

(zF − zP)

LPF
(31)


F2x = |F2|i2x
F2y = |F2|i2y
F2z = |F2|i2z

i2x =
(xS − xP)

LPS
i2y =

(yS − yP1)

LPS
i2z =

(zS − zP1)

LPS
(32)


F3x = |F3| · i3x
F3y = |F3| · i3y
F3z = |F3| · i3z

i3x =
(xN − xP)

LPN
i3y =

(yN − yP)

LPN
i3z =

(zN − zP)

LPN
(33)

The coordinates of xF, zF, xN, zN, xS, and zS can be obtained from Equations (12)–(14).
According to Newton’s second law, the static equilibrium equation is:

F1x − F2x − F3x = 0 (34)

F1z − F2z − F3z −mg + FRz = 0 (35)

Due to the symmetry of taglines II and III, they can be written as:

F1x − F2x − F3x = 0 (36)

If we substitute Equations (31)–(33) into Equations (34) and (35), the following equation
can be further obtained: {

|F1| i1x
2i2x

= |F2|
FRz = 2|F2|i2z + mg− |F1|i1z

(37)

Then, we can rearrange Equation (37):

FRz = |F1|(
i1xi2z

i2x
− i1z) + mg (38)

Due to the flexibility of the cable, the following constraint should hold:

FRz ≥ 0 (39)

From Equations (38) and (39), the constraint of tension tagline I can be obtained as:

i1z −
i1xi1z

i2x
≤ mg
|F1|

(40)

4.4. Dynamics Model

The dynamic analysis of the TTAS for the payload is shown in Figure 6. In the
modeling in this section, the in-plane and out-of-plane swing under the roll excitation of
the ship is considered. In dynamic modeling, the change in point D of the boom head is
used as the payload excitation, reducing the amount of calculation.
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Figure 4 shows the TTAS dynamic analysis of the payload; the components of the hoist
cable tension in the x0, y0, and z0 directions are:

FRx = |FR| cos ψ sin θ
FRy = |FR| sin ψ

FRz = |FR| cos ψ cos θ

(41)

According to Newton’s second law, the equation of motion of the hook is:

m
..
xp = F1x − F2x − F3x − FRx (42)

m
..
yP = F1y − F2y − F3y − FRy (43)

m
..
zp = F1z − F2z − F3z + FRz −mg (44)

Additionally, this represents the acceleration of payload P in the x0, y0, and z0 direc-
tions, which can be obtained from the second derivative of the X, Y, and Z axis coordinates
of the payload’s centroid:

..
xp =

..
xD + l cos θ

( ..
θ cos ψ− 2

.
θ

.
ψ sin ψ

)
− l sin θ

(
cos ψ

(
.
θ

2
+

.
ψ

2
)
+

..
ψ sin ψ

)
(45)

..
yp =

..
yD −

..
ψl cos ψ +

.
ψ

2
l sin ψ (46)

..
zp =

..
zD + l

(
cos θ cos ψ

(
.
θ

2
+

.
ψ

2
)
+

..
ψ cos θ sin ψ +

..
θ sin θ cos ψ− 2

.
θ

.
ψ sin θ sin ψ

)
(47)

The combined forces of TTAS in the face x0y0z0 are defined as:

fx = F1x − F2x − F3x (48)

fy = F1y − F2y − F3y (49)

fz = F1z − F2z − F3z (50)

We can substitute Equations (48)–(50) and Equation (41) into Equations (42)–(44). Then,
the equation can be rearranged as:

m
..
xP = fx − |FR| cos ψ sin θ (51)

m
..
yP = fy − |FR| sin ψ (52)

m
..
zP = fz + |FR| cos ψ cos θ −mg (53)
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Then, canceling |FR|, The following equation can be obtained:{
( fx −m

..
xP) sin ψ = ( fx −m

..
yP) cos ψ sin θ

( fx −m
..
xP) cos ψ cos θ = (m

..
zP − fz + mg) cos ψ sin θ

(54)

The acceleration of the pendulum angle θ can be found as:
..
θ = (sin ψ tan ψ( fx cos θ + sin θ( fz −mg)) + cos ψ( fx cos φ + sin θ(gm− fz)) + lm

.
θ

2
sin θ cos2 ψ

(cos θ + cos φ) + sin θ(cos θ + cos φ)( fy sin ψ + lm
.
ψ

2
) + lm

.
θ

.
ψ(−2 sin2 θ sin ψ cos ψ + 2 sin2 ψ tan ψ

+ cos θ sin(2ψ) cos φ))/(lm(cos2 θ sin2 ψ− sin2 θ cos(2ψ) + cos θ cos2 ψ cos φ))

(55)

The acceleration of the pendulum angle Ψ can be found as:
..
ψ = (2 sec ψ(cos θ( fy cos φ + tan ψ( fz −mg))− sin θ( fx tan ψ + fy sin θ))

−2lm
.
θ

2
tan ψ + lm

.
ψ

2
tan ψ(2 cos θ cos φ + cos(2θ)− 3)/lm(2 cos θ cos φ + cos(2θ) + 2 sec2 ψ− 3)

(56)

5. Dynamic Analysis

As a common physical phenomenon, the free swing of the payload is affected by air
damping and will stop after some time. Inspired by the spectacle of air damping, a method
of setting tagline tension is presented to ensure that the taglines’ resultant force will always
dampen the payload swing.

We pre-set the tension value range of each tagline in the control system and used the
angular transducer in the mechanical structure to measure the payload’s position in space
in real-time. Based on the principle of air damping, the control system changes the tension
value of the three taglines according to the payload’s position. Then, we simulated and
analyzed the payload swing angle and the two-dimensional trajectory of the payload under
regular and irregular environment excitation. For the convenience of later experimental
verification, the simulation parameters were consistent with TTAS. The default system
parameters are shown in Table 1.

Table 1. The default system parameters.

Parameters Value Parameters Value

l 1.20 m Lz 0.42 m
LOD 1.20 m β1 0◦

LOE 1.20 m β2 10◦

LEF 0.50 m θ1x 0
LOH 0.32 m θ1y 6sin (πt/3)
LHM 0.25 m θ2y 45◦

LMN 0.75 m θ2z 0◦

Lx 0 m m 25 kg
Ly 0 m g 9.8 m/s2

5.1. Wave-Load Model Simulation

The model was meshed using the default meshing method in Workbench, and the
meshed model is shown in Figure 7. The floating body’s total length is 80 m, the molded
depth is 6 m, molded breadth is 12 m, and the draught is 5 m.

Ansys Aqwa was used to simulate the motion response results of the six directions.
Figure 8 shows the motion response results of the six directions (RAO). In general, the
motion amplitude of the floating body decreases with increasing wave frequency. When
the wave frequency is low, the motion response of the swing is relatively large, and with
increasing frequency, the motion response gradually approaches 0. It can be seen in
Figure 8d,e that the roll has the most significant influence on the motion amplitude of the
floating body, followed by the pitch of the floating body. According to RAO analysis, it was
found that the roll and pitch of the floating body had a significant influence on the motion
response result of the floating body. Therefore, the swing of the payload was mainly caused by
roll and pitch, and the roll and pitch were mainly controlled in the payload control strategy.
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The dynamic characteristics of TTAS were simulated and analyzed under irregular
environment excitation. Figure 9 shows the wave-dip angle. Moreover, it can be seen from
Figure 10 that the average amplitude of the in-plane angle is reduced by 63%, and that of
the out-of-plane angle is reduced by 82%. The x, y displacement of the payload is used to



J. Mar. Sci. Eng. 2022, 10, 1146 13 of 18

represent the two-dimensional trajectory of the payload. The two-dimensional trajectory
of the payload with control, compared to the two-dimensional trajectory of the payload
without control, is reduced by 92% or more.
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with control.

5.2. Regular Environment Excitation Simulation

Figures 11–13 show the simulation result of the TTAS under three conditions: Condition
1—the ship roll and pitch excitation case, i.e., θ1x = 3sin (πt/3), and θ1y = 6sin (πt/3); Condition
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2—the ship roll and pitch excitation case, i.e., θ1x = 6sin (πt/3), and θ1y = 3sin (πt/3); Condition
3—the ship roll and pitch excitation case, i.e., θ1x = 4sin (πt/3), and θ1y = 4sin (πt/3).
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Figure 11. The dynamic response of TTAS under Condition 1. (a) The x, y displacement without
control of the payload when the hoist cable is 0.6 m; (b) the x, y displacement with control of the
payload when the hoist cable is 0.6 m; (c) the x, y displacement without control of the payload when
the hoist cable is 1.2 m; (d) the x, y displacement with control of the payload when the hoist cable is
1.2 m; (e) the x, y displacement without control of the payload when the hoist cable is 1.8 m; (f) the x,
y displacement with control of the payload when the hoist cable is 1.8 m.
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Figure 12. The dynamic response of TTAS under Condition 2. (a) the x, y displacement without
control of the payload when the hoist cable is 0.6 m; (b) the x, y displacement with control of the
payload when the hoist cable is 0.6 m; (c) the x, y displacement without control of the payload when
the hoist cable is 1.2 m; (d) the x, y displacement with control of the payload when the hoist cable is
1.2 m; (e) the x, y displacement without control of the payload when the hoist cable is 1.8 m; (f) the x,
y displacement with control of the payload when the hoist cable is 1.8 m.
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Figure 13. The dynamic response of TTAS under Condition 3. (a) The x, y displacement without
control of the payload when the hoist cable is 0.6 m; (b) the x, y displacement with control of the
payload when the hoist cable is 0.6 m; (c) the x, y displacement without control of the payload when
the hoist cable is 1.2 m; (d) the x, y displacement with control of the payload when the hoist cable is
1.2 m; (e) the x, y displacement without control of the payload when the hoist cable is 1.8 m; (f) the x,
y displacement with control of the payload when the hoist cable is 1.8 m.
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Figure 11a,b show the two-dimensional trajectory of the payload curve without control
and with control when the hoist cable is 0.6 m; Figure 11c,d show the two-dimensional
trajectory of the payload curve without control and with control when the hoist cable is
1.2 m; and Figure 11d,e show the two-dimensional trajectory of the payload curve without
control and with control when the hoist cable is 1.8 m.

Figure 12a,b show the two-dimensional trajectory of the payload curve without control
and with control when the hoist cable is 0.6 m; Figure 12c,d show the two-dimensional
trajectory of the payload curve without control and with control when the hoist cable is
1.2 m; and Figure 12d,e show the payload curve’s two-dimensional trajectory without
control and with control when the hoist cable is 1.8 m.

Figure 13a,b show the two-dimensional trajectory of the payload curve without control
and with control when the hoist cable is 0.6 m; Figure 13c,d show the payload curve’s
two-dimensional trajectory without control and with control when the hoist cable is 1.2 m;
and Figure 13d,e show the payload curve’s two-dimensional trajectory without control and
with control when the hoist cable is 1.8 m.

It can be seen from Figures 11–13 that the shape of the two-dimensional trajectory of
the payload is elliptic without anti-swing control, and the two-dimensional trajectory of
the payload is 8-shaped or triangular with anti-swing control. Compared with the payload
without control measures, the two-dimensional trajectory of the payload with control is
reduced by more than 90%, which proves that TTAS can reduce the swing range of a
payload in the two-dimensional plane, avoid the collision between payload lifting and the
structures on the deck, and improve the accuracy of the lifting operation.

6. Conclusions

In this paper, the irregular wave model was first integrated into the dynamic sys-
tem model of TTAS; meanwhile, we added the motion response results from six direc-
tions (RAO). Further, the dynamic characteristics of TTAS were simulated under regular
and irregular environment excitation. The tendency of the payload swing angle and the
two-dimensional trajectory of the payload were deeply analyzed. The following results
were obtained:

(1) The irregular wave-load model was integrated into the TTAS dynamic system model,
and the TTAS dynamic system model was simplified as a constrained-pendulum
system with moving base excitations. Furthermore, the dynamic system model was
established by applying the methods in robotics.

(2) Under irregular environment excitation, the average amplitude of the in-plane angle
is reduced by 63%, and that of the out-of-plane angle is reduced by 82% using TTAS.
Moreover, the two-dimensional trajectory of the payload is reduced by 92%.

(3) Under regular environment excitation, it was found that the shape of the two-
dimensional trajectory of the payload is elliptic without anti-swing control, and
it is generally 8-shaped or triangular with anti-swing control. By applying anti-swing
control, the two-dimensional trajectory of the payload is reduced by more than 90%.

The dynamic model proposed in this paper can be applied to the prediction of the
complex dynamic behavior of TTAS and can be employed to optimize the two-dimensional
trajectory of the payload of TTAS. In future work, we will study the trajectory planning of
TTAS in limited-space operations and the anti-collision problem of payload lifting in the
transport process.
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