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Abstract: The good performance of the port activities in terminals is mainly conditioned by the
dynamic response of the moored ship system at a berth. An adequate definition of the highly
multivariate processes involved in the response of a moored ship at a berth is crucial for an appropriate
characterization of port operability. The availability of an efficient forecast system of the movements
of moored ships is essential for the planning, performance, and safety of the development of port
operations. In this paper, an inference model to predict moored ship motions, based on a semi-
supervised Machine Learning methodology, is presented. A comparison with different supervised
and unsupervised Machine Learning techniques, as well as with existing Deep Learning-based
models for predicting moored ship motions, has been performed. The highest performance of the
semi-supervised Machine Learning-based model has been obtained. Additionally, the influence of
infragravity wave parameters introduced as predictor variables in the model has been analyzed and
compared with the typical ocean waves, wind, and sea level as predictor variables. The prediction
model has been developed and validated with an available dataset of measured data from field
campaigns in the Outer Port of Punta Langosteira (A Coruña, Spain).

Keywords: semi-supervised machine learning; regression-guided clustering; inference model; moored
ship motions prediction; port operability forecast

1. Introduction

The efficient development of port operations (e.g., goods loading/unloading and
passenger embarking/disembarking) is essential for the proper functioning of a harbor.

A good performance of a port’s activities is mainly conditioned by the dynamic re-
sponse of the moored ship system (composed of a ship, mooring lines, and fenders) in a
berthing area due to the met-ocean conditions (waves, wind, currents, and sea level). In
this sense, the port operability can be limited because of the effect of certain unfavorable
conditions driving excessive moored ship motions and even inducing downtime events.
Traditionally, the port operability/downtime assessment is based on recommended ex-
ceedance thresholds of certain met-ocean and/or ship motion parameters [1–9]. Those
limiting thresholds are defined as the maximum admissible values for the relevant variables
in terms of the operational, functional, and safety conditions in the development of port
operations. Different operability criteria defining the allowable moored ship motions for
each of the six degrees of freedom (6 DoF) and different types of ship can be found in [2–8].
As an indirect measure of the induced responses of moored ships, the recommended oper-
ational limits to be adopted for different met-ocean forcings (e.g., wind velocity, current
velocity, and significant wave height), according to the type of ship and port activity, are
presented in [1,6].
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An adequate definition of the highly multivariate processes involved in the response
of a moored ship at a berth is essential for an appropriate characterization of the port oper-
ability. Therefore, an in-depth description of all the concomitant variables involved, and the
multidimensional interaction between the forcing variables and those of the corresponding
response of the moored ship system, is required.

In practice, different approaches can be adopted to evaluate the response of moored
ships at berths. First, the most commonly used approach today is numerical modeling.
That is, the response of the moored ship system is computationally simulated by means of
numerical models (e.g., [10–14]) that solve the governing equations describing the dynamic
behavior of the system. It is an efficient approach because of the easier assembly and modi-
fication of analysis scenarios compared to other approaches. Given the chain of processes
involved in the study of moored ship motions at berths, this approach often consists of
coupling different numerical models [15–24]. Usually, wave propagation and penetration
into the harbor is solved first; subsequently, the induced moored ship response is numeri-
cally simulated. Numerical modeling provides simplified theoretical approximations to
the analysis problem with an associated level of uncertainty. In addition, a great deal of
information and variables are required (regarding met-ocean forcings, ship characteristics
and conditions, mooring/berthing system configuration and characteristics, etc.), which
are unknown in most cases. Therefore, the total uncertainty introduced in the entire chain
of numerical models may be significant. A very exhaustive study is required for an accu-
rate representation of the processes involved. The second approach is the experimental
evaluation of a moored ship response through physical modeling. In this approach, the
mooring scenarios subjected to met-ocean forcings are physically reproduced and analyzed
in laboratory tests on a reduced scale [25–29]. The use of physical modeling has been
reduced due to the availability of numerical models [9]. In addition to the unavailable
information (as in the case of numerical modeling), the main limitations of laboratory tests
are the high cost, scale limits, and the complexity of the assembly and modification of the
analysis scenarios. This type of modeling allows for fewer simulations to be performed,
and the cost of an exhaustive study to accurately characterize the response of moored ships
is incompatible with practical applications. Although certain simplifications are also as-
sumed, physical models provide valuable results often used as a complement to numerical
modeling to calibrate, validate, and/or refine the numerical results [9,20,25,30,31]. Finally,
the third approach is the analysis of the berthed ship system response based on prototype
measured data obtained from monitoring campaigns [32–36]. These measured data can be
considered the real behavior of the system. However, field measurement campaigns are not
commonly carried out due to the high cost entailed, the installation and maintenance of the
instrumental equipment required, and the possible interference with the port operations.
As in the case of physical modeling, this measured information is often used as a valuable
complement to enhance numerical modeling [22,37].

In this paper, an inference model is proposed aimed to predict the response of moored
ships based on a certain amount of available data and despite the unknown information.
A global characterization of port operability and downtime events in harbors is sought
to serve as an assistance tool for the management of berths and port operations in harbor
terminals.

For this predictive purpose, advanced techniques (e.g., artificial intelligence) are
required to process the available databases in order to solve the aforementioned complex
interrelation systems. Once the multidimensional interaction between the forcing variables
and those of the corresponding response of the moored ship system is solved, these tools
gain special importance as forecast systems of moored ship movements in this work
to obtain updated predictions without model runs (and their associated computational
demand).

In recent years, artificial intelligence (AI) techniques have been extensively devel-
oped and applied, in multiple fields, to computationally analyze, model, and infer robust
performance patterns in different highly monitored physical and engineering processes.
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Specifically, different cases of AI techniques applied in harbor operability assessment, both
in terms of wave agitation [38–42] and moored ship motions [32,33,36], can be found in
the literature. Using inference models, relations between variables have been established,
allowing conclusions to be deduced from an initial multivariate database. That is, the
response of the study system in a specific scenario can be inferred/predicted by the model.
By means of learning techniques, inference models can be automatically fitted/improved
as new datasets are introduced in the database. In this way, different algorithms can
be defined, within Machine Learning (ML) techniques, for the inference model to learn
the dependency relationships between variables. In the last decade, the increase in com-
putational capacity and Big Data development have rapidly led to Deep Learning (DL)
techniques consisting of higher-complexity algorithms (e.g., increasingly used artificial
neural networks) inspired by the functioning of neural networks in the human brain. ML
techniques can be classified into three areas or algorithm classes: reinforcement, supervised,
and unsupervised learning-based algorithms.

Reinforcement learning is based on trial-and-error processes, where the model learns
from reward/punishment feedback in response to its results in a specific environment.

Supervised ML techniques are used for labeled dataset-based training (i.e., data
mining). The input and output variables are defined to establish the relationship function
between the independent variables and the response ones. For example, a linear regression-
based model for the prediction of moored ships’ motions from different met-ocean and
vessel size input parameters is presented in [32]. In [33], a prediction model for moored
ships’ responses based on gradient boosting algorithms can be found. In both cases,
different instrumental data obtained from several field campaigns developed in the Outer
Port of Punta Langosteira (A Coruña, Spain) were used to fit/train the inference models.
Unlabeled datasets are used in unsupervised learning-based algorithms. There is no
differentiation between the input and output variables, but all of them are equally treated
by the model for identifying patterns to deduce results from new datasets.

In unsupervised ML techniques, relationships between variables are not determined,
but the database structure is described by means of data organization, such as clustering
algorithms. In [43], the performance of two commonly used unsupervised clustering
algorithms (k-means and Self-Organizing Maps, SOM) and the Maximum Dissimilarity se-
lection algorithm (Max-Diss), applied to study trivariate wave climate datasets, is analyzed.
The most suitable algorithm to be used for different practical applications is proposed.
The k-means algorithm used for atmospheric and wave-related climate description can
be found in [44]. An example of the SOM algorithm applied for a climate analysis based
on clustering atmospheric weather types can be found in [45]. The Max-Diss selection
algorithm, combined with a subsequent application of a Radial Basis Function (RBF) inter-
polation, has been widely used for wave downscaling procedures in coastal areas [46,47]
as well as for reconstructing hindcast series of wave agitation [48,49] and long waves in
harbors [50,51] for port operability assessments. In [52], a hierarchical clustering method
is applied to study the common global patterns of significant wave heights based on an
ensemble of multiple climatic models.

A middle ground between supervised and unsupervised ML techniques consists of
the semi-supervised learning-based ones, working with datasets comprising both labeled
and unlabeled data. An improvement in learning accuracy can be achieved when a small
set of labeled data is used in addition to unlabeled data comprising the base dataset.
In [53], a semi-supervised method for circulation-to-environment synoptic classification
is presented. A regression-guided model is defined as a combination of an unsupervised
clustering algorithm (k-means) with supervised multivariate linear regression techniques.
In this way, a certain weighted influence of a predictand, in addition to a predictor, is
introduced into the model, obtaining an improved prediction performance [53,54]. Based
on the aforementioned work, a k-means regression-guided clustering algorithm applied
for a multivariate wave climate downscaling is presented in [54]. Lower-dispersion results
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and a better prediction of extreme values were achieved compared to the unsupervised
k-means algorithm.

Finally, Artificial Neural Networks (ANN) are the most widely used DL techniques
in the literature. Network structures are comprised of a series of interconnected nodes,
or neurons, arranged in a number of layers. Autonomous learning, without explicit
programming, is the main advantage of these techniques, achieving highly non-linear
process modeling. In such automatic learning, during the training process of ANN, the
weights and biases transforming the parameters in the nodes are recursively evaluated
and fitted, seeking to minimize the difference between the final results and the target
ones. However, as opposed to the good accuracy in the results, the high number of
parameters to be established as well as their arrangement/structure definition is usually a
complex task conditioning the robustness and generalization of the prediction tools. These
techniques applied for harbor wave agitation estimation can be found in [40], based on an
instrumental dataset; in [39], trained with a physical modeling dataset; in [38,41,42], with
previously generated numerical modeling-based datasets. In the previously cited work [33],
an ANN-based model for predicting the moored ship response is also created based on
the same instrumental dataset created from several field campaigns in the Outer Port of
Punta Langosteira. A comparison with the previously mentioned model based on gradient
boosting algorithms is presented. In [36], a model based on ANN techniques is proposed,
which predicts the movements of moored ships in an open terminal from some met-ocean
parameters and the ship’s draft defined as input variables. Some cases of models based on
different ANN techniques for ship motion and/or trajectory prediction in navigation and
maneuvering operations can be found in [55–57]. Finally, an example of an ANN-based
prediction model of loading/unloading productivity in a container ship terminal from
some met-ocean and operational input variables is presented in [58].

In this paper, a semi-supervised learning-based inference model for the prediction of
moored ships’ motions is presented. This work aim is to verify the good performance of
these semi-supervised learning-based techniques in the application field of moored ship
responses, where they have not yet been explored. The main advantages to highlight are
the multidimensional analysis-based inference tools, as they enable the quantification of the
prediction-associated uncertainty, which is a relevant aspect to consider in the reliability of
the model. The application of ML-based inference models with simpler (and more explicit)
creation and implementation processes and a lower computational cost, compared to other
techniques (such as ANN), is sought.

For this research, based on a publicly available dataset [33,59], a statistical prediction
model based on a regression-guided k-means clustering algorithm [54] has been developed
and validated. An unsupervised k-means clustering-based model has also been created,
and a supervised learning-based prediction model based on multiple linear regression
(previously used to guide the semi-supervised learning-based model) is presented for
comparison. In addition, a sensitivity analysis based on different statistical coefficients,
evaluating the performance of the (semi- and un-supervised) k-means clustering-based
models, has been performed. Additionally, a comparison with other existing models [33],
based on the same dataset, and trained by means of different supervised and deep learning-
based techniques, has been performed. Finally, the influence on the predicted results of
introducing infragravity wave parameters as predictor variables in the model has been
analyzed. It is worth mentioning that the training and testing phases of the methodology
are described in this work. From this point on, the proposed inference model can be applied
as forecast system by using available information from met-ocean forecast services and
port-activities planning as input data.

This paper is organized as follows: in Section 2, the dataset used for the development
and validation of the prediction models is firstly described. Then, the inference Machine
Learning methodologies proposed for the creation of moored-ship-motion-prediction mod-
els are presented. Finally, the application and the performance assessment of both the initial
version of the model and that extended with infragravity wave information are explained.
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In Section 3, first, the obtained results from the initial model are shown, and a compara-
tive analysis of the performance of different existing AI techniques for the prediction of
moored ship response is performed. Then, an extended version of the semi-supervised
learning-based model, with infragravity wave parameters introduced as predictor variables,
is compared with the initial one. Finally, the main conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Dataset

The dataset described in [33], publicly available in [59], has been used to develop the
prediction model presented in this work.

Data based on instrumental measurements of moored ship motions (6 DoF), ob-
tained during several field campaigns undertaken in the Outer Port of Punta Langosteira
(A Coruña, Spain) from 2015 to 2020, were collected in this dataset. The response of
46 different moored ships (25 general cargo ships and 21 bulk carrier ships) was mea-
sured by using three different synchronized devices, each for different motions/DoF. Pitch
and roll motions were obtained from Inertial Measuring Unit (IMU) measurements. Sway
and yaw motions were obtained from records of two laser distance meters that had been
installed (one to the bow and the other to the stern of ships). Finally, surge and heave
displacements were obtained by employing Computer Vision techniques applied to records
from two cameras. Hourly parameters, in terms of mean, significant, and maximum values
of each movement, are provided in the dataset. The corresponding date, number of berthing
area (considered as representing the characteristics of each different berth), and number,
type, and dimensions (length, L; breadth, B; deadweight, DWT) of ships are included in
each hourly subset of data.

In addition, several instrumental-based met-ocean variables describing the climatic
conditions associated with each hourly date record are also included in the available
dataset. The instrumental data used to define those met-ocean variables come from three
different sources.

First, outer-port wave conditions were defined in terms of significant wave height,
Hs; wave peak period, Tp; and mean wave direction, Dm. These parameters, for each
hourly sea state, were obtained from a coastal directional (Watchmate) buoy (Langosteira
buoy, [60]) located in the vicinity of the port (Lon, Lat: 8.56◦ W, 43.35◦ N; 60 m depth;
Figure 1). Secondly, wind conditions were provided, in terms of hourly mean wind
velocity, Vw, and mean wind direction, Dw, from a weather station (Meteodata R.M. Young
sensor) located at the perpendicular structure from main protection breakwater (Lon,
Lat: 8.529◦ W, 43.345◦ N; Figure 1). Finally, the in-port significant wave height, Hsi, and
sea level, SL, values are contained in each hourly subset of data. These latter parameters
were obtained from the measurements of a tide gauge (Miros radar sensor; Langosteira tide
gauge, [61]) located at the perpendicular structure from the main protection breakwater
(Lon, Lat: 8.53◦ W, 43.35◦ N; Figure 1).

Additionally, as a final analysis in this research, infragravity wave descriptive variables
have been added to the input dataset to evaluate the influence of such phenomena on the
prediction model’s performance. In order to maintain the instrumental nature of the dataset,
information of high-frequency sea level oscillations (HFSLO) based on the available raw
2-Hz data from the Miros radar sensor (Langosteira tide gauge) has been used according
to [62]. The zero-order moment wave height (Hm0IW) and the mean period (Tm02IW)
parameters, post-processed from the free surface spectra between frequencies of 1/600 Hz
and 1/30 Hz, have been included in each hourly subset of data.
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The available dataset is divided into two parts according to the separation into training
and testing data for prediction models presented in [33]. Subsets of data corresponding to
two specific ships (a small general cargo ship and a large bulk carrier) in the data sample
were selected for testing and consequently extracted from the training database. The same
division is applied in this work for development, and separately, for the validation of the
proposed prediction model. In this way, the sizes of available databases for each type of
motion are presented in Table 1. It should be noted the lower number of data for surge and
heave motions was due to occlusion events of the field of view of cameras during the field
monitoring campaigns.

Table 1. Size of data samples used for training and testing the prediction model. Number of hourly
subsets for each type of motion in the available dataset. Percentage (%) of data, with respect to the
whole dataset, used for training and testing.

Type of Motion Training Data Testing Data

Surge 364 (95.8%) 16 (4.2%)
Sway 1451 (90.2%) 158 (9.8%)
Heave 364 (95.3%) 18 (4.7%)

Roll 1348 (96.4%) 51 (3.6%)
Pitch 1348 (96.4%) 51 (3.6%)
Yaw 1248 (88.8%) 158 (11.2%)

At this point, it should also be noted that gaps exist in the infragravity wave dataset,
which provided discontinuous series of data throughout the duration of the monitoring
campaigns. As explained in [62], availability and quality of these infragravity wave data are
affected by sensor malfunctions, accidents, or external elements that can cause interferences
in the radar beam. Due to error propagation, even small errors on the 2-Hz raw data from
the sensor can produce meaningful gaps in the infragravity wave dataset.

Therefore, only the coincident time periods with available data from both the monitor-
ing campaigns of moored ships and infragravity wave sensors have been used to evaluate
the prediction model, including infragravity wave information (Hm0IW and Tm02IW). The
reduced size of these data samples used for training and testing phases is shown in Table 2.
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Table 2. Size of data samples used for training and testing the prediction model including infragravity
wave information in the input dataset. Number of the available hourly subsets for each type of
motion. Percentage (%) of data, with respect to the whole dataset, used for training and testing.

Type of Motion Training Data Testing Data

Surge 131 (90.3%) 14 (9.7%)
Sway 708 (85.7%) 118 (14.3%)
Heave 131 (89.1%) 16 (10.9%)

Roll 787 (94.4%) 47 (5.6%)
Pitch 787 (94.4%) 47 (5.6%)
Yaw 683 (85.3%) 118 (14.7%)

2.2. Machine Learning Inference Methodologies for Prediction of Moored Ships’ Motions
2.2.1. Semi-Supervised Learning-Based Model

In this section, the general description of the methodology, based on semi-supervised
ML techniques, for the prediction of moored ship response is presented. The general
framework of the methodology is shown in Figure 2, where the flowcharts for the training
and testing phases are presented.
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Specifically, the proposed methodology is based on the regression-guided k-means
clustering method [54]. The complete procedure can be divided into the following 6 steps:

1. Definition of predictor (X) and predictand (Y) matrices.
2. Standardization of X and Y variables in order to equalize the contribution of the

different variables.
3. Multiple linear regression fitting, establishing the linear dependency function between

the response variables (predictand, Y) and the input variables (predictor, X). The linear
relationship is defined by the expression:

Y = X·B + E (1)

where X and Y are the predictor and predictand matrices, respectively; B is the matrix
of fitting coefficients from the multiple linear regression; and E is the matrix of residual
error between estimations—obtained from regression—and real measured values.
The estimations from the regression are obtained as Ŷ = X·B.
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4. Weighted concatenation of the X matrix and the Ŷ predictions through the following
expression:

Z = [(1 − α)·X, α·Ŷ] (2)

where α is the weighting factor. When α = 0, only the X predictor matrix is considered
in the clustering procedure, resulting in a completely unsupervised learning-based
method. Conversely, when α = 1, only the Ŷ predictions matrix is considered in the
classification procedure, resulting in a completely supervised learning-based method.
When 0 < α < 1, an intermediate semi-supervised learning-based model is defined.

5. K-means algorithm-based clustering of Z. By means of an iterative procedure, each
subset of data is grouped to the nearest cluster centroid in terms of Euclidean distance.
The positions of the cluster centroids V are calculated as the mean value of all the
subsets of data contained in each cluster “k”. Thus, the positions of cluster centroids
are updated at each iterative step.

Vk =
Nk

∑
i=1

Zi
Nk

(3)

where Nk is the number of elements in the k-th cluster. Instead of random initializa-
tion, the initial position of cluster centroids is established by a previous application
of the Max-Diss algorithm to the Z dataset. In this way, an initial set of centroids
distributed throughout the n-dimensional space of the Z matrix is defined to start
the iterative clustering procedure. Once the clustering is completed, the prediction
model is defined by the mean (µ) and standard deviation (σ) of predictand values
in each cluster.

6. Prediction of output variables. The predictions of response variables are assigned
as the value of the nearest centroid (i.e., k-nearest algorithm) through a Euclidean
distance evaluation.

Finally, two other prediction models (a supervised and an unsupervised one) have
been developed in order to analyze and compare the performance of different existing ML
techniques for the prediction of the motions of moored ships.

2.2.2. Supervised Learning-Based Model

An inference model based on the multiple linear regression algorithm is created by
following the previously described steps from 1 to 3. The estimations Ŷ from the regression
model are directly considered predictions.

2.2.3. Unsupervised Learning-Based Model

The proposed methodology’s unsupervised version has also been considered to gener-
ate another prediction model. In this case, steps 3 and 4 (relative to the regression guide)
do not apply. The k-means clustering algorithm (step 5) is directly applied to standardized
predictor matrix X. In this way, the influence of predictand variables is not considered in
the clustering procedure nor, therefore, in learning the prediction model.

2.3. Application and Performance Assessment

The inference models based on the previously described ML methodologies are first
created and evaluated by using the available dataset [33,59]. Secondly, an extended ver-
sion of the semi-supervised learning-based model, with infragravity wave parameters
introduced as predictor variables, is presented.

2.3.1. Initial Version of the Model

As explained in Section 2.1, each hourly subset of data comprises several concomitant
data values, which can be divided into predictor (input data) and predictand (output data)
variables in the prediction model. That is, parameter values of moored ship motions are
used for predictand definition, while met-ocean variables, as well as those related to ship
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characteristics, are used for predictor definition. According to [33], only the significant
value of ship motions is considered as the predictand in the prediction model presented
in this work. Series of mean and maximum values are not used. The predictor matrix is
defined by the following variables: outer-port Hs, Tp, and Dm; Vw and Dw of wind; in-port
Hsi and SL; and L, B, and DWT of ship. The identifying number of berthing areas is not
defined as a predictor variable in this work, but each different berthing area is separately
analyzed in the proposed prediction model. In summary, for each berthing zone (z), the
predictor (X) and predictand (Y) matrices are structured as follows:

XZ = [Hs, Tp, Dm, Vw, Dw, Hsi, SL, L, B, DWT]

YjZ = significant value of motion j (with j = 1 to 6 for each type of motion)

The available dataset is divided into two parts according to the separation into training
and testing data for prediction models presented in [33], as explained in Section 2.1. The
sizes of the different data samples used for each type of motion are presented in Table 1.

Based on the previously described methodology, the inference models proposed from
the predictor and predictand matrices are created.

In the regression-guided clustering methodology, the value of two factors must be
defined, affecting the quality of the obtained results. On the one hand, the number of
clusters in the clustering procedure (step 5 of the methodology), and on the other hand, the
α factor to be considered in the weighted concatenation of matrices X and Ŷ (step 4 of the
methodology). In order to evaluate the influence of these values on the final predictions
from the model, a sensibility analysis has been performed. Different squared cluster sizes
(4, 25, 36, 49, 64, 81, 100, 121, and 144 clusters) and different values of α (from 0 to 1,
with increments of 0.1) for each number of clusters have been considered and separately
evaluated for each type of motion. A total of 90 configurations (9 cluster sizes x 10 values of
α) have been analyzed for each of the 6 DoF. The quality of the predicted results obtained,
both in the training and validation phases, for each of the 90 configurations, has been
evaluated using two indices: the Root Mean Square Error (RMSE) and correlation ratio (R2)
between predictions and measured data. The obtained results are presented in Section 3.1.1.
The optimal values for the number of clusters and α factor have been identified from the
analysis of these two evaluating indices. These optimal values have been selected as those
achieving the most accurate predictions in the testing phase, although they do not show
the best goodness of fit in the training phase. Moreover, practical criteria delimiting the
corresponding ranges of those factors for each type of motion have been defined from the
analysis. It should be noted that these values are applicable as long as data samples with
similar characteristics (e.g., size, dispersion, etc.) are used to create the model. In order to
determine the validity range of these practical criteria, the coefficient of variation (CV) of
predictand and the proportion of variance explained (EV) of predictor clustering have also
been indicated in Section 3.1.1. According to [54], CV and EV are given by:

CV = σ/µ (4)

EV = 1 − SSE/SSET (5)

where SSE is the sum of the squared errors in the different clusters, and SSET is the total
squared error of the dataset.

2.3.2. Extended Version with IW Predictor Variables

This section presents an extended version of the semi-supervised learning-based
model. An extension of the predictor matrix, including the infragravity wave descriptive
parameters, has been created. Therefore, the extended predictor matrix is defined by:

XZ = [Hs, Tp, Dm, Vw, Dw, Hsi, SL, L, B, DWT, Hm0IW, Tm02IW]
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As explained in Section 2.1, data gaps exist in time series of the infragravity wave
parameters obtained from the sensor. Therefore, the coincident time periods with available
data from both the monitoring campaigns of moored ships and infragravity wave sensors
have been used to evaluate the prediction model including infragravity wave information.
The reduced size of these data samples used for training and testing phases are shown in
Table 2. As can be seen, the size of the training dataset is considerably reduced, while the
proportion of available testing data remains similar (slightly lower).

The sensitivity analysis for the number of clusters and α factor has been carried
out analogously to the previous one for the new input dataset. The obtained results are
presented in Section 3.2.1.

3. Results and Discussion

In this section, the performance of the three prediction models based on the different
proposed methodologies applied to the available dataset [33,59] is evaluated and compared
with other existing techniques.

Additionally, a final evaluating analysis between both versions of the semi-supervised
learning-based models is presented. The results obtained from the extended version with
the IW predictor variables are compared with those based on the traditional wave, wind,
and sea level predictor variables.

3.1. Initial Version of the Model
3.1.1. Performance Assessment

As explained in Section 2.3.1, a sensitivity analysis of the influence of two factors
(number of clusters and α weighting factor) on the quality of predictions from both models
based on the semi- and unsupervised k-means clustering algorithm has been carried
out. The results obtained, both in the training and validation phases, for each model
configuration have been evaluated in terms of RMSE and R2 coefficients. The optimal
values of those factors, for each type of motion, have been identified as those achieving the
most accurate predictions in the testing phase. The results are presented in Table 3. The
corresponding CV and EV coefficients are also indicated in Table 3.

Table 3. Practical criteria to define the values for “number of clusters” and “α” in the application of
the methodology. Validity ranges are determined by CV and EV.

Type of Motion
Number of Clusters α Factor CV EV

Optimum Range Optimum Range Optimum Range Optimum Range

Surge 49 49 0.6 [0.6, 0.7] 0.20 [0.20,
0.21] 0.97 0.97

Sway 36 [25, 36] 0.3 [0.2, 0.3] 0.31 [0.31,
0.33] 0.84 [0.80,

0.84]

Heave 25 25 0.6 [0.5, 0.7] 0.11 [0.11,
0.12] 0.91 [0.91,

0.92]

Roll 36 [25, 36] 0.1 [0.1, 0.4] 0.24 [0.24,
0.25] 0.86 [0.82,

0.86]

Pitch 25 25 0.2 [0.1, 0.4] 0.22 [0.22,
0.23] 0.82 0.82

Yaw 25 [25, 36] 0.3 [0.2, 0.4] 0.47 [0.36,
0.49] 0.82 [0.82,

0.86]

The results obtained for each type of motion, both for the optimal values of α and
for α = 0 (unsupervised k-means algorithm), for each of the clustering sizes analyzed are
presented in Figure 3. The evaluating indices RMSE and R2 are represented, both for the
verification phase after the training/learning of the model and for the validation phase of
the predictions obtained with the previously trained model for the testing data sample.
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Figure 3. Evaluation of the results from the prediction model for the six DoF, in terms of RMSE and
R2, for α = 0 (blue color) and α = optimum value (orange color), for different clustering sizes. Solid
line: verification of the results after the training phase; dashed line: results validation in testing phase.
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As can be seen for all the six DoF, higher-quality predictions were obtained from the
model based on the regression-guided clustering method (α 6= 0) compared to that based on
the unsupervised k-means algorithm (α = 0). Similar evaluating indices can be observed in
the verification results of the training phase for both the semi- and unsupervised learning-
based models. Nevertheless, the improvement achieved for the optimal α values compared
to α = 0 can be more clearly appreciated in the validation of the testing phase.

In general, for the training verification phase in all the figures, the progressive im-
provement of the evaluating indices (i.e., the decreasing RMSE and increasing R2) as the
number of clusters increases in both the guided and not-guided clustering procedures can
be observed. This behavior was expected since the data subsets were located closer to
their values for the larger number of clusters. The extreme definition would be reached
for a number of clusters equal to the sample size, where each centroid would fit with its
unique data subset. However, for the testing phase, these trends change from a certain
size/number of clusters. For example, for the surge motion results in Figure 3, an RMSE
reduction was observed between 4 and 25 clusters. From 25 clusters, the RMSE is practically
stabilized until the size of 49 clusters, from which the predictions start worsening. Similarly,
the increasing trend of the R2 between 4 and 36 clusters can be observed, stabilizing and
then worsening from the size of 49 clusters. An overfitting of the prediction model from
such a number of clusters in the training phase is verified, with a better goodness of fit in
the verification/training phase, but it is worsening in the validation/testing phase. Similar
behaviors can be observed for the other movements, allowing for the identification of the
optimum number of clusters to be established in the clustering procedure for each type
of motion. In this way, the optimal values have been identified as those achieving the
best evaluating indices in the validation/testing, despite not corresponding with the best
goodness of fit in training.

The scatter plots of the comparison between the semi-supervised ML-based model
predictions and the measured data from field campaigns are represented in Figures 4
and 5 for the training and testing phases, respectively. The goodness of fit obtained for
the training and testing phases for each type of motion can be observed. In general, an
adequate correlation between the predictions and measurements was obtained for all the
DoF training and testing phases, except for the roll motion in the testing phase where
a considerable deviation is shown. As discussed below, this deviated roll behavior is
generally observed for all the techniques considered for the analysis and comparison in
this work (see Tables 4 and 5).
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F is the non-exceedance probability), are represented by diamond symbols (color-filled symbols
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Figure 5. Scatter plots of comparison between the semi-supervised ML-based model predictions and
measured data for the six DoF. Joint probability density represented by the color scale. Quantile
values equally spaced between 1% and 99.999% (in Gumbel probability paper) are represented by
diamond symbols (color-filled symbols for values between 1% and 90%; non-filled symbols for values
between 90% and 99.999%). Testing phase.

From the analysis of the results of the training phase, the most correlated results
(Figure 4 and Table 4) were observed for the two types of movements with the smallest
datasets (surge and heave). This would be expected due to the lower amount of data to
be clustered, which results in a tighter value grouping within each cluster. This is also
consistent with the highest EV coefficients shown for these two movements in Table 3. For
the heave motion, a good fit is obtained over the whole range of measurements (Figure 4),
although it is narrower (0.9 m; Table 4) than the other movements. This would also be
expected since this motion type is the most directly influenced by waves and not by other
aspects that are more difficult to capture, such as the effects of mooring lines. From the
analysis of the surge scatter plot in Figure 4, larger deviations (underestimation) of the
predictions compared to the measurements can be observed for the largest instrumental
values (from surge measurements of 2 m). This reveals the greater complexity of the
characterization of this DoF from the predictor variables considered. Indeed, despite the
reduced number of available data, the surge motion presents the highest optimum number
of clusters (Table 3). In contrast to heave, the surge motion is highly influenced by the
effects of mooring lines (non-linear behavior, pretension, mooring plan, etc.), which may
not be fully represented in the model (partly due to the predictor variables and their nature,
and partly due to the inference relationships established). Similarly, the deviations (higher
dispersion in Figure 4 and poorer correlation coefficients in Table 4) between the predicted
and measured values for sway and yaw motions could be because of the influence of the
mooring system on these horizontal motions. As it can be observed in Figure 4 and Table 4,
the pitch motion is the rotational DoF with the highest correlation between the predictions
and measured data. The pitch measurements are also contained within the narrowest range
compared to roll and yaw (2.80; Table 4). Similar to that mentioned for heave, pitch is a
vertical movement greatly influenced by waves rather than by the mooring configuration,
so apparently, the inference relationships between predictand and predictor variables are
better identified for these DoF in the model. Finally, a dispersion is also observed in the
scatter plot for roll motion in the training phase. The possible causes are discussed in more
detail below for the analysis of the results from the testing phase.
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Table 4. Comparison of different ML and DL algorithms for prediction of the 6 DoF of moored ship
motions. Quantification of error, RMSE; correlation, R2. In green, the highest values of fit, and in red,
the poorest value of fit, for each case of all algorithms. The values of the measurements range for
each type of motion are also indicated. Training phase.

Training

Surge Sway Heave Roll Pitch Yaw

R2 RMSE
(m) R2 RMSE

(m) R2 RMSE
(m) R2 RMSE

(◦) R2 RMSE
(◦) R2 RMSE

(◦)
Multiple linear

regression 1 0.82 0.20 0.72 0.19 0.90 0.05 0.73 0.39 0.70 0.21 0.79 0.31Supervised
ML Gradient Boosting 2 0.86 0.11 0.92 0.04 0.92 0.03 0.91 0.11 0.98 0.04 0.95 0.06

Unsupervised
ML K-means 1 0.89 0.15 0.75 0.17 0.94 0.04 0.78 0.34 0.84 0.14 0.78 0.32

Semi-supervised
ML

Regression-Guided
K-means 1 0.88 0.15 0.77 0.16 0.90 0.05 0.80 0.32 0.85 0.13 0.81 0.30

Deep Learning Artificial Neural
Networks 2 0.99 0.03 0.99 0.02 0.95 0.05 0.99 0.06 0.98 0.02 0.98 0.01

Range 2.3 m 2.5 m 0.9 m 4.3◦ 2.8◦ 4.8◦

1 Developed in this work. 2 Developed in [33].

Table 5. Comparison of different ML and DL algorithms for prediction of the 6 DoF of moored ship
motions. Quantification of error, RMSE; correlation, R2. In green, the highest values of fit, and in red,
the poorest value of fit, for each case of all algorithms. Testing phase.

Testing

Surge Sway Heave Roll Pitch Yaw

R2 RMSE
(m) R2 RMSE

(m) R2 RMSE
(m) R2 RMSE

(◦) R2 RMSE
(◦) R2 RMSE

(◦)
Multiple linear

regression 1 0.51 0.23 0.50 0.15 0.55 0.08 0.47 1.06 0.35 0.19 0.17 0.37
Supervised

ML Gradient Boosting 2 - 0.39 - 0.11 - 0.09 - 1.04 - 0.24 - 0.28

Unsupervised
ML K-means 1 0.43 0.17 0.48 0.14 0.52 0.14 0.50 0.89 0.66 0.10 0.55 0.17

Semi-supervised
ML

Regression-Guided
K-means 1 0.65 0.07 0.53 0.13 0.53 0.11 0.51 0.90 0.72 0.08 0.58 0.15

Deep Learning Artificial Neural
Networks 2 - 0.10 - 0.15 - 0.12 - 0.90 - 0.11 - 0.15

1 Developed in this work. 2 Developed in [33].

From the analysis of the results from the testing phase (Figure 5 and Table 5), an
adequate goodness of fit of the predictions is shown for all the movements except for the
roll motion where a notable deviation was observed. Different causes may underlie these
roll deviations. It could be the DoF with the greatest associated uncertainty introduced
from different sources. First, those differences between the measurements and predictions
could be due to higher variations in the characterization of this motion type for the two
separated ships (berthing/mooring scenarios) used in the testing phase. As mentioned
in [33], a greater variability of the roll motion measurements is shown for similar met-
ocean predictor variables, which makes it more difficult for the model to establish the
inference relationships. A second possible reason could be a higher difficulty involved in
measuring and reproducing this movement since the roll motion is restricted to one side by
the berthing structure. Another possible reason could be the varying aspects influencing the
roll motion more intensely than the other DoF during the operations/berthing time, such as
inertial changes existing during the loading/unloading activities, changes in the mooring
line tensions due to variations in the sea level or the ship’s draft (loaded/ballast conditions),
or the relative position and orientation of the ship with respect to the multidirectional
in-port wave patterns occurring at different berthing areas. Many of these mentioned
aspects are not (or are only limitedly) represented by aggregated parameters used for
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the model-learning and prediction. Finally, the possible limitations mentioned in [33]
concerning the measured data (small dataset size, bias, and noise) should be pointed out.

Further analysis of the possible causes of these roll deviations will be contemplated in
future works where the authors will expect to have detailed information concerning the
met-ocean climate, field campaign development, and field data acquisition (e.g., boundary
conditions; disaggregated definition of met-ocean forcings; sensitivity, resolution, and
sampling frequency of the monitoring equipment; sensor calibration; etc.).

3.1.2. Comparative Analysis of Different AI Techniques for Prediction of Moored
Ships’ Motions

Finally, a comparative analysis of the performance of different AI techniques (multiple
linear regression, gradient boosting, unsupervised k-means clustering, regression-guided
k-means clustering, and artificial neural networks algorithms) applied to the prediction
of the movements of moored ships has been performed. The evaluation of the predictive
performance of each different technique-based model, in terms of RMSE and R2, is summa-
rized in Table 4 for the verification of the training phase, and in Table 5 for the validation
of the testing phase. In these tables, the poorest and the highest goodness of fit values are
indicated in red and green, respectively.

It should be noted that the prediction models based on the gradient boosting algo-
rithms and artificial neural networks from [33] as well as the three prediction models
developed in this work—based on the semi-supervised regression-guided k-means, unsu-
pervised k-means, and multiple linear regression algorithms—have been created from the
same available dataset in both the training and testing phases.

As it can be seen from this comparison, the most correlated results of the training
phase were obtained from the ANN-based model, with RMSE and R2 values close to
0 and 1, respectively. On the other hand, in the training phase, the poorest goodness of fit
values were obtained for the results from the model based on the multiple linear regression
algorithm (R2 between 0.70 and 0.90, for different movements, and RMSE/measurements
range ratios between 5.6% and 9.1%; Table 4). However, in the testing phase, the best
results, for most of the movements, were obtained from the proposed model based on the
regression-guided k-means algorithm (R2 between 0.51 and 0.72, for different movements,
and RMSE/measurements range ratios between 2.9% and 20.9%; Table 5).

From the analysis of the results obtained in each phase (training/verification and
testing/validation), an apparent overfitting of the ANN-based model may be appreciated,
due to the relative reduction in the predictions quality in the testing phase compared to the
verification of the training (where the highest goodness of fit was noted).

Finally, as previously commented, the poorest predicted results were obtained for the
roll motion, from all the different prediction models analyzed. As explained above, roll
motions could be considered the DoF with the greatest associated uncertainty introduced
from different sources. Further analysis of roll deviations is intended to be carried out in
future works.

As a summary from the analysis of the comparison of different ML- and DL-based
prediction models to infer the response of the moored ships in six DoF, good correlation
results (R2 ≥ 0.70; Table 4) were obtained in general for all the models considered in the
analysis. In the testing phase (Table 5), poorer evaluating indices were obtained. However,
from this comparative analysis, the proposed prediction model based on the regression-
guided k-means clustering algorithm has been identified as the best performing of the five
different models analyzed for predicting the movements of moored vessels. Therefore,
the capabilities of the proposed model for predicting the response of berthed ships and
consequently the port operability/downtime for port management has been demonstrated.
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3.2. Extended Version with IW Predictor Variables

In this section, the previously validated semi-supervised ML methodology proposed
for the prediction of moored ships’ movements is applied with an extended predictor
matrix X including the infragravity wave descriptive parameters Hm0IW and Tm02IW.

3.2.1. Performance Assessment

Since a new dataset with different characteristics was used, a new sensibility analysis
for the clustering size and α factor was performed. The obtained results are presented in
Table 6. The differences with those presented in Table 3 may be due, on the one hand, to
the addition of the new IW predictor variables, and on the other hand, to the different char-
acteristics (mainly in size) between the datasets. At this point, the lower representativeness
of these values with respect to those presented in Table 3, due to the reduced size of the
data samples used here, should be noted.

Table 6. Obtained results from the sensitivity analysis for “number of clusters” and “α” in the
extended version with IW predictor variables. Corresponding CV and EV coefficients.

Type of Motion
Number of Clusters α Factor CV EV

Optimum Optimum Optimum Optimum

Surge 25 0.4 0.15 0.99
Sway 25 0.3 0.38 0.80
Heave 25 0.5 0.05 0.99

Roll 25 0.2 0.24 0.81
Pitch 49 0.4 0.16 0.89
Yaw 36 0.3 0.37 0.86

3.2.2. Comparative Analysis with the Initial Version of the Model for Prediction of Moored
Ships’ Motions

Due to the previously explained reduction in size of the training and testing data
samples when introducing IW parameters (Section 2.1), and in order to obtain comparable
results, the clustering procedure has been repeated with the reduced initial predictor matrix
(without IW). The obtained results, in both the training and testing phases, are presented in
Table 7. The values in grey text correspond to the previously presented results obtained
from the semi-supervised ML-based model. The analogous results obtained by using the
reduced datasets with and without IW variables are shown in black text. The variations in
the results due to the addition of infragravity wave descriptive variables in the predictor
matrix are represented in green (improvement) and red (worsening) fill colors.

From the analysis, the variation of the results obtained in this section for the model
without IW, compared to the previous one, can be observed due to the dataset size reduction.
Through a comparison between the evaluating indices of the models with and without IW,
slightly improved predictions can be seen for the model with IW, mainly in the validation
phase for most of the six DoF. Different factors, such as harbor configuration (geometry,
port contours, typology of structures, etc.) as well as those relative to the ship and the
berthing/mooring system (size, loading condition, mooring plan, pretension, etc.), have
an impact on the influence of the infragravity waves on the response of the moored ship.
However, the effects of infragravity waves would be expected, on the one hand, on the
heave, roll, and pitch, depending on the ship dimensions with respect to the wavelength,
and on the other hand, on the surge, sway, and yaw motions, depending on the relation
of the infragravity wave period to the natural/resonant period of mooring system. The
obtained results seem to be consistent with these aspects, thus demonstrating the capability
of the prediction model.
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Table 7. Evaluation of the influence of infragravity wave parameters introduced as predictor variables
in the model. Quantification of error, RMSE, and correlation, R2, of predictions of the 6 DoF of moored
ship motions. Comparison between semi-supervised ML-based models with and without IW; in
green, improvement, and in red, worsening.

Training

Surge Sway Heave Roll Pitch Yaw

R2 RMSE
(m) R2 RMSE

(m) R2 RMSE
(m) R2 RMSE

(0) R2 RMSE
(0) R2 RMSE

(0)

Regression-Guided
K-means; initial 0.88 0.15 0.77 0.16 0.90 0.05 0.80 0.32 0.85 0.13 0.81 0.30

Regression-Guided
K-means;

without IW
0.95 0.10 0.75 0.15 0.95 0.03 0.83 0.30 0.90 0.11 0.81 0.30

Semi-
supervised

ML
Regression-Guided
K-means; with IW 0.95 0.11 0.72 0.17 0.94 0.03 0.82 0.31 0.93 0.09 0.82 0.29

Testing
Surge Sway Heave Roll Pitch Yaw

R2 RMSE
(m) R2 RMSE

(m) R2 RMSE
(m) R2 RMSE

(m) R2 RMSE
(m) R2 RMSE

(m)

Regression-Guided
K-means; initial 0.65 0.07 0.53 0.13 0.53 0.11 0.51 0.90 0.72 0.08 0.58 0.15

Regression-Guided
K-means; without

IW
0.51 0.14 0.46 0.13 0.52 0.11 0.53 0.91 0.65 0.09 0.55 0.13

Semi-
supervised

ML
Regression-Guided
K-means; with IW 0.49 0.14 0.49 0.12 0.51 0.10 0.53 0.85 0.69 0.08 0.52 0.13

4. Conclusions

In this paper, a semi-supervised Machine Learning-based model for the prediction of
moored ships’ motions is proposed.

A statistical prediction model based on a regression-guided k-means clustering al-
gorithm has been developed. An unsupervised k-means clustering-based model and a
supervised learning-based prediction model based on a multiple linear regression have
also been created for comparison. A sensitivity analysis has been carried out, evaluating
the influence of the two factors to be defined in the methodology (number of clusters and
α weighting factor) on the quality of predictions from both models based on the semi-
and unsupervised k-means clustering algorithm. The optimal values of those factors, for
each type of motion, have been identified. A performance assessment of the different
models has been performed. From the comparison of the results obtained from the three
proposed models, the highest performance was observed for the semi-supervised ML-based
model, while the lowest goodness of fit predictions were obtained for the multiple linear
regression-based model.

In addition, a comparative analysis with other existing models, based on different
supervised (gradient-boosting algorithm) and deep learning (ANN) techniques, has been
performed. In the testing phase, more accurate predictions were obtained with the proposed
semi-supervised learning-based model compared to the other inference techniques.

In general, an adequate goodness of fit of the predictions is shown for all the move-
ments in both the training and testing phases, except for the testing roll motion where a
notable deviation was observed. As explained, this deviated roll behavior was generally
observed for all the models analyzed and compared in this work (see Tables 4 and 5). A
further analysis will be contemplated in future works, wherein the authors expect to have
detailed information concerning the met-ocean climate, field campaign development, and
field data acquisition. It is expected that more detailed information on the possible sources
of error and the uncertainty introduced will lead to stronger conclusions about the causes
of these roll prediction deviations.
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Finally, a comparison to evaluate the influence of infragravity wave parameters in-
troduced as predictor variables in the prediction model has been performed. Slightly
improved predictions have been observed from the model including infragravity wave
parameters, mainly in the validation phase for most of the six degrees of freedom.

To conclude, the highest performance of the proposed semi-supervised Machine
Learning-based model for predicting the movements of moored ships has been demon-
strated from a comparative analysis of different AI techniques (multiple linear regression,
gradient boosting, unsupervised k-means clustering, regression-guided k-means clustering,
and artificial neural networks algorithms). The analysis has revealed the capabilities of
the proposed model for use as an assistance tool for the management of berths and port
operations in harbors. In addition, the simplicity and robustness of the implementation
and maintenance of a prediction model based on the proposed methodology should be
pointed out, compared to the complexity demanded by other types of techniques, such
as Artificial Neural Networks, to define and adjust the structure and required parameters.
This could be a relevant aspect in large harbors consisting of many different port terminals
and berthing areas. In addition, it should be noted that not only predictions but also the
associated uncertainty can be inferred from the standard deviation of the predictions. Both
the intrinsic variability of the base dataset as well as that due to the inference method
adopted are encompassed by such an uncertainty value

Furthermore, the proposed inference model can also be directly applied as a moored
ship forecast system to predict the movements of berthed ships in six DoF by defining the
predictor matrix through available information from met-ocean forecast services and port
activities planning.

Note that the predictive model described has been defined, in general terms, to be
applied to any port with the objective of predicting the movements of moored vessels.
However, it should be noted that the model adjustment has been performed for a specific
location, the Outer Port of Punta Langosteira, to show its predictive capability. In this
case, the data corresponding to the vessels that moored at the port during the the field
campaign have been used, in addition to the configuration of the mooring modes and the
climatic information. Nevertheless, the application of the predictive model to another port
with a different fleet of ships, maritime climate, port geometry, and mooring modes, must
always be performed after an adequate adjustment of the model to the specific field data
by characterizing the moored-ship behavior of each berthing area and its interaction with
the port’s geometry and the environment.
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