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Abstract: East-Asia winter cooling and the associated atmospheric and oceanic influences were
investigated based on the wintertime daily temperature and circulation fields during 1950–2020.
Both the case study on the 2020/2021 cold surge and the large-sample clustering in the recent
71 winters extracted similar circulation signatures for East-Asia cooling, which are featured by the
blocking-related anticyclonic circulation in North Eurasia, large-scale mid-to-high-latitude wave
trains, decrease in the sea surface temperature (SST) in tropical Pacific, and the sea-ice cover (SIC)
reduction in the Barents and Kara Seas (BKS). From the joint clustering of Eurasian circulation
and temperature, two circulation modes that have a cooling effect on East Asia account for 41%
of winter days. One of the two modes is characterized by the cyclonic circulation over Northeast
Asia coupled with a southward-extending negative-phase Arctic Oscillation (AO−), whose cooling
effect is mainly concentrated in central Siberia. The other cooling mode, featuring an anticyclonic
circulation over the Urals and AO+ in middle-to-high latitudes, has a relatively stronger cooling
effect on lower latitudes, including Mongolia and North China. In general, the occurrences of the
mode with warming/cooling effect on East Asia show an overall downward/upward trend. The
two cooling modes are significantly influenced by the La Niña-type SST anomaly and reduced SIC in
BKS through large-scale wave trains, of which the tropical oceanic forcing mainly acts as a climatic
background. Furthermore, the polar forcing is more tightly bound to internal atmospheric variability.
Therefore, the tropical SST tends to exert impact over a seasonal scale, but the SIC influence is more
significant below the intraseasonal scale; moreover, the synergy between the tropical and polar
oceanic forcing can increase the East-Asia cooling days by 3–4% and cold extremes by 5%, mainly
through enhancing the AO-related circulation mode.

Keywords: East-Asia cold surge; tropical ocean; sea-ice melting; synergy effect

1. Introduction

Cold extremes have been attracting increasing attention under global warming [1]. In
the 2020/2021 winter, exceptionally cold weather swept through North China and caused
record low temperatures over the past half-century in several northern cities in China [2];
this cold event is directly dominated by internal atmospheric variability with possible
connections with oceanic forcing from the tropics and Arctic, implicating the complexity
of the mechanisms contributing to East-Asia cold extremes [3]. Oceanic forcing, such as
sea surface temperature (SST) and sea–ice cover (SIC), is one of the primary sources of
the seasonal and sub-seasonal predictability of climate [4,5]. Due to the high uncertainties
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in internal atmospheric variability, understanding how oceanic forcing could influence
East-Asia winter temperatures is of great significance.

The El Niño and Southern Oscillation (ENSO) is the most important large-scale air-sea
coupled mode in the climate system [6,7]. The SST anomalies of the tropical Pacific can
influence global climate by inducing poleward propagating large-scale Rossby waves [8,9].
For East Asia, the temperature variation is strongly modulated by ENSO through the
tropical, mid-latitude, and polar pathways. ENSO can induce winter monsoon anomalies
through the tropical pathway by coupling with the tropical intraseasonal oscillation [10].
The linkage between the tropics and polar areas is also highly relevant to East-Asia winter
cooling. In particular, the eastern-type La Niña event can induce anomalous warming
and sea-ice reduction in the Barents–Kara Seas [11], which strongly impacts East-Asia
cold extremes; this is the well-known surface temperature pattern of the warm Arctic
and cold Eurasia (WACE) [12]. Through the midlatitude pathway, extreme ENSO events
can also influence the phase transition of the North Atlantic Oscillation (NAO)/Arctic
Oscillation (AO) and further induce cold extremes in the downstream area in middle-to-
high latitudes [13]; however, the linkage between regional climate variation and ENSO
has become increasingly unstable because of the change in ENSO diversity due to global
warming [14].

As mentioned above, the accelerated Arctic warming could also influence the temper-
ature variability in East Asia via large-scale wave trains [15]. In fact, the middle-to-high
latitudes of Eurasia have experienced increasing cold extremes in winter, coinciding with
the amplified warming in the Arctic since the 1990s [16,17]. The weather extremes super-
impose on the long-term surface temperature trend characterized by the divergent WACE
pattern [18,19]. Multiple factors contribute to the WACE, including greenhouse-gas-forced
warming, sea-ice loss, and atmospheric and oceanic internal variability; however, the
model results show dramatic disparities for the WACE. Compared to observations, multi-
model ensemble projects find weaker linkages between the Arctic Amplification (AA) and
Eurasian winter extremes [20], suggesting that Eurasian cold extremes may not be a forced
response to AA. The internal atmospheric variability (e.g., the jet stream and blocking
anticyclone) and SST variability, with interannual to interdecadal time scales, can obfuscate
the Arctic-midlatitude connections. The complexity of the physical mechanisms leads
to uncertainty and intermittency in the connection between the Arctic and mid-latitude
extreme weather [21].

Because of the complexity of the causal relationship between the cold extremes in
East Asia and oceanic forcing, it is hard to quantitatively isolate the independent impact
of any single factor. Therefore, rather than clarifying how different modes cooperatively
influence East-Asia cooling, this study attempts to explain the probability of cold extremes
impacted by the polar and tropical oceanic forcing via extracting the dominant modes of
surface cooling in East Asia in recent decades. To do this, a brief introduction to the data
and methods used are presented in Section 2. In Section 3, the joint clustering analyses are
performed based on the daily temperature and circulation fields to extract the circulation
modes causing East-Asia temperature variation during 1950–2020. With the clustering
result, polar and tropical oceanic forcing probabilities are further estimated independently
and jointly. Finally, we conclude this work in the last section with a discussion on other
possible issues.

2. Data and Methods

This work applies atmospheric and oceanic data from ERA5 reanalysis in 1◦ × 1◦

horizontal resolution. ERA5 is the fifth generation of the ECMWF atmospheric reanalysis of
the global climate covering the period from 1950 to present. In this study, the daily 2 m tem-
perature (T2m), geopotential height at 500 hPa (Z500), SST, and SIC from 1 December 1950
to 28 February 2021 are created based on the hourly surface and pressure-level variables.
The 1950–2020 daily calendar mean is removed from each daily field to remove the seasonal
cycle. Because most annual variability has been removed, the resultant daily anomalies
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have intraseasonal, interannual, and longer time-scale variability. Atmospheric circulation
variations mainly concentrate on the intraseasonal scale [22], but oceanic forcing is gen-
erally on much longer time scales and can be approximately represented by the seasonal
mean. Therefore, the wintertime (through December, next January to next February, DJF)
daily and DJF-mean anomalies are used to analyze the atmospheric and oceanic variability.
In addition, two indices are constructed to respectively represent the state of ENSO and SIC
in BKS (SICBKS), i.e., the Oceanic Niño Index (ONI) defined by the mean SST (5◦ N–5◦ S,
170◦ W–1205◦ W) and SICBKS defined by the mean SIC in the Barents–Kara Seas.

Cluster analysis was employed to extract the main circulation and temperature modes
leading to East-Asia cold extremes in winter. The self-organizing map (SOM) is an effective
clustering method to extract and classify the information from input data based on an
unsupervised neural network [23,24]. Compared to the traditional linear reduction method,
the advantage of SOM is that it can map the nonlinear high-dimensional structure in data
onto a two-dimensional linear space without losing the topological relationships between
the input data [25,26]. In this study, the SOM software package (http://www.cis.hut.
fi/projects/somtoolbox/download/, accessed on 29 October 2020) was applied to the
daily anomalous fields of T2m and Z500 in winter in East Asia defined by (25◦ N–90◦ S,
40◦ E–20◦ W) during 1950–2020; this two-variable joint clustering is designed to extract the
main temperature and circulation modes, such as in the previous application of SOM to
meteorological and climatological variables [27,28].

In total, there were 6408 (days) × 2 (variables) daily fields imported into the SOM
toolbox for the 71 winters (1950–2020) studied in this work. The daily temperature and
circulation fields were projected onto the 2 × 2, 3 × 2, 3 × 3, and 4 × 3 maps in the SOM
training procedure, respectively. The different map sizes (groups) capture the highly similar
modes during the East-Asia cold extremes in 2020/2021 winter. For simplicity, this study
used a 2 × 2 map, i.e., 4-group clustering, to extract East Asia’s primary temperature and
circulation patterns in winter. Based on the SOM groups (hereafter referred to as SOM1-4),
the event frequency of each group and the associated probability of temperature variability
were analyzed by combining the oceanic indices. In this study, we mainly focus on the SOM
clusters (SOMs) with a cooling effect over East Asia on a daily time scale. Therefore, the
temperature patterns of the days classified into different SOMs are used to fit the population
probability density functions with respect to the East-Asia temperature anomaly. In order
to extract the relationships between oceanic forcing and East-Asia cooling, we also examine
the time series of ONI and SICBKS in terms of each cooling SOM group on a daily time
scale. Through extracting the days with a negative phase of ONI and negative SICBKS,
we can obtain the daily patterns of East-Asia temperature anomalies for each SOM group
under the background of the La Niña event and SIC reduction in BKS. With these subsets
of daily temperature anomalies, the conditional probability distributions are constructed
with respect to negative ONI and SICBKS for different SOMs. By comparing the above
conditional distributions with the population distribution based on the all-day patterns for
each SOM, the cooling probability due to La Niña and reduced SICBKS can be estimated
solely and jointly, which could reflect the independent and synergic impacts of SST and
SIC on East-Asia cooling in winter, respectively.

3. Results
3.1. Cold Surge in 2020/2021 Winter in China

From mid-December 2020 to mid-January 2021, there were three cold spells in China
(Figure 1a), in which the lowest mean temperature in East Asia reached about −6 ◦C.
Concerning the mean climate state, the anomalous surface temperature reached −20 ◦C
in Northwest and North China on 7 January 2021 (Figure 1g). From the atmospheric
circulation during the cold spells (Figure 1b–d), the strong temperature drop could be
attributable to a persistent blocking high dominating most mid-to-high-latitude areas of
Eurasia. The cumulative cooling caused by blocking associated with the stratospheric
process was regarded as one of the leading causes of this cold surge [29]. The slowly
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eastward-moving blocking high over North Europe and the Ural Mountains extends
its ridge far into the Arctic, which induces strong meridional flow and intensified cold
advection from the Arctic into East Asia; moreover, the blocking-related anticyclonic
anomaly is embedded in the Eurasian wave train (Figure 1e–g), suggesting that East-Asia
cooling is also relevant to upstream atmospheric and oceanic forcing [30].
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Figure 1. Cold surge in 2020/2021 winter: (a) time series of spatial-mean T2m of East Asia from 1
December 2020 to 31 January 2021. (b–d) Z500 fields on the three days marked in (a); (e–g) Z500
(contours) and T2m (shaded) anomalies on the three days marked in (a). The contour interval for
(b–g) is 40 m. The area of East Asia is defined by a red rectangle in (b–g).

The cold surge in Figure 1a also shows possible linkages with polar and tropical
oceanic forcing. During the last two cold spells (Figure 1f,g), the strong cooling in East Asia
was accompanied by significant warming over the BKS, forming the WACE pattern [12].
On 30 December 2020 (Figure 1f), the anticyclonic circulation over North Eurasia coupled
with the anomalously low wintertime SIC in the Bering Sea, Baffin Bay, BKS. In addition,
anomalous SSTs showed a typical central La Niña pattern in the tropical Pacific Ocean
(Figure 2a), which is also reported to contribute to this cold surge [3].
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3.2. Circulation Modes of the East-Asia Temperature in Winter

Figure 3 presents the results of SOM clustering for the daily anomalous T2m and Z500
in DJF from 1950 to 2020. From the time series of the best-match units (BMUS) of SOM
(Figure 3a), the cold surge from late December 2020 to early January 2021 was mainly
caused by SOM3 and SOM4. Both of these two SOMs show strong warming over BKS
except that SOM3 (Figure 3d) has more widespread in the Arctic than SOM4 (Figure 3e);
this is consistent with the SIC reduction during the 2020/2021 winter, as shown in Figure 2b.
Figure 3a also shows that the cold days in early January of 2021 are classified into the SOM4
group. In addition to the warming BKS shown in SOM4 (Figure 3e), a band of anticyclonic
Z500 anomalies is also found over the tropical Pacific (Figure 3e). Recalling the background
SST pattern in the 2020/2021 winter (Figure 2a), the La Niña-type SST anomalies are tightly
related to the downdraft anomalies in the tropical Pacific, just corresponding to the band of
positive circulation anomalies shown in SOM4 (Figure 3e). The consistent features shown
in a typical case study and clustering results strongly suggest the importance of the tropical
and polar oceanic forcing for the formations of the cold extremes in East Asia.

From Figure 3b–e, the two East-Asia cooling modes (SOM3 and SOM4) accounted
for 41.3% of winter days. The circulation pattern of SOM3 (Figure 3d) corresponded to a
negative-phase AO pattern with a strong anticyclonic anomaly dominating north Eurasia;
this circulation pattern tends to form widespread warming in the Arctic, particularly over
BKS, west of the anticyclonic anomaly (Figure 3d). The SOM3 pattern can transform into
SOM4 in relation to the AO negative to positive phase transition (Figure 3d,e). The AO+
leads to southward displacement of the north-Eurasia anticyclonic anomaly southward,
leading to cold air flow along the east edge of the anticyclonic circulation and arriving at
the midlatitudes of East Asia (Figure 3e). Compared with SOM3 (Figure 3d), SOM4 could
form more intensified cooling in North China. As shown in Figure 4e, the SOM4 circulation
pattern is characterized by positive-phase NAO over the North Atlantic coupled with an
anticyclonic anomaly over downstream Eurasia; this is an optimal weather pattern for
sea-ice melt in the BKS via enhanced poleward moisture transport to the Arctic [31].

The occurrence of each SOM mode is shown in Figure 4, in which the two warming
modes (SOM1 and SOM2; Figure 4a,b) show divergent long-term trends. The SOM1
upward trend has a speed of 1.4 days/10a, and a downward trend of −3.2 days/10a,
as shown in Figure 4a,b. In total, the winter warming days in East Asia decrease at
a speed of 1.8 days every decade during 1950–2020. In contrast, both cooling modes
(SOM3 and SOM4, Figure 4c,d) show slight upward trends, increasing about 1.6 days/10a.
From Figures 3 and 4, we find two negative-phase AO-related modes (SOM1 and SOM3)
showing upward trends, but the positive-phase AO-related ones (SOM2 and SOM4) show a
significant downward trend (SOM2, Figure 4b) or a slight upward trend (SOM4, Figure 4d).
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We also implemented clustering analysis based on the intraseasonal-scale temperature
and circulation data (not shown). The resultant intraseasonal circulation patterns of SOM
groups were highly similar to the anomalous circulation patterns shown in Figure 3b–d,
suggesting the leading role of internal atmospheric variability in temperature variation [22].
Considering the impact of oceanic forcing, the background circulation with a characteristic
scale longer than intraseasonal variability was further extracted. Figure 5 shows the
composites of the winter-mean circulation and temperature patterns concerning the four
SOMs in Figure 3. Prominent zonal wave trains can be found in mid-to-high latitudes in all
four SOM modes (Figure 5a–c). The two warming modes for East Asia (SOM1 and SOM2)
have similar background circulation patterns (Figure 5a,b) upstream of Eurasia, with a
negative-phase Pacific/North American (PNA)-like pattern and a tilted negative-phase
NAO-like pattern. For the background circulation of SOM1 and SOM2, the difference
between SOM1 and SOM2 mainly exists in Eurasia and the polar area (Figure 5a,b). SOM1
shows alternating positive and negative circulation anomalies in midlatitudes coupled
with a negative-phase AO pattern over the Arctic; however, there is no significant wave-
train structure over midlatitude Eurasia accompanied by a positive-phase AO in the polar
area for SOM2 (Figure 5b). Similarly, the two cooling modes (SOM3 and SOM4) have
similar background circulation patterns consisting of a PNA-like structure, negative-phase
NAO, and Eurasian wave trains (Figure 5c,d). Compared with SOM 4 (Figure 5c,d), the
background circulation of SOM3 has relatively stronger upstream wave-train components
linking East Pacific and North Atlantic, but a weaker anticyclonic anomaly over North
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Eurasia and BKS; it is thus a reasonable inference that SOM3 is more relevant to SST
variability in tropical Pacific and SOM4 is more closely tied to sea-ice variation in BKS.
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3.3. Impact of Oceanic Forcing on East-Asia Cold Extremes

Given the SOM, Figures 3a, 6 and 7 present winter-mean SST and SIC composites.
The winter-mean fields generally represent the background condition for the intraseasonal
variations in Figure 3b–e. In Figure 6, the winter-mean SST of the four SOMs shows
significant signals in the main ocean basins. For the two warming modes (SOM1 and
SOM2; Figure 6a,b), significant signals were mainly distributed in mid-latitude oceans,
such as the mid-latitude North Pacific and North Atlantic. In comparison, the two cooling
modes (SOM3 and SOM4, Figure 6c,d) had relatively more signatures of the La Niña-type
SST pattern, i.e., a widespread cooling in the tropical Pacific; this feature is particularly
striking in the SST pattern related to SOM3 (Figure 6c), which is mainly characterized by
the strong cooling in the eastern tropical Pacific. In addition to the negative SST anomaly
in the tropical Pacific, a strong positive SST anomaly was also found in the northwest
Pacific for SOM3 and SOM4, which forms the Pacific Decadal Oscillation (PDO)-like SST
pattern, suggesting a possible decadal modulation from PDO. The SST composites on an
intraseasonal time scale were also analyzed for the four SOMs (Figure 8). Comparing
Figures 6 and 8, the intraseasonal SST variability shows much weaker signals in both mid-
latitudes and tropics. Thus, the PNA-like wave train (Figure 5) seems a possible pathway
linking the La Niña-type SST anomaly over an interannual time scale (Figure 6) and East
Asia intraseasonal cooling (Figure 3).
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For the Arctic SIC, it is a different case. Figures 7 and 9 show that the seasonal mean
(Figure 7) and intraseasonal SIC (Figure 9) have significant signals in the Bering Sea, Baffin
Bay, Greenland Sea, and BKS; however, the seasonal-mean signal is relatively stronger. To
a considerable extent, the intraseasonal SIC variation can be attributed to the persistent
atmospheric circulation variability, such as the blocking high [32,33]. Therefore, the SIC
variation is mainly a result of circulation rather than a cause at the intraseasonal time
scale [30]; however, on longer time scales, the background SIC can influence the dynamical
environment [34] and further modulate the circulation variation at an intraseasonal scale.
Combining the corresponding background circulations shown in (Figure 5c,d), the seasonal-
mean warming over BKS is conducive to forming an anticyclonic circulation over mid-to-
high-latitude Eurasia, favouring the development of blocking and cold outbreaks at shorter
time scales.
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To further explore the independent and synergic impact of the tropical and Arctic
oceans, the distributions of the probability density of the East-Asia daily temperature
anomalies in the 1950–2020 winters are fitted in Figure 10. In this study, the cold and
warm extremes are defined by 10% and 90% quantiles of daily temperature anomalies,
respectively. The SOM1 and SOM2 modes generally have a higher cumulative probability
on the warming side than the cooling side. From Figure 10a,b, the warming probability is
53% and 61% for SOM1 and SOM2, respectively. Accordingly, the probability of cold/warm
extremes is 5/13% for SOM1 and 3/17% for SOM2. Thus, warm extremes have about
doubled (SOM1) or even quintupled (SOM2) probabilities than cold extremes.

Nearly opposite distributions can be found in the probability density of the two
cooling modes (SOM3 and SOM4). From Figure 10c,d, approximately 80% of days of SOM3
and SOM4 have cooling effects in East Asia. The distributions of SOM3 and SOM4 are
characterized by the left-skewed peaks (cooling), which leads to about one-in-five days
of SOM3 and SOM4 reaching extreme coldness; this probability of cold extreme is about
quintuple of the probability (3–4%) of extreme warming. Regarding the cold surge in the
2020/2021 winter, the mean temperature anomaly of East Asia reached −3.94 ◦C, with a
probability of about 4% according to Figure 3, i.e., a once-in-twenty-five-year cold event.

In order to investigate the influence of oceanic forcing on cold extremes, the inde-
pendent and joint probability of the East-Asia temperature were analyzed for ONI and
SICBKS. From Figure 11a,b, the negative wintertime-mean ONI, i.e., cold tropical Pacific,
only slightly influences East-Asia cooling with a 1% probability increase of cold extremes
for SOM3 and almost no significant impact on cold extremes for SOM4. The influence of
SIC varies on different time scales. The low intraseasonal SICBKS tends to slightly increase
cold extremes by 1% for SOM3 (Figure 11c) but reduce cold extremes by 2% (Figure 2) for
SOM4 (Figure 11d). Considering SOM3 is highly relevant to AO− (Figure 3d), the sea-ice
reduction in BKS seems to increase East-Asia cold extremes on an intraseasonal time scale
via coupling sea–ice melting and atmospheric intraseasonal variability [30].
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Although the probability distribution of the East-Asia temperature seems not to change
much when solely considering the tropical-Pacific SST variation or sea-ice variation in
the Arctic, the synergistic effect of the two oceanic forcings deserves further investigat-
ing. Simultaneously with the La Niña-type SST anomalies and reduced SICBKS, the joint
probability distributions of SOM3 and SOM4 (Figure 11e,f) show 83% and 81% of winter-
time days having cooling in East Asia, which is a 4% and 3% greater probability than the
overall probability in Figure 10c,d. Figures 3 and 11e show that the probability of cold
extremes increases by 5% in the presence of La Niña and low-SICBKS events. Combining
Figures 3d and 5c, we can infer that the tropical SST-related wave train could simultane-
ously enhance the downstream anticyclonic circulation over North Eurasia coupled with a
sea-ice reduction in BKS on an intraseasonal time scale [19,35–39].
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4. Conclusions and Discussion

With the accelerating warming, cold extremes have become more frequent in East
Asia [40]. A record cold surge with a probability no higher than 4% occurred in East Asia
in the 2020/2021 winter. Focusing on this cold event, we explored the characteristics of
the relevant atmospheric circulation and oceanic forcing at different time scales. We found
that this cold extreme is directly caused by a persistent blocking over North Eurasia with
possible connections to the warming and sea-ice cover (SIC) reduction in the Barents-Kara
Seas (BKS) in the Arctic and cooling in the sea surface temperature (SST) in tropical Pacific
(i.e., La Niña event); it thus seems to be a compound event jointly impacted by internal
atmospheric variability and tropical and polar oceanic forcing.

The main characteristics of the 2020/2021 cold surge were also investigated by extend-
ing the analysis to the boreal wintertime days during 1950–2020. The weather patterns
responsible for the East-Asia warming and cooling were extracted by self-organizing map
(SOM) clustering. In general, an anticyclonic circulation anomaly located in mid-to-high
latitudes north or northeast of East Asia is essential for the East-Asia cooling in winter
no matter whether the Arctic Oscillation (AO) is a positive or negative phase. Two types
of circulation modes mainly lead to the East-Asia cooling, including one featured by an
AO− with the southward-extending anticyclonic circulation over the polar area, and the
other composed of an AO+ and a strong anticyclonic circulation over the Urals. The former
circulation mode explains 19% of cooling days, and the latter, 22%, in which the latter has
a stronger cooling effect on the midlatitude area of East Asia, including North China. In
addition, the SOM clustering also shows that the frequencies of the circulation modes that
have a warming effect on East Asia have an overall downward trend of occurrence during
1950–2020. In contrast, the opposite trends were found in the circulation modes with a
cooling effect. The above long-term variations of East-Asia circulation and temperature
could partly shed light on the increasing cold extremes in recent decades.

Similar to the 2020/2021 cold surge, East-Asia cooling in the winter had connections
with the La Niña SST pattern in the tropical Pacific and SIC melting in the BKS. East-Asia
cooling seems to be a combination of influences from tropical and polar oceanic forcing,
i.e., La Niña and SIC decrease in BKS, which is a part of the pattern named the warm Arctic
cold Eurasia (WACE); this is further verified by the probability analysis with respect to
the SOM groups. Although a slightly increased probability of cooling days was found
with respect to La Niña or SICBKS reduction, an enhanced probability of 3–4% was found
to be relevant to the synergy between the SST decrease in the tropical Pacific and SIC
decrease in the BKS; this synergic effect can also increase the probability of cold extremes
by 5% in AO−; it should also be noted that the tropical oceanic forcing mainly exerts its
impact on the time scales longer than the seasonal scale, but SICBKS takes effect on an
intraseasonal time scale. We also examined the influence of the winter-mean SICBKS on
East-Asia cooling. The negative effect on cold extremes was found for the two East Asia
cooling modes (not shown). Evidently, SIC forcing is more tightly coupled to internal
atmospheric variability, which leads to the unstable linkage of temperature change between
the Arctic and mid-latitude continent.

As mentioned above, the results show substantial uncertainties in the linkages between
SST/SIC and East-Asia cooling; this study estimates the probability of tropical and polar
oceanic forcing together or solely. As mentioned in Figures 6 and 7, the Indian and mid-
latitude oceans and the SIC in the Arctic marginal seas, except for BKS, have significant
signals in SST or SIC. The forcing from these regions is inextricably interwoven and
increases the uncertainties of East-Asia cooling. In particular, the inter-basin SST-SST
and SST-SIC have been explored deeply by many studies [41,42]; this work inspires more in-
depth research issues, such as: how does the oceanic forcing in different areas cooperatively
influence regional climate variability via modulating atmospheric large-scale circulation
anomalies? For East Asia, it is essential to clarify the oceanic processes that strongly affect
the NAO and Eurasian wave trains.
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