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Abstract: Torpedo anchors are a new type of anchoring system in deepwater that is much more
economical than conventional anchoring methods. The dynamic penetration process is vitally im-
portant to the installation of torpedo anchors. Based on the spherical cavity expansion theory, the
dynamic response characteristics of pressure-locked soils are analyzed using the Mohr-Coulomb
criterion. The equations for the penetration of torpedo anchors with bullet-shaped heads are es-
tablished considering rod friction. Subsequently, the analytical solutions for velocity, acceleration,
and final penetration depth and the approximate analytical solution for penetration depth vs. time
are obtained. The established penetration equation is solved using MATLAB software to obtain a
semi-analytical solution, and the model tests on the penetration of a torpedo anchor with different
initial velocities into saturated sand with different densities were conducted. A comparison of the test
results shows that the analytical solution and the semi-analytical solution can well predict the model
test results, indicating that the established analytical method can be used to analyze the penetration
process of torpedo anchors. The research results can provide a guideline to the installation of torpedo
anchors into the seabed in actual engineering.

Keywords: spherical cavity expansion; side friction; torpedo anchor; penetration; sand

1. Introduction

Gravity anchors are used in the mooring system of deep-sea oil and gas exploitation
platforms, and their pull-out capacity is very important for engineering design. Gravity
anchors such as torpedo anchors are freely released at a height of 30 to 50 m above the
seafloor and penetrate into the seafloor through their own weight and velocity [1]. In 2000,
Petrobras used torpedo anchors in the mooring system of a floating production, storage, and
offloading (FPSO) platform. The process of the dynamic penetration of torpedo anchors into
seafloor soils can be considered a penetration problem. In the military field, the penetration
depth of an earth penetrator is a primary concern, for which the penetration equation has
been proposed through a large number of tests. The torpedo anchor is composed of an
anchor head, an anchor rod, and anchor wings, with a length of 12 to 15 m, a diameter of
762 to 1077 mm, and a weight of 240 to 950 kN [2]. The factors affecting the bearing capacity
of the torpedo anchor include its own weight, the penetration depth, the mechanical
properties of the seafloor soils, and the geometry of the torpedo anchor.

Chen et al. [3] conducted laboratory tests to investigate the penetration behavior and
pullout capacity of a torpedo anchor under vibration, and found that the anchoring force
and penetration depth of a self-penetration torpedo anchor are not restrained by water
depth and drop height. Ads et al. [4] reported that the fin length of a torpedo anchor
negatively correlated with penetration depth and positively correlated with maximum
extraction resistance, and soil displacement increased with increasing penetration depth till
full embedment. Based on the discrete element method, Zhang et al. [5] investigated the
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effect of anchor mass, impact velocity, and interparticle friction on the penetration process
of a torpedo anchor, and concluded that the penetration increased with increasing impact
velocity, and decreased with increasing interparticle friction. Based on large deformation
finite element analysis, Kim et al. [6,7] reported that under the condition of the demarca-
tion point that lies within the top stiff layer, the penetration depth of the torpedo anchor
decreased with increasing of strength ratio, and the penetration is stopped between two
layers when the strength ratio is higher than 15. Furthermore, an improved analytical
embedment model was proposed based on strain rate dependent shearing resistance and
drag resistance. Hossain et al. [8] found that the embedment depth of a torpedo anchor
increased with increasing impact velocity, and decreased with increasing soil shear strength.
The geometries of fin and tip had a significant effect on the bearing capacity, and the rectan-
gular fin and conical tip proved to be more effective. Coupled with the advantages of the
torpedo anchor and plate anchor, Lai et al. [9] concluded that the penetration depth of the
new hybrid anchor increased with increasing impact velocity, and the new hybrid anchor
could penetrate through the stiff layers. Fernandes et al. [10] concluded that the shape
and mass distribution of the torpedo anchor have a remarkable effect on the directional
stability, and the rear line influenced the terminal velocity and directional stability. Liu
et al. [11] noted that the factors affecting the penetration of a gravity-installed anchor
followed the order of undrained shear strength, impact velocity, strain rate dependency,
friction coefficient, and strain-softening of soil. Based on a computational fluid dynamics
approach, Raie and Tassoulas [12] developed a procedure to predict the embedment depth
of the torpedo anchor, the pressure and shear distribution on the interface and in the
soil. The research results provide a guideline to the installation of a torpedo anchor in a
deep-sea project. Based on finite element analysis, Sabetamal et al. [13,14] revealed that a
smooth discretization of the contact interface between soil and structure is a crucial factor
to avoid oscillations in the prediction of a dynamic response of soil during penetration of a
torpedo anchor. Based on small-scale model tests, True [15–17] measured the acceleration
time-history curves of torpedo anchors with different anchor tip shapes during their pene-
tration into soft clay, silt, and cement soils and established the torpedo anchor penetration
equation based on Newton’s second law of motion and the theory of the ultimate bearing
capacity of foundations. Considering the nonmonotonicity of the measured acceleration
time-history curves and assuming that the net resistance is a composite function of the
velocity squared and depth, Boguslavskii et al. [18] obtained analytical solutions for veloc-
ity, acceleration, and final penetration depth, determined the parameters in the analytical
solutions based on dimensional analysis, and compared the analytical solutions with the
test results. O’Loughlin et al. [19,20] studied the penetration process of torpedo anchors
with a centrifuge model test and combined the existing test results to establish an empirical
formula of penetration depth based on the energy balance. O’Beirne et al. [21] analyzed
the entire process from release to rest of a penetrating torpedo anchor, established the
calculation model for the entire release-to-rest process, and compared it with the field
model test. Nazem et al. [22] used the ALE method to perform a numerical analysis on
the process of the dynamic penetration of a torpedo anchor into a uniform clay layer and
provided a dynamic penetration factor. Bishop et al. [23] applied the cylindrical cavity
and spherical cavity expansion theory in a quasistatic state to calculate the pressure on the
conical surface when a conical object is slowly pressed into a metal. Forrestal and Luk [24]
applied the spherical cavity expansion theory to analyze the dynamic response of the soil
at a constant cavity expansion velocity, established the equation for the vertical penetration
of a long rod with a bullet-shaped tip into the soil, and provided the analytical solutions for
velocity, acceleration, and penetration depth. The reliability of the calculation results was
verified by actual penetration tests in the field. Shi et al. [25] used the p-α state equation and
the Mohr-Coulomb-Tresca criterion to describe the constitutive relationship of dry sand,
obtained the formula for calculating the depth of a projectile vertically penetrating dry
sand based on the spherical cavity expansion theory, and compared the analytical results
with the test results. Chian et al. [26] studied the influences of the projectile nose shape, the
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relative density of sand, and the projectile mass on the penetration process and found that
the shape and mass of the projectile nose significantly affect the total absorption energy
of sand.

The penetration of torpedo anchors into soil was mainly studied using torpedo anchors
as the research object. The force was analyzed, Newton’s second law was used to establish
the equation of motion, and the resistance of soil to the torpedo anchor was expressed by
the ultimate tip resistance. However, the penetration process of a torpedo anchor into soil
is a dynamic problem, thereby it is necessary to consider the dynamic response of soil. In
addition, because the torpedo anchor has a low installation speed (20 to 30 m/s) and a
large length-to-diameter ratio, the cavity expansion phenomenon is not remarkable, so the
frictional resistance [27] between the anchor rod and the cavity wall cannot be ignored.
In this study, the locked hydrostat model and the Mohr-Coulomb criterion are used to
describe the constitutive relationship of soil. Based on the spherical cavity expansion theory
and assuming that the cavity expansion velocity is constant, the governing equations for
the elastic and plastic regions of soil and the normal stress of the cavity wall are established.
On this basis, assuming a plane strain condition and considering the friction between the
anchor rod and the cavity wall, Newton’s second law is applied to establish the equation
of motion of torpedo anchors, from which the analytical solution for the torpedo anchor
penetration equation is obtained. Furthermore, a semi-analytical method by MATLAB
software was used to solve the penetration equation. A self-made penetration device was
used to carry out a small-scale model test of torpedo anchor penetration into saturated sand.
Finally, a comparison between analytical, semi-analytical, and test results were conducted
to verify the feasibility of the analytical method.

2. Torpedo Anchor Penetration Equations
2.1. Calculation for the Axial Force of the Anchor Tip

It is assumed that the torpedo anchor vertically penetrates the seafloor soil with an
initial velocity of V0 and proceeds to penetrate at velocity Vz. The anchor tip squeezes the
soil around it to form a cavity, assuming that the anchor and surrounding soil makecontact.
The diameter of the cavity gradually increases from zero to the rod diameter during
the penetration process. When the velocity reaches zero, the penetration process ends.
The radial stress and tangential stress acting at the anchor tip are denoted as σn and σt,
respectively, as shown in Figure 1. For the torpedo anchor, the motion and final depth
can be calculated when forces on the anchor tip are known. Therefore, we first model the
anchor tip resistance and then calculate velocity, deceleration, and penetration depth.
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 Figure 1. Stress analysis of the bullet-shaped anchor tip.

Let the anchor tip be bullet-shaped, with a shape factor of CRH = ψ = s/2a, where a
is the radius of the anchor rod, and s is the radius of the anchor tip arc. Let the friction
coefficient between the anchor tip and the soil be η1 and the penetration velocity be Vz.
The normal force acting on the segment sdφ of the anchor tip is

dFn = 2πRsσndφ (1)
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where R = s sin φ− (s− a).
The component in the axial direction of the anchor tip is

dFz1 = 2πs2σn(Vz, φ) cos φ

[
sin φ− s− a

s

]
dφ (2)

The upward component of tangential friction in the axial direction of the anchor tip is

dFz2 = 2πs2σn(Vz, φ)η1 sin φ

[
sin φ− s− a

s

]
dφ (3)

Then, the resultant force in the axial direction of the anchor tip is

dFz = 2πs2σn(Vz, φ)

[
sin φ− s− a

s

]
(cos φ + η1 sin φ)dφ (4)

The total resultant force in the axial direction of the anchor tip is obtained by integrat-
ing Equation (4)

Fz = 2πs2
∫ π

2

ϕ0

{[
sin φ− s− a

s

]
(cos φ + η1 sin φ)

}
σn(Vz, φ)dφ (5)

where ϕ0 = arcsin
( s−a

s
)
= arcsin

(
2ψ−1

2ψ

)
.

2.2. Spherical Cavity Expansion Theory
2.2.1. Plastic Region Response

Let the velocity of the spherical cavity be a constant, and the radius of the spherical
cavity r be increased from zero to a. It is assumed that the soil is a homogeneous, non-
viscous and isotropic elastic-plastic material. The soil is saturated and incompressible, and
the expansion of spherical cavity is regarded as an undrained process. As the soil cavity
is expanded, it is assumed that a plastic response region and an elastic response region
are formed in the soil surrounding the cavity (Figure 2). The plastic region is bounded
by the radii Vt and ct, where t is the time, V is the cavity expansion velocity and c is the
elastic-plastic interface velocity. It is assumed that the constitutive relationship of the soil
in the plastic region is expressed by a locked hydrostat (pressure-volumetric strain) and
follows the Mohr-Coulomb yield criterion. The elastic region is taken as an incompressible
elastic material and the constitutive relationship follows Hooke law. In addition, the stress
and strain are defined as positive when subject to compression.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. Soil response regions. 

For a locked hydrostat, the Mohr-Coulomb yield criterion and spherical symmetry 
can be expressed [24]: 

01
ρ

η
ρ

∗
∗

= − , 
r θ 0 pσ σ τ λ− = + , ( )r θ2

3
p

σ σ+
=  

where ρ0 and ρ* are the initial and locked (compacted) densities of soil, respectively, η* is 
the locked volumetric strain, σr and σθ are the radial and tangential components of Cau-
chy stress, respectively, τ0 and λ are yield parameters, and p is the average principal 
stress. 

In the Lagrangian coordinate system, the momentum and mass conservation equa-
tions can be expressed as 

( ) ( )( )
2

2 2r
r θ 0 2

2 1 0
u u

r u r u r
r r t

σ
σ σ ρ

∂ ∂ ∂
+ + + + − + =

∂ ∂ ∂
 
 
 

 (6)

( )3 201
3

r u r
r

ρ
ρ

∂
+ =

∂
  

 (7)

where r is the radial coordinate, u is the radial displacement, and ρ is the current density. 
The boundary condition at the cavity wall is 

( )0,u r t V t= =  (8)

2.2.2. Elastic-Plastic Contact Surface 
The Hugoniot jump condition, i.e., the momentum and mass conservation condition, 

is satisfied on the elastic-plastic interface 

( ) ( )
( ) ( )

2 2 1 1

2 2 2 2 1 1 1 1

v c v c

v v c v v c

ρ ρ

σ ρ σ ρ

− = −

+ − = + −
 (9)

where the subscripts 1 and 2 represent the plastic and elastic regions, respectively. 

2.2.3. Incompressible Elastic Region Response 
The mass conservation equation is 

d 2 0
d
u u
r r

+ =  (10)

If the convection term is ignored, the momentum equation can be expressed as 

( ) 2
r θr

2

2 u
r r t

σ σσ ρ
−∂ ∂+ = −

∂ ∂
 (11)

By solving Equations (6)–(11) using the similarity transformation, we can obtain the 
solutions corresponding to the plastic and elastic regions. In particular, the normal stress 
at the cavity wall can be expressed as 

Figure 2. Soil response regions.

For a locked hydrostat, the Mohr-Coulomb yield criterion and spherical symmetry
can be expressed [24]:

η∗ = 1− ρ0

ρ∗
, σr − σθ = τ0 + λp, p =

(σr + 2σθ)

3

where ρ0 and ρ* are the initial and locked (compacted) densities of soil, respectively, η* is
the locked volumetric strain, σr and σθ are the radial and tangential components of Cauchy
stress, respectively, τ0 and λ are yield parameters, and p is the average principal stress.
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In the Lagrangian coordinate system, the momentum and mass conservation equations
can be expressed as

(r + u)2 ∂σr

∂r
+ 2
(

1 +
∂u
∂r

)
(r + u)(σr − σθ) + ρ0r2 ∂2u

∂t2 = 0 (6)

1
3

∂

∂r

[
(r + u)3

]
=

ρ0

ρ
r2 (7)

where r is the radial coordinate, u is the radial displacement, and ρ is the current density.
The boundary condition at the cavity wall is

u(r = 0, t) = Vt (8)

2.2.2. Elastic-Plastic Contact Surface

The Hugoniot jump condition, i.e., the momentum and mass conservation condition,
is satisfied on the elastic-plastic interface

ρ2(v2 − c) = ρ1(v1 − c)
σ2 + ρ2v2(v2 − c) = σ1 + ρ1v1(v1 − c)

(9)

where the subscripts 1 and 2 represent the plastic and elastic regions, respectively.

2.2.3. Incompressible Elastic Region Response

The mass conservation equation is

du
dr

+ 2
u
r
= 0 (10)

If the convection term is ignored, the momentum equation can be expressed as

∂σr

∂r
+

2(σr − σθ)

r
= −ρ

∂2u
∂t2 (11)

By solving Equations (6)–(11) using the similarity transformation, we can obtain the
solutions corresponding to the plastic and elastic regions. In particular, the normal stress at
the cavity wall can be expressed as

σn(Vz, ϕ) = σr = Aτ0 + Bρ0V2 (12)

where A = 1
α

(
1+τ0/2E

γ

)
− 1

λ , B = 3
(1−η∗)(1−2α)(2−α)

+ 1
γ2

(
1+τ0/2E

γ

)2α
(C1 + C2), C1 = 3τ0

E +

η∗
(

1− 3τ0
2E

)2
, C2 = − γ3[2(1−η∗)(2−α)+3γ3]

(1−η∗)(1−2α)(2−α)(1+τ0/2E)4 , γ = V
c , α = 3λ/(3 + 2λ).

2.3. Penetration Equations

Let the penetration velocity of the torpedo anchor at any time be Vz; then the cavity
expansion velocity is V = Vz cos ϕ.

2.3.1. Calculation of the Axial Force of the Anchor Tip

Substituting Equation (12) into Equation (5) gives the upward resultant force in the
axial direction of the anchor tip as

Fz = αs + βsV2
z (13)

where αs = πa2τ0 A
[
1 + 4η1ψ2(π/2− ϕ0)− η1(2ψ− 1)(4ψ− 1)1/2

]
, βs = πa2ρ0B[

8ψ−1
24ψ2 + η1ψ2(π/2− ϕ0) −

η1(2ψ−1)(6ψ2+4ψ−1)(4ψ−1)1/2

24ψ2

]
.
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2.3.2. Motion Equation of the Torpedo Anchor

Let the torpedo anchor vertically penetrate the soil with an initial velocity of V0. The
seafloor surface is taken as the coordinate origin, and the positive z coordinate direction is
vertically downward. Let the time be t and the penetration depth of the anchor tip be z.
The equation of motion can be expressed as

m
d2z
dt2 = mg− Fz − Ff (14)

where Fz is the axial force of the anchor tip and can be calculated by Equation (13). Ff is
the friction between the anchor rod and the soil. Under the assumption that the anchor
rod is not separated from the soil, the anchor shank bears the earth pressure in the normal
direction. Let the rod-soil friction coefficient be η2 and the anchor length be L. Then, the
friction Ff acting on the anchor rod can be expressed as

When z ≤ L

Ff =

z∫
0

2πaη2Kρghdh =πaη2Kγz2 (15)

When z > L

Ff =

z∫
z−L

2πaη2Kρghdh =πaη2Kγ(2z− L)L (16)

where K is the earth pressure coefficient.
By substituting Equations (13) and (15) into Equation (14), we have
When z ≤ L

m
d2z
dt2 = mg− αs − βs

(
dz
dt

)2
− πη2Kaγz2 (17)

When z > L

m
d2z
dt2 = mg− αs − βs

(
dz
dt

)2
− πη2KaLγ(2z− L) (18)

Equations (17) and (18) are the equations of motion of the torpedo anchor.
To solve Equation (17), let y = dz

dt , and d2z
dt2 = dy

dz
dz
dt = y dy

dz .
Then, Equation (17) is reduced to a first-order ordinary differential equation

y
dy
dz

= g− αs

m
− βs

m
y2 − πaη2Kγ

m
z2 (19)

Let u = y2; then, Equation (19) can be expressed as

du
dz

+
2βs

m
u = 2g− 2αs

m
− 2πaη2Kγ

m
z2 (20)

The initial conditions are t = 0, z = 0, and u = V0
2.

The general solution for Equation (20) is

u = −2πaη2Kγ

m

(
m

2βs

)3
[(

2βsz
m

)2
− 4βsz

m
+ 2

]
+ C3e−

2βsz
m +

mg− αs

βs
(21)

The constant C3 in Equation (21) is determined by the initial conditions:

C3 =
4πaη2Kγ

m

(
m

2βs

)3
− mg− αs

βs
+ V0

2
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Then, the solution of Equation (19) is

u = a1e−
2βsz

m − a2

(
2βsz

m

)2
+ 2a2

(
2βsz

m

)
+ a3 (22)

where a1 = 4πaη2Kγ
m

(
m

2βs

)3
− mg−αs

βs
+ V0

2, a2 = 2πaη2Kγ
m

(
m

2βs

)3
, a3 = mg−αs

βs
− 2a2.

By substituting u = y2 = Vz
2 into Equation (22), we have

Vz
2 = a1e−

2βsz
m − a2

(
2βsz

m

)2
+ 2a2

(
2βsz

m

)
+ a3 (23)

When the penetration depth of the torpedo anchor exceeds one anchor length, the
solution for Equation (18) can be obtained using the same method and expressed as

Vz
2 = a4e

−2βsz
m +

mR
2βs
−W

(
m

2βs

)2(2βsz
m
− 1
)

(24)

where a4 = e
2βs L

m

[
a1e

−2βs L
m − a2

(
2βsL

m

)2
+ 2a2

(
2βsL

m

)
+ a3 +W

(
m

2βs

)2( 2βsL
m − 1

)
− mR

2βs

]
,

R = 2g− 2αs
m + 2πaKη2γL2

m , W = 4πaKη2γL
m .

Equations (23) and (24) show the relationships between the penetration velocity and
the penetration depth when the penetration depth of the torpedo anchor is less than and
greater than the anchor length, respectively.

By taking the derivative of both sides of Equations (23) and (24) with respect to t, we
can obtain the relationship between the acceleration and penetration depth of the torpedo
anchor as

dVz

dt
= − a1βs

m
e−

2βsz
m − a2

(
2βs

m

)2
z +

2βsa2

m
(25)

dVz

dt
= − a4βs

m
e
−2βsz

m − Wm
4βs

(26)

To obtain the variation in the penetration depth with time, let x = 2βsz
m ; then

Equation (23) is simplified as

m
2βs

dx
dt

=
√

a1e−x − a2x2 + 2a2x + a3 (27)

By integrating Equation (27), we have

2βs

m

∫
dt =

∫ dx√
a1e−x − a2x2 + 2a2x + a3

(28)

There is no analytical solution for the integral on the right side of Equation (28). To
obtain an approximate solution, we can approximately express e−x as e−x = A0x2 + B0x+C0.

Then, Equation (28) is approximately expressed as

2βs

m

∫
dt =

∫ dx√
(a1 A0 − a2)x2 + (a1B0 + 2a2)x + a1C0 + a3

(29)

When a1 A0 − a2 > 0,

2βs

m
t = C4 +

1√
a1 A0 − a2

ln|2(a1 A0 − a2)x + a1B0 + 2a2 + 2
√

a1 A0 − a2

√
(a1 A0 − a2)x2 + (a1B0 + 2a2)x + a1C0 + a3 (30)

The integral constant C4 in Equation (30) can be determined by the initial conditions,
and the approximate solution for Equation (27) is obtained as
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2βs

m
t =

1√
a1 A0 − a2

ln

∣∣∣∣∣2(a1 A0 − a2)x + a1B0 + 2a2 + 2
√

a1 A0 − a2
√
(a1 A0 − a2)x2 + (a1B0 + 2a2)x + a1C0 + a3

a1B0 + 2a2 + 2
√

a1 A0 − a2
√

a1C0 + a3

∣∣∣∣∣ (31)

By substituting x = 2βsz
m into Equation (31), we have

t =
m

2βs
√

a1 A0 − a2
ln

∣∣∣∣∣∣2(a1 A0 − a2)
2βs
m z + a1B0 + 2a2 + 2

√
a1 A0 − a2

√
(a1 A0 − a2)(

2βs
m )

2
z2 + (a1B0 + 2a2)

2βs
m z + a1C0 + a3

a1B0 + 2a2 + 2
√

a1 A0 − a2
√

a1C0 + a3

∣∣∣∣∣∣ (32)

When the penetration depth z = L, the required time t1 is determined by Equation (32):

t1 =
m

2βs
√

a1 A0 − a2
ln

∣∣∣∣∣∣ 2(a1 A0 − a2)
2βs
m L + a1B0 + 2a2 + 2

√
a1 A0 − a2

√
(a1 A0 − a2)(

2βs
m )

2
L2 + (a1B0 + 2a2)

2βs
m L + a1C0 + a3

a1B0 + 2a2 + 2
√

a1 A0 − a2
√

a1C0 + a3

∣∣∣∣∣∣ (33)

When the penetration depth z > L, Equation (24) is solved using the same method
to obtain

t = t1 +
m

2βs
√

a4 A0
ln

∣∣∣∣∣∣∣∣∣∣
2a4 A0

2βs
m z + a4B0 −W

(
m

2βs

)2
+ 2
√

a4 A0

√
a4 A0

(
2βs
m

)2
z2 +

[
a4B0 −W

(
m

2βs

)2
]

2βs
m z + a4C0 +

mR
2βs

+ W
(

m
2βs

)2

2a4 A0
2βs
m L + a4B0 −W

(
m

2βs

)2
+ 2
√

a4 A0

√
a4 A0

(
2βs
m

)2
L2 +

[
a4B0 −W

(
m

2βs

)2
]

2βs
m L + a4C0 +

mR
2βs

+ W
(

m
2βs

)2

∣∣∣∣∣∣∣∣∣∣
(34)

Equations (32) and (34) represent the time needed for the penetration depth of the
torpedo anchor when the penetration depth is less than and greater than the anchor
length, respectively.

The final penetration depth of the torpedo anchor Zmax can be determined by
Equation (23) or Equation (24):

(1) Zmax ≤ L

a1e−
2βsZmax

m − a2

(
2βsZmax

m

)2
+ 2a2

(
2βsZmax

m

)
+ a3 = 0 (35)

(2) Zmax > L

2a4βs

m
e
−2βsZmax

m −WZmax + R +
Wm
2βs

= 0 (36)

If the friction on the rod is not considered, the final penetration depth Zmax is

Zmax =
m

2βs
ln
(

βsV0
2

mg− αs
− 1
)

(37)

Therefore, the analytical solution for penetration depth vs. the velocity, penetration
depth vs. acceleration, final penetration depth, and penetration depth vs. time of the torpedo
anchor are obtained. From the engineering application viewpoint, Equations (23) and (24)
can be used to calculate penetration depth vs. velocity, Equations (25) and (26) can be
used to calculate penetration depth vs. acceleration, Equations (32)–(34) can be used to
calculate penetration depth vs. time, and Equations (35)–(37) can be used to calculate the
final penetration depth.

3. Model Test of Torpedo Anchor Penetration into Saturated Sand
3.1. Test Materials and Device

The soil samples used in the test were Fujian standard sand with a specific gravity
of 2.66, and the maximum and minimum dry densities were 1.93 g/cm3 and 1.53 g/cm3,
respectively. Given the particle-size distribution curve of the test sand, as shown in Figure 3,
it can be concluded that the test sand was poorly graded sand. Figure 4 shows the schematic
of the model test setup. The model torpedo has an anchor length of 175 mm, a diameter
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of 25 mm, and a mass of 235 g. The anchor tip is bullet shaped with CRH = ψ = 1.69,
the anchor head is made of stainless steel, and the anchor rod is made of an aluminum
alloy. The anchor rod is hollow with a built-in micro electro mechanical system (MEMS)
accelerometer, which has a measurement range of ±500 g.
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(c) torpedo anchor.

The plexiglass tube with an inner diameter of 220 mm, a height of 600 mm and a
thickness of 10 mm was used as a model box. The hole was located in the center of the
bottom, and a layer of geotextile was laid to ensure the uniformity of saturated samples.
The self-designed ejection device consists of a movable support frame and an ejector. The
ejector is mainly composed of a tension screw, a steel strand, an ejection rod, a model
torpedo anchor bracket, a velocity control pawl, a trigger, and a velocimetry system with an
ejection velocity of 15 to 30 m/s. Real-time data acquisition with the MEMS accelerometer
and photogate signals was performed using the TWD dynamic data acquisition instrument
(Beijing Taize Technology Development Co., Ltd., Beijing, China), with an acquisition
frequency of 10 kHz, which met the test requirements. The penetration depth of the model
anchor was measured by the flexible rope connected to the anchor tail.

3.2. Test Methods

The height of the samples was 500 mm. According to the designed density and loading
height, the required sand mass was calculated and then loaded four times and compacted
in layers. After compaction, the water was slowly supplied to the sand sample from the
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hole at the bottom, and back pressure was pumped on the surface of the sand to make the
water rise slowly from the bottom to top. When the water level was more than 2 cm above
the soil sample, the water supply was stopped and left to stand for enough time to saturate
the sand sample. Subsequently, a suction ball was used to absorb the excess water on the
sand surface before the penetration test.

Due to the limitations of the test conditions, it was difficult to measure the locked
density of the sand. Therefore, we used the maximum dry density of the sand ρdmax to
replace ρ*. In the tests, sands with four different relative densities (0.80, 0.70, 0.65, and 0.60)
were labeled as A, B, C, and D, respectively, and each was assigned three velocity levels, for
a total of 12 sets of tests. During the test, the model box was placed directly under the ejector,
the accelerometer was preloaded into the torpedo anchor, which was installed at the bracket
of the ejector, and the signal lines of the accelerometer and photogate were connected to
the data acquisition instrument. The steel strand was pulled to the corresponding gear via
the screw at a predesigned speed. When the signal acquisition instrument was ready, the
trigger was pressed to launch the model torpedo anchor.

4. Comparison between Experimental, Analytical and Semi-Analytical Results

The strength parameters of the saturated sand with different densities were obtained
by triaxial tests (Table 1). The parameters of the model torpedo anchor are shown in Table 2.
According to the parameters listed in Tables 1 and 2 and the initial penetration velocity V0
measured in the test, theoretical calculations and analyses for each penetration test were
conducted. Equations (23)–(26) show the relationship between the penetration velocity,
acceleration, and penetration depth of the torpedo anchor. Based on the penetration depth
in the model tests, the parameters in Equations (32)–(34) were approximately determined
through preliminary calculations to be A0 = 0.2579, B0 = −0.8825, and C0 = 0.9872. The fric-
tion coefficient η1 between the anchor tip and the soil and the friction coefficient η2 between
the anchor rod and the soil were both experimentally determined to be approximately
0.35 [28]. The passive earth pressure coefficient was adopted. For an additional compara-
tive analysis, the semi-analytical solutions for Equations (17) and (18) were obtained using
MATLAB software.

Table 1. Strength parameters of saturated sand.

No. Dr τ0/kPa λ ρ/(g/cm3) E/MPa

A 0.60 22.641 1.40 1.747

100
B 0.65 25.656 1.41 1.767
C 0.70 26.094 1.43 1.789
D 0.80 31.549 1.47 1.834

Table 2. Dimensions of the torpedo anchor.

L/mm d/mm m/g ψ θ0

175 25 235 1.69 0.78

4.1. Curves of Acceleration with Depth

The median filter method was employed to filter out the high-frequency components
from the acceleration time-history signal using the built-in filter program in MATLAB. To
facilitate comparison, the measured acceleration time-history curve was integrated twice to
obtain the variation curve of acceleration with depth. Figure 5 shows the variation curves
of acceleration with depth for saturated sands with different densities and model torpedo
anchors with different initial velocities. It can be observed that the acceleration decreased
with increasing depth and gradually decreased to zero. Both the analytical solutions and
the semi-analytical solutions are in good overall agreement with the measured results,
indicating that the cavity expansion theory can be used to analyze the dynamic penetration
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process of torpedo anchor. In addition, there is still some deviation between the predicted
results and the measured results in the later section of the variation curve of acceleration
with depth.
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4.2. Curves of Velocity with Depth

Figure 6 shows the variation curves of velocity with depth for saturated sands with
different densities and torpedo anchors with different initial velocities. As shown in the
figures, the velocity decreased with increasing depth, and the analytical solution and
semi-analytical solution both align well with the measured results.
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4.3. Final Penetration Depth

Table 3 shows the test values of the final penetration depth of the model torpedo
anchor, the integral values of the measured acceleration curve, the semi-analytical solution,
and the analytical solution values under different sand densities and initial penetration
velocities. As shown in Table 3, under different sand densities, the measured penetration
depth is generally consistent with the calculation results based on the test acceleration
time-history curve, indicating that the accelerometer used in the test has a relatively high
accuracy. The analytical solution and semi-analytical solution are largely consistent with the
measured results, indicating that the established equation for torpedo anchor penetration
can describe the penetration process of a torpedo anchor.

Table 3. Comparison of final penetration depths.

No. V0/m/s Z0/cm Z1/cm Z2/cm Z3/cm

A1 16.7 12.3 12.7 11.4 11.4
A2 20.1 14.5 14.3 14.1 14.1
A3 22.5 16.2 16.3 15.9 15.9
B1 16.8 16.3 16.4 16.4 16.4
B2 20.1 18.6 18.5 18.6 18.6
B3 23.0 20.7 20.5 21.0 21.0
C1 16.6 16.9 17.0 16.8 16.8
C2 20.1 20.5 20.9 20.2 20.2
C3 22.3 21.8 21.6 22.4 22.4
D1 16.6 18.9 18.6 18.7 18.7
D2 20.0 22.5 22.2 22.4 22.4
D3 22.0 24.2 24.1 24.4 24.4

Z0 = measured depth; Z1 = penetration depth obtained by integrating the measured acceleration curve;
Z2 = semi-analytical solution of penetration depth; Z3 = analytical solution of penetration depth.

5. Conclusions

By assuming that the soil is a pressure-locked material that follows the Mohr-Coulomb
criterion, we analyzed the dynamic response characteristics of compressible soil based on
the spherical cavity expansion theory. Under the plane strain assumption, the penetration
equations of torpedo anchors were established by applying Newton’s second law. The
analytical solutions for acceleration vs. depth, velocity vs. depth, and penetration depth
and the approximate analytical solution for penetration depth as a function of time were
given. A comparison between analytical, semi-analytical, and test results showed that the
theoretical solutions are in good alignment with the measured results, indicating that the
analytical solution established in this study can be used to analyze the penetration process
of torpedo anchors.

Author Contributions: Conceptualization, J.Z. and G.L.; methodology, J.Z. and G.L.; validation, J.L.,
J.Z. and G.L.; writing—original draft preparation, G.L. and Y.Y.; writing—review and editing, J.N.
and J.Z.; funding acquisition, G.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Natural Science Basic Research Program of Shaanxi
Province, grant number 2021JM-535 and the Special Fund for Scientific Research by Xijing University,
grant number XJ18T01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The Youth Innovation Team of Shaanxi Universities is acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2022, 10, 1097 13 of 13

References
1. Yu, G.L.; Wang, W.K.; Wang, C. The structure and characteristics of powered torpedo anchor. Ocean Eng. 2018, 36, 143–148.
2. Medeiros, C.J. Low cost anchor system for flexible risers in deep waters. In Proceedings of the Offshore Technology Conference,

Houston, TX, USA, 6–9 May 2002.
3. Chen, X.H.; Zhang, M.X.; Yu, G.L. A self-penetration torpedo anchor with vibrational shearing. Ocean Eng. 2021, 236, 109315.

[CrossRef]
4. Ads, A.; Iskander, M.; Bless, S.; Omidvar, M. Visualizing the effect of Fin length on torpedo anchor penetration and pullout using

a transparent soil. Ocean Eng. 2020, 216, 108021. [CrossRef]
5. Zhang, N.; Evans, T.M. Discrete numerical simulations of torpedo anchor installation in granular soils. Comput. Geotech. 2019,

108, 40–52. [CrossRef]
6. Kim, Y.H.; Hossain, M.S.; Lee, J.K. Dynamic installation of a torpedo anchor in two-layered clays. Can. Geotech. J. 2018, 55,

446–454. [CrossRef]
7. Kim, Y.H.; Hossain, M.S.; Wang, D.; Randolph, M.F. Numerical investigation of dynamic installation of torpedo anchors in clay.

Ocean Eng. 2015, 108, 820–832. [CrossRef]
8. Hossain, M.S.; Kim, Y.H.; Gaudin, C. Experimental investigation of installation and pullout of dynamically penetrating anchors

in clay and silt. J. Geotech. Geoenviron. Eng. 2014, 140, 04014026. [CrossRef]
9. Lai, Y.; Zhu, B.; Chen, C.; Huang, Y.H. Dynamic installation behaviors of a new hybrid plate anchor in layered marine clay. China

Ocean Eng. 2021, 35, 736–749. [CrossRef]
10. Fernandes, A.C.; de Araujo, J.B.; de Almeida, J.C.L.; Machado, R.D.; Matos, V. Torpedo anchor installation hydrodynamics. J.

Offshore Mech. Arct. Eng. 2006, 128, 286–293. [CrossRef]
11. Liu, H.X.; Xu, K.; Zhao, Y.B. Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian-

Lagrangian approach. Appl. Ocean Res. 2016, 60, 94–108. [CrossRef]
12. Raie, M.S.; Tassoulas, J.L. Installation of torpedo anchors: Numerical modeling. J. Geotech. Geoenviron. Eng. 2010, 135, 1805–1813.

[CrossRef]
13. Sabetamal, H.; Nazem, M.; Carter, J.P.; Sloan, S.W. Large deformation dynamic analysis of saturated porous media with

applications to penetration problems. Comput. Geotech. 2014, 55, 117–131. [CrossRef]
14. Sabetamal, H.; Carter, J.P.; Nazem, M.; Sloan, S.W. Coupled analysis of dynamically penetrating anchors. Comput. Geotech. 2016,

77, 26–44. [CrossRef]
15. True, D.G. Rapid penetration into seafloor soils. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–8

May 1974.
16. True, D.G. Penetration of Projectiles into Seafloor Soils; Civil Engineering Laboratory (Navy): Port Hueneme, CA, USA, 1975.
17. True, D.G. Undrained Vertical Penetration into Ocean Bottom. Soils.Ph.D. Thesis, University of California, Berkeley, CA,

USA, 1976.
18. Boguslavskii, Y.; Drabkin, S.; Juran, I.; Salman, A. Theory and practice of projectile’s penetration in soils. J. Geotech. Eng. 1996, 122,

806–812. [CrossRef]
19. O’Loughlin, C.D.; Richardson, M.D.; Randolph, M.F. Centrifuge tests on dynamically installed anchors. In Proceedings of the

ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, 31 May–5 June 2009.
20. O’Loughlin, C.D.; Richardson, M.D.; Randolph, M.F.; Gaudin, C. Penetration of dynamically installed anchors in clay. Géotechnique

2013, 63, 909–919. [CrossRef]
21. O’Beirne, C.; O’Loughlin, C.D.; Gaudin, C. A release-to-rest model for dynamically installed anchors. J. Geotech. Geoenviron. Eng.

2017, 143, 04017052. [CrossRef]
22. Nazem, M.; Carter, J.P.; Airey, D.W.; Chow, S.H. Dynamic analysis of a smooth penetrometer free-falling into uniform clay.

Géotechnique 2012, 62, 893–905. [CrossRef]
23. Bishop, R.F.; Hill, R.; Mott, N.F. The theory of indentation and hardness tests. Proc. Phys. Soc. 1945, 57, 147–149. [CrossRef]
24. Forrestal, M.J.; Luk, V.K. Penetration into soil targets. Int. J. Impact Eng. 1992, 12, 427–444. [CrossRef]
25. Shi, C.C.; Wang, M.Y.; Li, J.; Li, M.S. A model of depth calculation for projectile penetration into dry sand and comparison with

experiments. Int. J. Impact Eng. 2014, 73, 112–122. [CrossRef]
26. Chian, S.C.; Tan, B.C.V.; Sarma, A. Projectile penetration into sand: Relative density of sand and projectile nose shape and mass.

Int. J. Impact Eng. 2017, 103, 29–37. [CrossRef]
27. Fang, J.C.; Kong, G.Q.; Yang, Q. Group performance of energy piles under cyclic and variable thermal loading. J. Geotech.

Geoenviron. Eng. 2022, 148, 04022060. [CrossRef]
28. Sun, J.Z.; Wang, Y.; Wang, R. Study on the behaviors of calcareous sand-structure interface and its theoretical model. Site Investig.

Sci. Technol. 2004, 5, 7–9.

http://doi.org/10.1016/j.oceaneng.2021.109315
http://doi.org/10.1016/j.oceaneng.2020.108021
http://doi.org/10.1016/j.compgeo.2018.12.013
http://doi.org/10.1139/cgj-2016-0607
http://doi.org/10.1016/j.oceaneng.2015.08.033
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001100
http://doi.org/10.1007/s13344-021-0065-5
http://doi.org/10.1115/1.2355514
http://doi.org/10.1016/j.apor.2016.09.002
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000159
http://doi.org/10.1016/j.compgeo.2013.08.005
http://doi.org/10.1016/j.compgeo.2016.04.005
http://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(806)
http://doi.org/10.1680/geot.11.P.137
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001719
http://doi.org/10.1680/geot.10.P.055
http://doi.org/10.1088/0959-5309/57/3/301
http://doi.org/10.1016/0734-743X(92)90167-R
http://doi.org/10.1016/j.ijimpeng.2014.06.010
http://doi.org/10.1016/j.ijimpeng.2017.01.002
http://doi.org/10.1061/(ASCE)GT.1943-5606.0002840

	Introduction 
	Torpedo Anchor Penetration Equations 
	Calculation for the Axial Force of the Anchor Tip 
	Spherical Cavity Expansion Theory 
	Plastic Region Response 
	Elastic-Plastic Contact Surface 
	Incompressible Elastic Region Response 

	Penetration Equations 
	Calculation of the Axial Force of the Anchor Tip 
	Motion Equation of the Torpedo Anchor 


	Model Test of Torpedo Anchor Penetration into Saturated Sand 
	Test Materials and Device 
	Test Methods 

	Comparison between Experimental, Analytical and Semi-Analytical Results 
	Curves of Acceleration with Depth 
	Curves of Velocity with Depth 
	Final Penetration Depth 

	Conclusions 
	References

