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Abstract: Underwater target classification methods based on deep learning suffer from obvious
model overfitting and low recognition accuracy in the case of small samples and complex under-
water environments. This paper proposes a novel classification network (EfficientNet-S) based on
EfficientNet-V2S. After optimization with model scaling, EfficientNet-S significantly improves the
recognition accuracy of the test set. As deep learning models typically require very large datasets
to train millions of model parameter, the number of underwater target echo samples is far more
insufficient. We propose a deep convolutional generative adversarial network (SGAN) based on the
idea of group padding and even-size convolution kernel for high-quality data augmentation. The
results of anechoic pool experiments show that our algorithm effectively suppresses the overfitting
phenomenon, achieves the best recognition accuracy of 92.5%, and accurately classifies underwater
targets based on active echo datasets with small samples.

Keywords: underwater target classification; deep learning; small samples; EfficientNet; generative
adversarial network; active sonar

1. Introduction

Many classification methods have been proposed to deal with the underwater target
classification task. Most of them rely on manual feature extraction and preset classifiers [1,2]
. However, recent years have witnessed that recognition methods based on deep learning
(DL) [3] can automatically extract features. DL can not only fit target mappings directly from
the original signal to learn multi-level class features, but avoid feature loss in the manual
extraction process and effectively improve generalization capability of the algorithm as
well. Many researchers have already extracted the time-frequency features of the echoes for
underwater target recognition based on DL which have achieved effective improvement
compared to traditional methods [4-7]. However, most of the above research works are
on the account of passive sonar or synthetic aperture sonar (SAS). By contrast, the studies
based on active sonar are relatively lacking. In addition, due to the complex underwater
environment and the rapid development of mechanical noise reduction technology, it is
increasingly difficult to identify underwater targets [8]. On account of the many difficulties
existing in underwater target recognition based on passive sonar in practice, the research
for active sonar target classification is of great significance for the underwater acoustic area.

A signal traveling in real underwater environments is interfered by random noise,
water scattering, and sonar reflection properties of the target material. All of those will result
in strong reverberation and noise effects on the target’s echo. How to extract effective class
features in real underwater scenes is the focus of research. Bu M et al. applied several pre-
trained deep convolutional neural networks (DCNN) to the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), and experimentally demonstrated that their DCNNs
outperform classical machine learning methods in active sonar target recognition [9].
Seungwoo Lee used power-normalized cepstral coefficients (PNCC) for feature extraction;
this method classifies real underwater target echoes and clutter with convolutional neural
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networks [10]. Karl Thomas Hjelmervik et al. found several good hyperparameter values
for DL classifiers in active sonar target classification using Bayesian optimization [11].

Since DL is a typically data-driven technology, according to the previous experiments,
we must use a large number of data to extract valid category features. However, it is hard to
obtain such a large number of practical underwater target echoes. This shortage of samples
is called the few shot learning (FSL) situation [12], which has become a universal problem
that hinders the further improvement of DL. To address the problem of underwater echo
recognition under small sample conditions, Henrik Berg [13] applied replicating some
training examples into DL to improve the recognition accuracy of active sonar echoes,
but the simple replicating did not effectively solve the overfitting problem caused by
FSL. Haiwang Wang et al. [14] proposed a new convolutional neural network (CNN),
IAFNet, to improve the recognition accuracy of hydroacoustic communication signals
in an underwater impulsive noise environment, but the IAFNet performed poorly at
low signal-noise ratio (SNR). A. Testolin [15] achieved high recognition accuracy on an
active sonar echo dataset of fish in a high SNR environment by using CNN and long
short-term memory (LSTM). The research exceeded the recognition accuracy of traditional
machine learning methods, even the authors did not conduct extended research on the
proposed models.

To solve the problems in the task of classifying underwater targets based on active
sonar with small samples, we propose an algorithm that derives from deep generative
adversarial networks and convolutional neural networks. The main contributions are
as follows:

(1) We obtain Mel-spectrograms of the target’s echoes after Mel spectrum feature extrac-
tion. A novel network structure named EfficientNet-S is proposed to achieve higher
recognition accuracy with small samples.

We propose a novel generative adversarial network model (SGAN) model by com-
bining group padding and even-sized convolution kernel. The simulation experi-
ments show that the proposed method can efficiently generate high-quality time—
frequency images.

We validate our algorithm on the anechoic pool experimental dataset. The result
shows that it effectively solves the problem of insufficient accuracy faced with under-

water target classification recognition in the case of small samples.
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2. Methods

In this paper, the original echoes are processed through Mel feature extraction. Then
the Mel-spectrograms with accurate labels are delivered into the generating adversarial
network (SGAN). Expanded data and raw data constitute the enhanced dataset. Finally,
the CNN model (EfficientNet-S) can effectively classify the underwater targets with the
enhanced dataset. Figure 1 shows the structure of the classification system.
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Figure 1. The structure of the proposed classification algorithm.
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2.1. Setting up Dataset Based on Active Sonar Echoes

In order to simulate the real underwater target classification scene, it is necessary to
build a simulation dataset that matches the real echo signals. The LFM signal is chosen as
the transmitting signal, and the propagation medium is assumed uniform and homoge-
neous. The receiving array is a 6 x 6 equally spaced planar array with 0.026 m spacing. We
change the conditions of reverberation and noise background to find the performance of
this method at different SNRs. The SNRs of the signal are, respectively, 5 dB, 0 dB, —5 dB,
and —10 dB. The left of Figure 2 shows the echoes of four types of targets at —10 dB. There
are strong noise and reverberation interference with the signal. Therefore, it is hard to
distinguish directly the four types of echoes only in the time domain. The spectrum is
commonly chosen as one of effective feature for underwater acoustic target classification.
Mel spectrum [16] has a visual representation of the spectral characteristics. It is basically
the same as the human ear’s speech recognition. Actually, in the past, the traditional target
recognition relied on the sonar of the soldier’s hearing.

Framing and

Filter Banks

Pre-Emphasis .

A
Targetl Target2
Target1 Target2
Fourier Taking p
Target3 Target4 transformation logarithim
Target3 Target4
Signal echo Mel-Spectrogram

Figure 2. Mel-spectrogram extraction flow chart.

The flow block diagram of Mel feature extraction for the four types of simulated
target echoes is shown in Figure 2. Firstly, the purpose of framing and pre-emphasis is
to compensate for the loss of high-frequency components and boost the high-frequency
components; then the FFT transformation is performed on each frame signal; finally the
Mel-Spectrogram is obtained after calculating Mel frequency and energy spectrum. The
signal is filtered through a set of filters, and the Mel spectrum is obtained by calculating the
logarithmic energy of each filter. The transformation equation from the frequency domain
to the Mel domain is (1).

Mel(f) = 2595 « 1g(1 + %) 1)

The Mel-Spectrogram is a two-dimensional visual plane diagram that can reflect the
change of the Mel-Spectrogram with time. The horizontal ordinate of the Mel-Spectrogram
represents the time, and the vertical ordinate represents the frequency. The gray value of
each pixel represents the signal energy density of the corresponding frequency at a certain
time.The parameters for Mel spectrum analysis in this paper are set as follows: sampling
frequency, Fs = 50 kHz; number of the fast Fourier transform points, NFFT = 512; and
number of Mel filters, 26.Rotate counterclockwise each type of target through 360 degrees
to obtain 4 x 360 sets of echoes. According to the actual irradiation angle of the sonar,
we select the echoes of specific angles for Mel spectrum transformation. The obtained
544 Mel-Spectrogram are randomly divided into three subsets: the training set has
380 images (about 70%), the validation set has 84 images (about 15%), and the rest of
the images are used as the test set. The model was run on a desktop workstation with AMD
Ryzen 9 3990X CPU, 3070 GPU, 64G of RAM, and Windows 10 as the operating system.
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2.2. The Underwater Acoustic Target Recognition Method Based on Efficientnet

In this section, a baseline network model consists of the construction experience in
optical image tasks, then the optimal composite scaling coefficients are obtained by model
scaling. Thus, we propose our classification network model (Efficientnet-S) based on the
Mel-spectrogram dataset with the optimal coefficients.

2.2.1. Baseline Model

CNN is a kind of feed-forward neural network inspired by biological neural networks.
Unlike traditional neural networks, CNN consists of convolutional layers, pooling layers,
nonlinear activation functions, etc. These underlying layer structures in any combination
can be superimposed to obtain deep networks, and deep CNNS5s can extract higher-order
features ideal for solving image recognition problems. EfficientNets are a network series
published by Google in May 2019 [17] that combine neural architecture search (NAS)
with model scaling to jointly optimize the training speed and efficiency. However, the
architecture of EfficientNet is too large compared with the dataset constructed in this
paper. DCNN may be inadequately trained in case of FSL, and undergo a larger risk of
overfitting. Inspired by the fuzed-MBconv module of EfficientNet-V2 [18], we construct the
base convolution block following the below steps: (1) using a residual structure to add a
constant mapping as a branch next to the regular main road in order to prevent the network
from degenerating; (2) replacing the standard 3 x 3 convolution kernel with a combination
of several sizes of convolution kernels; (3) replacing the conventional Relu activation
function with a hard swish activation function to reduce the number of parameters and
computational consumption of the model; (4) regularizing with BN after each convolution
operation; (5) adaptively weighting the features in the channel dimension by using a
self-attentive mechanism to improve the feature representation; and (6) using a dropout
strategy to alleviate model overfitting. The structure of the base convolutional block is
shown in Figure 3. Based on the idea of inverted bottleneck [19], we have developed the
baseline model by stacking the base convolution block. A baseline is used as a benchmark
to compare with the optimization model. Its structure is shown in Table 1.

Input Conv(kernel B} Conv(kerne BN| Output
feature maps size : n*n) BN sE lsize: 1%1) =) propout > feature maps
[dentity mapping T
Figure 3. Base convolution block.
Table 1. Baseline model and Efficientnet-S structure table.
Stage and Operator Channels Repetitions
Baseline model (B) and Efficientnet-S (S) B S B S
0 Conv3x3 24 28 1 1
1 Base-Conv, k7 x7 24 28 1 1
2 Base -Conv, k5x5 96 116 1 1
3 Base -Conv, k3x3 384 460 2 3
4 Base -Conv, k3x 3, SE0.25 96 116 2 3
5 Base -Conv, k3x3, SE0.25 128 154 3 4
6 Base -Conv, k3x 3, SE0.25 256 308 4 6
7 Conv1lx1 + Pooling + FC 4 4 1 1

2.2.2. The Optimization Model (Efficientnet-S)

Further research found that increasing the width, height, channels or layers can
improve the performance of DCNN. As the idea of model scaling gradually spreads to the
design of new network structures, research works have shown that (1) the width-height
scaling makes the number of parameters rise exponentially; (2) channel scaling tends to
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lose deep-level features; and (3) depth scaling tends to produce gradient disappearance or
explosion. In a word, the expansion of a single dimension tends to encounter bottleneck.
By conducting extensive NAS work, Ref. [17] systematically investigates model scaling.
The authors empirically quantify the relationship among all the three dimensions of width,
depth and resolution. According to formulation (2), we use five sets of coefficients for a
uniform extension of the three dimensions to maximize the recognition accuracy, where

A
N is the network model; X is the input; 7 is the network stage; f is the structure of a stage;
i

A A A

L, W, H and C are the number of layers, width, height, and channels of a stage of the
i

basehne model; and d, wand rare a set of coefficients for scaling network depth, channels,

and resolution.

max Accuracy(N(d,w,r))
dw,r

AdLi 2)
Nd,w,r)= © f <X( ALA A )

i=1...s j r~Hi,r»W,-,.w‘Cl.)

The training setting of the used network is a batch size of 16; the optimizer selects the
stochastic gradient descent (SGD) with the strategy of decaying cosine learning rate = 0.01.
The training process is carried out for 50 epochs based on our dataset. Figure 4 shows
the relationship between scaling coefficients and model parameter quantity based on the
Mel-spectrogram dataset. Figure 5 shows the result of scaling the model under differ-
ent SNRs. The results show that when the composite expansion parameters are set to
(d,w,r) = (1.4, 1.2, 1.5), the model achieves the highest test set accuracy under different
SNRs. We propose the optimal classification network model (Efficientnet-S) through this
set of composite expansion parameters based on the baseline model. The structure of
Efficientnet-S is shown in Table 1. Notably, EfficientNet-S model reaches above 95% ac-
curacy with 50 epochs under SNR = 10 dB (Table 2), which achieves better accuracy than
baseline model under all SNRs. It is noticeable that, as is shown in Figure 4, the model pa-
rameters will multiply as the scaling coefficients increase, but the recognition accuracy does
not increase when the scaling coefficients continue to increase on the basis of Efficientnet-S
(Figure 5). We speculate that this might be due to the FSL situation and high inter-category
similarity of our dataset. In the circumstance of an insufficient dataset, the results of feature
extraction and feature selection will differ greatly from the essential features of the target,
leading to problems, such as low recognition accuracy and large bias of model parameter
estimation. How to achieve the recognition and classification of underwater targets with
small samples is the current problem that needs to be solved.

200 4
150 A
100 A
50
LB I

(1,1,1) 1.2,1.1,1.3 (1.4,1.2,1.5) (1.7,1.6,1.7) (2,2,2)
The scaling coefficients (d,w,r)

Prams(M) of the model

o

Figure 4. Relationship between parameters and scaling coefficients.
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Figure 5. Scaling the model under different SNRs.

Table 2. Experimental results based on the baseline and Efficientnet-S under different SNRs.

Models SNRs (dB) Test Set Accuracy (%)
Baseline 5 91.25
Efficientnet-S 5 96.25
Baseline 0 85.00
Efficientnet-S 0 91.25
Baseline -5 72.50
Efficientnet-S -5 77.50
Baseline —10 68.75
Efficientnet-S —10 73.75

2.3. A Novel Generating Adversarial Networks

In the model scaling part, we speculate that the lack of samples in the Mel-spectrogram
dataset may be the reason why the accuracy diminishes for bigger models. In this section,
we propose a novel deep convolution generative adversarial network (SGAN) suitable for
spectrograms to expand the Mel-spectrogram dataset. The simulation results show that the
overfitting problem in DCNN under FSL is solved.

2.3.1. Principle of Generating Adversarial Network

Generative adversarial network (GAN) [20] has been widely used in recent years
to expand the dataset for neural network training. GAN is an unsupervised model that
consists of a generator model (G) and a discriminative model (D). The former can capture
details of the distribution of data features, while the latter can estimate the sample’s
category. The task of the G is to maximize the probability of the “error in judgment” of
D, while the task of the D is to accurately discriminate between the real samples and the
samples generated by D.

Define the generator’s distribution of the data as Py and the prior variable of the input
noise as P;(z), using G(z;0,) to represent the mapping of the data space, where G is a
multilayer perception with the parameter ;. Then define D(x;6,) also as a multilayer
perceptron to output a separate label scalar. D(x) represents the probability that x comes
from the real data distribution Py, ,) instead of Pg. By training D to maximize the
probability of discriminating the correct label and G to minimize log(1 — D(G(z))) , the
training process V(G; D) of D and G is a two-person game problem with a minimization of
the value function shown in Equations (3) and (4).

méanaX V(D,G) = Expduta(x) [IOgD(X)] + EZPZ(Z) [10g(1 —D(2))] ®3)

Pdata(x)

D) = 5 + o)

4)
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By means of training D and G until D cannot discriminate between the data generated
by G and the real data, there is Pg(x) = Pyy,(x), at which point D(x) = 0.5, i.e., and the
training process has reached its optimum.

2.3.2. Sgan Architecture

Deep convolutional generative adversarial networks (DCGAN) is a type of GAN
proposed by Radford and Metz in 2015 [21]. The most significant feature of DCGAN is that
it uses convolutional neural networks as the architecture to build the G and D, which solves
the problems of training instability and mode collapse. In this section, we propose a new
deep convolutional generative adversarial network to extend our Mel-Spectrogram dataset.

As shown in Figure 6, the generator of SGAN firstly generates 100-dimensional random
noise. The data are enlarged through the fully connected layer, then reconstructed to
transform the one-dimensional data into a three-dimensional matrix of 12 x 12 x 1024,
doubling the feature map by the transposed convolution (TransConv) of five deconvolution
layers. The final output is a feature map of 384 x 384 x 3. The discriminator performs
the feature extraction by convolution operation (Conv) on the 384 x 384 x 3 size feature
map outputted by the generator. Finally, the recognition result is outputted by the fully
connected layer as shown in Figure 7. A batch normalization layer (BN) and an activation
function (LeakyReLU) are introduced into both the generator and the discriminator. They
are used to normalize the feature values, accelerate the convergence and improve the
learning ability. In addition, a dropout layer is added to the discriminator to suppress the
overfitting phenomenon and improve the generalization ability of the model. The structure
of SGAN is shown in Figure 8.

Random noisc

Width

Channe |

Size 100 147,456 12%12%1024 24%24%512  AB*4AB*256  96%96*128 192%192%64  384%384*3

Figure 6. Generator structure.
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Figure 7. Discriminator structure.
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Compared with the conventional optical images, Mel-Spectrograms have more dense
texture features and less distinct contour features, which requires less perceptual field
in the deconvolution and convolution process. In consideration of this requirement, we
propose to use 2x2 (C2) even-sized convolution kernels instead of the normal conventional
3%3 (C3) convolution kernels to achieve the purpose of parameter reduction. It is known
from the properties of convolution that even-sized convolution kernels cause asymmetric
receptive fields (RFs) that produce pixel shifts in the resulting feature maps, and such
position shifts accumulate during multiple convolution superpositions and severely erode
spatial information. Inspired by Ref. [22], we propose a group-symmetric padding (GP)
method to divide the 1024-channel feature map into a uniform number of 256 groups in
terms of channel order, and symmetrically pad the 4-channel feature map of each group.
The specific steps are shown in Figure 9. The feature map size after padding is (channel,
width, height) = (1024, 13, 13). Then the length and width of the matrix are expanded.
Meanwhile, the dimension of the matrix is reduced by a deconvolution operation with an
even-sized kernel (size = 2 x 2, stride = 2). This whole process is called (C2-GP).

To evaluate the generative effect of SGAN with various convolutional kernel sizes,
we use Mel-Spectrograms of four types of targets as input in turn. 5 spectrograms of
the same targets are put into SGAN each time. We record the output images after every
100 iterations of the generator G. Figure 10 shows the generation results of SGAN-C2GP
with 5 Mel-Spectrograms of target2 as input. The images generated after 1000, 2000, and
3000 iterations are compared with the original input images. It can be seen that as the
iterations proceed, the number of noise points in generated images is significantly reduced.
Both the contours and the detail textures are closer to the original images, which visually
illustrates the effectiveness of the SGAN algorithm.

Output

Figure 8. SGAN structure.
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Figure 10. Generated samples under different iterations.

In addition to the subjective analysis, we also judge the quality of the generated images
by calculating the peak signal-to-noise ratio (PSNR). The formula for calculating the PSNR
of two images I and K [23] is

MAX?

PSNR = 10logo( 2o VSE L)

©)

where MAX] is the pixel maximum of picture I, the size of I and K are both m x n. The
mean-square error (MSE) is defined as

|
_

m n—1

MSE= X G) ~ Kl ©)

1

where yi; and g are the means of I and K, o7 and ok are the variances of I and K, oy is the
covariance of I and K.

Structural similarity (5SIM) [23] is probably currently the most popular evaluation
metric for image similarity, which is commonly used in the analysis of image generation by
GAN. SSIM measures the brightness, contrast and structure of two images. Its calculation
formula is as below.

(2urpx + c1)(2010% + c2) (07x + €3)

SSIM(I,K) =
(1K) (17 + % +c1) (07 + 0% + ) (070K + ¢3)

@)

where the parameters setting are

= (0.01 x 255)%;c; = (0.03 x 255)2;¢3 = 0.5¢, 8)
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From Equations (5) and (7), it can be seen that the larger the value of PSNR and the
closer the value of SSIM to 1, the higher the similarity of the two images, which means
that the generated images are closer to the real images. We conducted ablation experiments
under different SNRs (5 dB, 0 dB, —5 dB, —10 dB) to intuitively observe the impact of
different convolutional kernel sizes and padding methods on the model performance,
where PSNR and SSIM are obtained by averaging the generated images after 1000, 2000,
and 3000 iterations of the generator. Time cost is the average training elapsed time for
3000 iterations. Figure 11 shows the result of scaling the model under differenet SNRs
with SGAN(C2-GP). In conclusion, the simulation results at low SNR can illustrate the
better performance of the model.The results of Figures 12 and 13 are obtained under
SNR = —10dB.

100
—= SNR=5dB et D D L L L LDl
-
SNR=0dB _ .=~
95 4 SNR=-5dB
—— SNR=-10dB
-
S
< 90+
%)
e
3
v
®
o 854
n
2
[
<
'_
80 -
5 S S ——
-
z”
’/
54 == %
(1,1,1) (1.2,1.1,1.3)  (1.4,1.2,1.5) (1.7,1.6,1.7) (2,2,2)

The scaling coefficients (d,w,r)
Figure 11. Scaling the model under differenet SNRs with SGAN.

From the results in Figure 12, it can be seen that the even-sized convolutional ker-
nels (C2, C4) achieve poorer performance than the odd convolutional kernel (C3). Both
PSNR and SSIM of C2, C4 are significantly lower than C3. Notably, after introduced group
padding (GP), the results of GAN with C2-GP and C4-GP both have a significant improve-
ment. In particular,the PSNR value of C2-GP reaches 20.73, while the value of SSIM is 0.607.
Those results verify that the effectiveness of the group padding method proposed in this
paper. The computational complexity and the number of parameters are reduced due to
the reduction of the convolutional kernel size. It can be seen that C2-GP takes less time
than C3, and C4-GP takes less time than C5 for the same 3000 iterations. We obtain several
generated images by SGAN with different padding methods and convolution kernels for
3000 iterations. The high-quality images are selected according to the criteria of SSIM,
PSNR and intuitive sense. Finally, the number of training and validation datasets for each
kind of targets is expanded from 95 to 300, while the test set remain constant. The results of
the simulation experiments based on the expanded dataset are shown in Figure 13. The
accuracy on the expanded dataset is larger than the accuracy on original dataset. To be
precise, the baseline model achieves a 2.5% accuracy improvement while Efficientnet-S
achieves a 3.8% improvement on the SGAN-C2GP expanded dataset. The results are
consistent with the excellent performance of SGAN-C2GP shown in Figure 12. Moreover,
comparing Figure 5 with Figure 11, it not only illustrates that the dataset expansion partly
solves the decreasing accuracy due to scaling, but reflects the effectiveness of the SGAN
as well.
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Figure 12. The results of changing the convolution kernel and padding method under SNR = —10 dB.
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Figure 13. The results of different models after SGAN expansion under SNR = —10 dB.

3. Experiment

To test the performance of the proposed algorithm, an experimental dataset was
constructed based on the active sonar echoes obtained from the anechoic pool; the model
generalizability analysis was performed by comparing the results of the baseline model
and EfficientNet-S. We also analyzed the result before and after introducing the generative
adversarial strategy into the experimental dataset.

3.1. Experimental Dataset

The relevant experiments were all conducted in an anechoic pool. Both the target
and the transducer are 2.5 m away from the water surface with 2.5 m separation distance
between each other. The time-domain waveforms and Mel-Spectrograms of the four types
of targets are shown in Figure 14. The experimental system is shown in Figure 15.
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Figure 14. Schematic diagram of the underwater targets” echoes and Mel-Spectrograms.

>VYVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV<
> | <
> 20(m >
> My &
3 :
> | >
> | >
> | o T <
> | - Receiving 3
> : A transducer 2.5(m) >
< I >
> 2.5(m): <
> | (m) | [} | >
> | | o <
> 18(m) : N >
> | Ve 7 2.5(m) 3
> | T T o >
ransmittin,
> | Target & >
> transducer b
< I <
| 3
| 3
> | ilencing wedge &
MAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAA

Figure 15. Block diagram of the pool experiment system.

We put four types of targets along the central axis, rotated counterclockwise in 1 degree
step, and received echo data at each rotation angle by a data acquisition system. A total
of 4 x 360 sets of echo data is collected, then divided into four groups with 136 sets
of each type of targets. These data groups were randomly selected to obtain the time—
frequency images using the Mel spectrum feature extraction method proposed in Section 2.1,
which will construct the experimental Mel-spectrogram dataset for the following steps.
The obtained 544 images were randomly divided into three subsets, where there were
380 images (about 70%) in the training set, 82 images (about 15%) in the validation set, and
the remaining images that were used as the test set. The number of each type of targets in
the dataset is shown in Table 3.
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Table 3. Experimental data description.
. . Train and val Total
Categories Train and val (Expanded Number) Test Total (Expanded Number)
Target 1 116 300 20 136 320
Target 2 116 300 20 136 320
Target 3 116 300 20 136 320
Target 4 116 300 20 136 320

3.2. Model Evaluation Metrics

In target recognition, the prediction results can yield four potential predictions: true
positive (TP), false positive (FP), true negative (I'N) and false negative (FN). If the pre-
dicted label value is consistent with the true label value, the result is marked as TP.
Otherwise, it is marked as FP, and if there is no predict label matching the true label, it is
marked as FN. TP represents the number of correctly identified targets, FP is the number
of incorrectly identified targets, and FN is the number of targets that are not detected. The
performance of the model can usually be evaluated by accuracy, which is calculated by
Equation (9).

Accuracy = P+ 1IN )
Y TP+ TN+ FEP+EN

Furthermore, we use recall rate and F1Score value as performance indicators to de-
scribe the classifier. Each performance indicator is calculated as follows:

.. TP
Precision = TP L EP (10)
TP
Recall = TP+ EN (11)
2 x Preci Recall
FlScore — 2% Precison x Reca (12)

Precision + Recall

In addition, we also recorded the training time to measure the efficiency of a model.
The training time represents the total time from the start of the model iteration to the end
of training.

3.3. Result Analysis

Based on the same training environment and training strategy as in the previous
section, the classification results on the experimental dataset shown in Table 4. Analysis of
the results in Table 4 shows that the scaling model (EfficientNet-S) achieves the best 90% test
set recognition accuracy (Experiment 2 in Table 5) with the compound scaling coefficients
(d,w,r) =(14,1.2,1.5). The results illustrate that EfficientNet-S has an 11.2% improvement
compared to the baseline model without scaling (Experiment 1 in Table 5). The increase of
time consumption due to the increased parameters is also within acceptable limits. Instead
of an increase in recognition accuracy, there is a decrease in recognition accuracy with the
continued scaling of the baseline model. The computational time consumed by the model
training increases exponentially with the larger scaling coefficients, which is consistent
with the conclusion obtained in the previous simulation experiments.
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Table 4. Scaling the baseline model with different coefficients.

Models Scaling Scaling Scaling Test Set Training
Factor d Factor w Factor r Accuracy (%) Time (s)
Baseline 1 1 1 78.8 223.5
Baseline 1.2 1.1 1.3 86.3 422.7
Baseline 14 1.2 1.5 90.0 546.8
Baseline 1.7 1.6 1.7 85.0 1500.4
Baseline 2 2 2 83.8 2721.6

Table 5. Experimental results of different models.

Experiment Serial Network Model Test Set Accuracy (%) Training Time (s)

Number
1 Baseline 78.8 2235
2 Efficientnet-S 90.0 546.8
3 Efficientnet-S+SGAN 92.5 1203.6
4 IAFNet 73.8 411.2
5 Efficientnet-V2S 82.5 1108.7

Based on the SGAN proposed in Section 2.3, we expanded dataset based on exper-
imental echoes. The number of training datasets for each type of targets was expanded
from 95 to 300 based on the screening of generated images by SSIM, PSNR and intuitive
sense. The number of test dataset remained constant. The same training strategy and
initial parameters as in the previous section were used to train in the experimental dataset
after the SGAN expansion (Experiment 3). To compare with other current models, the
IAFNet [14] and EfficientNet-V2S [18] network models were also experimented on the
original dataset (Experiments 4 and 5). The results of each experiment are shown in Table 5.
Figures 16 and 17 show the graphs of validation accuracy and validation loss according to
the different numbers of epochs.

1.0 1
0.8 1
2 0.6
=
3]
£
0.4 1 _
_T:J —— Baseline
- Efficientnet-S
0.27 ——Efficientnet-S+SGAN
—— JAFNet
0.0 1 — Efficientnet-V2S
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Epoch

Figure 16. The validation accuracy for different models.
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Figure 17. The validation loss for different models.

Comparing the results of Experiments 1, 2, and 3, it can be seen that the combination of
Efficientnet-S and SGAN achieves 92.5% recognition accuracy in the test set. We observed
that our algorithm outperformed the baseline with big margins on the experimental dataset.
It also achieves an effective improvement of 2.5% compared with Efficientnet-S alone.
These results suggest that the SGAN can achieve effectively regular augmentation for the
Mel-Spectrograms dataset. As shown in the green lines of Figures 16 and 17, we notice that
the case of the decrease in validation accuracy and the increase in validation loss no longer
appear, and the training process is smoother. These results fully indicate that the overfitting
problem is effectively suppressed after the data expansion by SGAN. Such a result illustrates
that our algorithm can effectively solve the problem of an insufficient amount of underwater
target data. Another important observation is that the continuous expansion of the data
set can still reduce the overfitting to a certain extent, but it will also bring more time
consumption. In contrast with Experiments 4 and 5, the result of Experiment 3 shows that
the model of Efficientnet-S combined with SGAN achieved superior performance on the
experimental dataset compared to the other existing algorithms. Due to the decreasing
depth of the convolutional layer, the Efficientnet-S training time consumption is also
significantly lower than Efficientnet-V2S. The IAFNet is a lightweight network. Although
the training speed is fast, its test set accuracy is only 73.8%, which is much lower than
our algorithm.

In Table 6, the average recall, precision and F1Score are respectively 92.43%, 92.50%
and 0.9246. These values are all obtained by combining Efficientnet-S and SGAN. The
experiment results show that the proposed algorithm has excellent recognition ability for
four categories of echoes, which are consistent with the previous conclusions.

Table 6. The performance of the classifiers.

Experiment Average Average Recall Average
Serila)l Number Network Model Precisior% (%) %’/o) FlSco%e
1 Baseline 78.68 78.75 0.7871

2 Efficientnet-S 90.00 90.00 0.9000

3 Eff-S+SGAN 92.43 92.50 0.9246

4 TAFNet 75.03 73.75 0.7438

5 Efficientnet-V2S 82.83 82.50 0.8266
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4. Discussion

Due to the shortcomings of DCNN for target recognition in underwater scenes, we
innovatively introduce EfficientNet-S as the basic backbone network of our algorithm to
extract the target features, as well as proposing a novel generative adversarial network
(SGAN) to expand the dataset. Experimental results show that the improved model
proposed in this paper has excellent performance in the underwater target classification
task. As is shown in Figure 18, compared with other existing networks and baselines,
our algorithm effectively improves the recognition accuracy of four types of underwater
targets. However, it can be seen from the confusion matrices that the recognition accuracy
of our algorithm for some similar classes are relatively low, such as target 1 and target 3.
These two classes are confused with each other in all of the confusion matrices. Therefore,
it is worth considering how to improve the recognition accuracy of strongly confusing
categories in our later work. The reverberation makes it difficult to detect targets in shallow
water. The space-time reverberation modeling for active sonar array is worthy of further
studies. We would discuss the performance of our algorithm when it works with the
different non-Gaussian noise models.

Predicted Labels

Predicted Labels

<
Labels

(d) (e)
Figure 18. The confusion matrices of different models. (a) Baseline. (b) EfficientNet-S. (c) EfficientNet-
S+SGAN. (d) IAFNet. (e) EfficientNet-v2S.

5. Conclusions

In this paper, we proposed a deep learning algorithm for the task of underwater
target recognition under small samples. Mel-Spectrograms of target echoes were calculated
through the Mel spectrum feature extraction method. It was regarded as the classification
feature applied into the classification network. Aiming at the problem of insufficient
recognition accuracy of DCNN in the process of underwater target recognition, we proposed
a network model (Efficientnet-S) adjusted by compound scaling based on the baseline
model. Combining the group padding and even-sized convolution kernel, the SGAN
model was designed to achieve the effective augmentation of samples. The designed
classification network based on the expand dataset realizes target classification with high
efficiency and high performance. According to the experiments based on anechoic pool
echoes, the proposed model achieves more than 90% recognition accuracy, which is a better
classification performance than other current methods. The results show that our algorithm
accurately recognizes real underwater targets with small samples. The advantages of
the deep learning method include its stronger capability to identify underwater targets
and generalization than traditional methods. In contrast, its drawbacks consist of more
computational power required and expensive GPUs necessary to process a large amount of
data and complex data models. For future works, researchers may opt to further improve
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the DCNN muodels in small samples with other optimization algorithms, such as transfer
learning and meta-learning. In some fields, those approaches are used to efficiently solve
the problem that DL requires a huge amount of data for it to capture the key features of
classification. In addition, scaling the model with more sets of parameters may also allow
our model to perform better on other datasets.
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