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Abstract: Little information on the phytoplankton community in the Yellow Sea (YS)—especially size-
fractionated phytoplankton—is currently available, in comparison to the various physicochemical
studies in the literature. Using high-performance liquid chromatography (HPLC), size-fractionated
phytoplankton communities were seasonally investigated in the YS in 2019. In the study period,
diatoms (55.0 ± 10.2%) and cryptophytes (16.9 ± 9.3%) were the dominant groups. Due to the
recent alteration in inorganic nutrient conditions reported in the YS, the contribution of diatoms
was lower than in previous studies. The large-sized phytoplankton group (>20 µm) was dominated
mostly by diatoms (89.0 ± 10.6%), while the small-sized phytoplankton group (<20 µm) was also
dominated by diatoms (41.9 ± 9.1%), followed by cryptophytes (19.2 ± 9.8%). The contributions
of small-sized diatoms (<20 µm) have been overlooked in the past, as they are difficult to detect,
but this study confirms significant amounts of small-sized diatoms, accounting for 62.3% of the
total diatoms in the YS. This study provides an important background for assessing the seasonal
variations in different-sized diatom groups in the YS. Further detailed studies on their potential
ecological roles should be conducted, in order to better understand marine ecosystems under future
warming scenarios.
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1. Introduction

Phytoplankton, as primary producers, contribute half of global primary production
and play a central role in marine ecosystems [1,2]. In the ocean, the size and the community
structure of phytoplankton are affected by light intensity, water temperature, nutrients,
and other physicochemical properties [3,4]. Generally, the dominance of micro-sized
phytoplankton (>20 µm) has been associated with nutrient-rich environments, while the
dominance of pico-sized phytoplankton (<2 µm) has been associated with stratified and
oligotrophic waters [5–7]. Recently increasing temperatures and stratification due to
global warming have caused a shift in phytoplankton size structures towards smaller
phytoplankton [8,9]. The increase in small phytoplankton could result in lower total
primary production [10]. Moreover, the efficiency of the biological pump [4] and the food
web structure [11] may be altered. Therefore, phytoplankton community size structure
variation can serve as an indicator for the response of phytoplankton to environmental
changes [12,13].

The Yellow Sea (YS) is a temperate semi-enclosed marginal sea in the West Pacific
Ocean, surrounded by Korea to the east and China to the west. The YS is a highly produc-
tive ecosystem and is recognized as an important global fishery resource region [14]. The
YS is significantly influenced by its unique topography, hydrological and biochemical char-
acteristics, nonlinear tidal effect, and frequent human activity [15,16]. The spatial-temporal
distribution of the phytoplankton community in the YS is affected by this complex environ-
ment [17]. Studies on the composition of phytoplankton communities have traditionally
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been carried out using optical microscopy, but this method has limited ability to detect
pico- and nano-sized phytoplankton [18,19]. To address this issue, new approaches based
on pigment analysis using High-Performance Liquid Chromatography (HPLC) have been
developed. HPLC provides an opportunity to estimate small-sized phytoplankton, which
can be difficult to identify when conducting microscopic analysis [20]. Moreover, HPLC
pigment analysis can produce reliable and consistent data in a short period of time.

Previous studies on the phytoplankton community in the YS have mainly focused on
the morphological classification of large-sized phytoplankton [17,21,22]. Several studies have
investigated the relationship between phytoplankton communities and environmental factors,
but they have been limited to fragmentary seasons [23,24]. In addition, some studies assessing
the size-fractionated phytoplankton biomass in the YS have been undertaken [25,26], but
no study has considered size-fractionated phytoplankton communities in this area. The
main objectives of this study are to (1) identify major environmental factors controlling the
seasonal variations in the phytoplankton communities and (2) classify the seasonal pattern of
different-sized phytoplankton groups in the YS.

2. Materials and Methods
2.1. Water Sampling and Study Area

Seasonal sampling was conducted in the Yellow Sea on an R/V Tamgu 8 during
4 seasons in 2019 (22 February to 5 March, 3–12 April, 14–25 August, and 6–16 October,
representing winter, spring, summer, and autumn, respectively; see Figure 1 and Table 1).
At the surface, water samples were collected using Niskin bottles to examine dissolved inor-
ganic nutrients (NO3 + NO2, NH4, SiO2, and PO4 (n = 29)), chlorophyll-a (total (n = 29) and
size-fractionated (n = 87)) concentrations, and pigment (total (n = 29) and size-fractionated
(n = 58)) concentrations on a conductivity–temperature–depth (CTD)/rosette sampler (SBE
911 plus, Seabird Electronics Inc., Bellevue, WA, USA). Physical properties (temperature
and salinity) were also measured using the CTD/rosette sampler. The stability index (SI) for
the euphotic zone was calculated by dividing the difference in density (sigma-t) between
the surface and the bottom of the euphotic zone by the depth of the euphotic zone [27].
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Figure 1. Sampling locations in the YS, 2019. The blue dotted lines are managed by the serial
oceanographic observation project of the National Institute of Fisheries Science (NIFS) in Korea.
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Table 1. Sampling locations and environmental parameters of the study sites in the YS, 2019.

Month Station Latitude
(◦N)

Longitude
(◦E)

Bottom
Depth

Euphotic
Depth

Stability
Index T (◦C) S (psu)

NO2 +
NO3
(µM)

NH4
(µM)

PO4
(µM)

SiO2
(µM)

Winter

307-05 36.92 125.42 54 11 0.00 4.88 31.34 10.04 0.33 0.68 8.27
309-05 35.85 125.40 69 11 0.01 6.67 32.39 6.42 0.35 0.52 7.41
309-09 35.85 124.59 82 11 0.00 7.60 32.36 5.52 0.38 0.40 8.23
311-05 34.72 125.52 75 5 0.00 5.88 32.32 6.88 0.81 0.58 7.70
311-09 34.72 124.59 89 14 0.01 8.27 32.35 6.44 0.41 0.41 7.67
312-03 34.00 125.90 85 22 0.01 6.91 32.48 6.29 0.53 0.51 7.95
312-07 34.10 125.00 92 5 0.00 8.14 32.50 4.65 0.39 0.41 5.60

Spring

307-03 36.92 126.00 37 8 0.01 5.76 31.60 11.95 0.59 0.63 8.32
307-09 36.92 124.57 67 22 0.01 7.77 32.32 4.82 0.43 0.40 6.74
309-03 35.85 125.82 54 16 0.00 7.22 32.12 5.37 1.06 0.73 3.74
309-09 35.85 124.59 82 22 0.01 8.71 32.36 1.26 0.34 0.56 2.25
310-07 35.34 125.00 82 22 0.00 8.66 32.37 3.25 0.32 0.34 7.56
311-07 34.72 125.00 90 22 0.00 8.42 32.34 6.16 0.30 0.37 8.86
312-09 34.09 124.60 89 22 0.00 8.81 32.50 5.51 0.32 0.33 6.51

Summer

307-09 36.92 124.57 67 24 0.13 26.81 31.93 1.35 0.17 0.05 2.82
309-03 35.85 125.82 54 24 0.13 26.27 31.79 6.18 0.33 0.11 3.63
309-09 35.85 124.59 82 46 0.11 27.65 32.07 1.10 0.30 0.06 3.29
310-06 35.34 125.20 72 43 0.10 27.52 32.40 0.68 0.30 0.04 2.25
311-05 34.72 125.52 75 27 0.03 21.99 32.17 0.92 0.30 0.09 4.29
311-07 34.72 125.00 90 27 0.10 27.52 32.17 0.76 0.41 0.08 2.18
312-03 34.00 125.90 85 19 0.09 24.07 31.72 0.51 0.55 0.11 3.58
312-09 34.09 124.60 89 30 0.10 27.47 31.49 1.31 0.37 0.05 2.19

Autumn

307-03 36.92 126.00 37 11 0.00 21.43 31.88 3.57 0.59 0.57 6.22
307-05 36.92 125.42 54 16 0.00 20.24 32.06 0.90 0.50 0.29 5.95
307-09 36.92 124.57 67 16 0.00 20.23 31.83 1.07 0.47 0.08 5.56
309-03 35.85 125.82 54 38 0.00 19.42 31.72 3.25 0.35 0.39 7.65
309-07 35.86 125.00 66 22 0.01 20.54 31.51 1.16 0.38 0.04 6.58
311-05 34.72 125.52 75 19 0.02 20.49 31.81 5.56 0.34 0.29 9.96
312-07 34.10 125.00 92 38 0.03 21.28 32.01 0.92 0.29 0.04 3.26

2.2. Dissolved Inorganic Nutrients

To determine the dissolved inorganic nutrients (NO3 + NO2, NH4, SiO2, and PO4),
100 mL of seawater was filtered through GF/F filters (07 µm; Whatman, Maidstone, UK) and
the filtrate was immediately frozen at −20 ◦C. Concentrations of nutrients were analyzed
using an automatic analyzer (Quattro, Seal Analytical, Norderstedt, Germany) at the
National Institute of Fisheries Science (NIFS), Korea. Dissolved inorganic phosphate (DIP)
was assessed on the basis of PO4 and dissolved inorganic nitrogen (DIN) concentrations
were calculated as the sum of NH4, NO2, and NO3.

2.3. Chlorophyll-a Concentration

For total chlorophyll-a concentration, 300 mL of seawater was filtered through a 25 mm
glass fiber filter (GF/F; Whatman). For the size-fractionated chlorophyll-a concentration,
500 mL of seawater was filtered through membrane filters with pore sizes of 20 and 2 µm
and 47 mm GF/F, in sequence. After filtration, the filtered samples were wrapped with
aluminum foil to prevent photolysis and stored at −80 ◦C in a freezer until further analysis.
Chlorophyll-a was extracted with 90% acetone for 20–24 h in the dark at 4 ◦C, and the
concentration was measured using a fluorometer (Turner Designs 10AU) [28].

2.4. High-Performance Liquid Chromatography Analysis

Water samples (1 L) were filtered through 47 mm GF/F for total pigment analysis,
and 4–10 L of seawater was filtered through membrane filters with a pore size of 20 µm
and 47 mm GF/F, in sequence, in order to perform size-fractionated pigment analysis.
The samples for HPLC analysis were wrapped in aluminum foil to avoid degradation
and stored at −80 ◦C in a freezer until analysis. In the laboratory, the frozen filters were
extracted using 5 mL of 100% acetone at 4 ◦C over 20–24 h, and canthaxanthin was used as
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an internal standard [29]. After extraction, the extract was passed through a syringe filter
(Polytetrafluoroethylene, PTFE; 0.2 µm, Hydrophobic, Advantec, Japan) and centrifuged
(3500 rpm) for 10 min. Then, 1 mL of the extract was mixed with 300 µL of distilled water
and analyzed using high-performance liquid chromatography (HPLC; Agilent Infinite 1260,
Santa Clara, CA, USA) for qualitative and quantitative evaluation of pigments. Pigment
concentrations were calculated using the equation suggested in [30]. The relative contri-
butions of the total and size-fractionated phytoplankton community composition were
estimated through the CHEMTAX program, as described in [31]. To separate the eight
phytoplankton communities (i.e., diatoms, dinoflagellates, chrysophytes, cryptophytes,
chlorophytes, prasinophytes, cyanobacteria) in the CHEMTAX program, we used the initial
pigment ratios derived from [32].

To estimate the relative contributions of three pigment-based size classes (pico-,
nano-, and micro-sized phytoplankton), diagnostic pigment analyses (DPAs) were car-
ried out [33–36]. DPA was calculated based on the concentration of the seven diagnostic
pigments—fucoxanthin (Fuco), peridinin (Peri), 19′-hexanoyloxyfucoxanthin (19Hexfuco),
19′-butanoyloxy-fucoxanthin (19Butfuco), alloxanthin (Allo), chlorophyll-b (Chlb), and
zeaxanthin (Zea)—and the relative contributions of the three pigment-based size classes
were calculated according to [37].

2.5. Statistical Analysis

Statistical analysis was performed using SPSS (version 24.0, SPSS Inc., Chicago, IL,
USA) for Spearman’s correlation, t-test, one-way ANOVA, and Kruskal–Wallis nonpara-
metric one-way analysis of variance (ANOVA). Spearman rank-order correlation analysis
was used to identify the environmental factors in relation to the concentrations of size-
fractionated diatoms. The t-test was performed to identify the significant differences
between the relative proportions of size-fractionated chlorophyll-a concentrations, as mea-
sured by fluorometer and pigment analysis. One-way ANOVA and Kruskal–Wallis (at an
alpha value of <0.05) were applied to identify significant differences in physical properties
for each season. Canonical correspondence analysis (CCA) was performed using CANOCO
for Windows 4.5 (Biometris, Wageningen, The Netherlands), in order to investigate the
relationships between the total phytoplankton community and environmental factors (i.e.,
temperature, salinity, stability index, and dissolved inorganic nutrients (NO3 + NO2, NH4,
SiO2, and DIP)).

3. Results and Discussion
3.1. Physicochemical Characteristics in the Environment

The hydrographic conditions are presented in Table 1. The average surface tempera-
ture ranged from 6.91 ± 1.23 ◦C to 26.16 ± 2.06 ◦C, with a significant increase from spring
to summer. On the other hand, the seasonal average salinity ranged from 31.83 ± 0.18 psu
to 32.25 ± 0.41 psu, and significant seasonal changes were not observed (Kruskal–Wallis
test, p > 0.05). The stratification intensity estimated from the stability index was signifi-
cantly higher in summer than in other seasons (Kruskal–Wallis test, p < 0.05). The ranges of
NO3 + NO2, NH4, SiO2, and DIP concentrations during the study period were
0.51–11.95, 0.17–1.06, 2.18–9.96, and 0.04–0.73 µM, respectively. The inorganic nutrient
conditions in this study were within the range reported previously in the YS [25,38]. The
average inorganic nutrient concentrations showed seasonal differences (Kruskal–Wallis
test, p < 0.05), except for NH4 (Kruskal–Wallis test, p > 0.05). The mean concentration
of NH4 showed no significant seasonal differences (0.46 ± 0.17 µM, 0.51 ± 0.29 µM,
0.38 ± 0.12 µM, and 0.42 ± 0.11 µM for winter, spring, summer, and autumn, respectively).
The mean concentrations of inorganic nutrients, except for NH4, were highest in winter
(6.60 ± 1.69 µM, 0.5 ± 0.10 µM, and 7.55 ± 0.91 µM for NO3 + NO2, SiO2, and DIP, respec-
tively), whereas they were significantly lower in summer (1.60 ± 1.87 µM, 0.08 ± 0.03 µM,
and 3.03 ± 0.79 µM for NO3 + NO2, SiO2, and DIP, respectively) than in winter and spring
(Kruskal–Wallis test, p < 0.05). This is because the strong water column stratification during
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summer prevents nutrient transfer from deep to surface water [25,39,40]. The depletion
of surface water nutrients may be due to thermal stratification, as this study also showed
a high summer SI (Kruskal–Wallis test, p < 0.01). In contrast, the water column was
homogeneously mixed, supplying nutrients from the depths to the surface in the winter.

3.2. Total Chlorophyll-a Concentrations and Total Phytoplankton Community

The highest total HPLC chlorophyll-a concentration was detected in spring
(2.76 ± 1.82 µg/L), followed by autumn (0.98 ± 0.40 µg/L), winter (0.55 ± 0.18 µg/L),
and summer (0.29 ± 0.18 µg/L), respectively (Figure 2). Warmer temperatures, increased
sunlight, and weak stratification triggers the spring phytoplankton bloom in the YS, result-
ing in higher chlorophyll-a concentrations in spring compared with winter and summer
(Kruskal–Wallis test; p < 0.05) [25,41], whereas lower chlorophyll concentration was ob-
served in summer compared with spring and autumn (Kruskal–Wallis test; p < 0.05) due to
nutrient restriction caused by strong stratification [25].
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Figure 2. Phytoplankton community concentrations (µg/L) in the YS during the study period in 2019.

The total phytoplankton community results, calculated by the CHEXTAX program, are
presented in Figure 2. During the study period, the major communities of total phytoplank-
ton were diatoms (55.0 ± 10.2%), cryptophytes (16.9 ± 9.3%), cyanobacteria (9.5 ± 12.9%),
and chlorophytes (8.4± 6.1%). Diatoms were predominant in all seasons (one-way ANOVA,
p > 0.05), whereas the relative proportions of other phytoplankton communities changed
seasonally except prasinophytes and chrysophytes (Kruskal–Wallis test; p < 0.05). The
relative proportions of diatoms accounted for more than half of the total phytoplankton
community in spring (65.3 ± 14.6%) and winter (61.9 ± 17.4%); meanwhile, in summer and
autumn, the relative proportions of diatoms accounted for 48.9 ± 26.7%, and 43.9 ± 13.5%,
respectively. The relative proportions of cryptophytes were high in winter (26.1 ± 12.0%),
followed by autumn (20.4 ± 8.05%) and spring (16.8 ± 7.9%), whereas cryptophytes were
rarely observed in summer (Kruskal–Wallis test; p < 0.05). In Bohai bay of the Bohai Sea,
diatom dominates more than 80%, and the contribution of other communities are less than
6% in spring [42]. The relative proportions of cyanobacteria and prymnesiophytes were
high in summer (27.3 ± 26.0% and 12.0 ± 7.6%, respectively) and autumn (10.5 ± 9.4%
and 5.1 ± 3.2%, respectively), whereas they were rarely observed in winter and spring
(Kruskal–Wallis test; p < 0.05). In Daya Bay, which is located in the west of the YS, dinoflag-
ellates were dominant in spring and observed throughout the four seasons [43]. In contrast,
dinoflagellates were hardly observed in this study except in spring (Kruskal–Wallis test;
p < 0.05). The relationships between the total phytoplankton communities and environ-
mental variables are presented in Figure 3. Taken together, axis 1 and axis 2 in the CCA
explained 78.3% of the correlation between the total phytoplankton communities and envi-
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ronmental variables in the YS in 2019. Diatoms were situated adjacent to the center of the
CCA ordinates and close to the arrows including salinity, DIP, and NH4. Cyanobacteria and
Prymnesiophytes were near the SI, N/P ratio, and temperature arrows, while Cryptophytes
and Prasionophytes were closely related to the SiO2 arrow.
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The diatoms formed a dominant community in the YS, but the diatom composition in
this study (55%) was distinctly lower than those reported previously in 1985 (80.3%) and
2000 (67.5%) [21]. According to [44,45], the positive trend of DIN concentration and the
negative trend of DIP and SiO2 concentrations have gradually increased the N/P ratio in
the YS, gradually shifting to a P-limited environment. Although the P-limited environment
was observed only in summer and autumn in this study, the gradually increasing N/P
ratio and limited P might have caused the transition from a diatom-dominant environment
to a small-sized flagellate-dominant environment [10,38,46], as DIP is a more important
limiting factor for the growth of diatoms than other flagellates [47]. Indeed, the proportion
of cryptophytes—a type of flagellate—was higher (16.9%) in this study than in previous
studies in the YS [17,32]. Cryptophytes are known to be adaptable to a variety of envi-
ronmental conditions, from stratified and well-lit environments to cool, well-mixed and
light-limited environments [48]. Consequently, diatoms negatively respond to declining
DIP and P-limitation, whereas cryptophytes are resistant to these conditions [49]. Therefore,
the cryptophyte community could flourish, whereas the diatom community decreased
under the current nutrient environment in the YS. Cyanobacteria are considered to be an
important group in phytoplankton communities during summer in this study. Cyanobac-
teria have previously been reported to dominate at the surface layer in the YS during
summer [24,50]. At the surface, low nutrient concentrations limit the growth of phyto-
plankton [51,52]. However, these conditions are favorable for the growth of small-sized
cyanobacteria, in comparison to other phytoplankton communities [53,54]. In addition,
many cyanobacteria have a competitive advantage under high temperatures [55,56]. There-
fore, cyanobacteria were observed more under the high temperature and low nutrient
conditions in summer, compared to other seasons. Unlike other phytoplankton commu-
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nities, chlorophytes did not show a clear correlation with environmental factors such as
water temperature, salinity, nutrients, and SI during this study (Figure 3). Therefore, the
chlorophytes may have been more affected by other factors, such as competition with
other phytoplankton groups and predation pressure, rather than physical and chemical
environmental factors.

3.3. Size-Fractionated Chlorophyll-a Concentration and Phytoplankton Community Structure

Unlike the Southern Central YS dominated by pico-sized phytoplankton throughout
the four seasons [25], the phytoplankton size structure in study area varied seasonally
(p < 0.05; Kruskal–Wallis test) (see Figure 4). Based on the fluorometric size-fractionated
chlorophyll-a concentrations in this study, pico-sized phytoplankton (0.7–2 µm) mainly
dominated in summer (42.5 ± 14.1%) and autumn (51.0 ± 22.6%). The contribution of
micro-sized phytoplankton (>20 µm) to the total chlorophyll-a was comparatively highest
in spring (47.6 ± 27.1%), whereas the nano-sized phytoplankton (2–20 µm) contribution
was comparatively dominant in winter (46.4 ± 9.9%). The relatively high contribution
of micro-sized phytoplankton in spring compared to other seasons is similar to those of
previous studies [38].
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Previously, Choi [57] found that micro-sized phytoplankton were dominant (approxi-
mately 50%) during the winter and spring seasons. In contrast, the nano-sized phytoplank-
ton were dominant, instead of micro-sized phytoplankton, during winter in this study.
Furthermore, the proportions of nano- and pico-sized phytoplankton during autumn were
distinctly higher in this study (79.3%) than in 1992 (64.4%) [58]. Higher contributions of
small-sized phytoplankton (<2 µm) to the chlorophyll-a concentration and primary produc-
tion have consistently been observed in the YS recently [10]. However, the size-fractionated
phytoplankton proportions vary largely seasonally, spatially, and inter-annually [30]. Fur-
ther research should be carried out to verify the increasing contribution of small-sized
phytoplankton in the YS.

In comparison to the fluorometric results for the relative contributions of size-fractionated
chlorophyll-a concentrations, pigment-based size chlorophyll-a concentrations were obtained
based on DPA, as presented in Figure 4. Micro-sized phytoplankton were dominant during
the study period, especially winter and spring (60.3 ± 16.6% and 73.0 ± 13.8%, respectively).
In summer and autumn, the contributions of micro- and nano-sized phytoplankton were col-
lectively dominant, but the contribution of micro-sized phytoplankton (summer 38.9 ± 28.3%;
autumn 39.0 ± 20.4%) was somewhat higher than that of nano-sized phytoplankton (summer
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32.6 ± 20.5%; autumn 34.6 ± 15.2%). Comparing the two different methods, the relative
contributions of phytoplankton size classes were significantly different in winter and autumn
(t-test, p < 0.05). While micro-sized phytoplankton were the predominant community in the
DPA results in winter, nano-sized phytoplankton were found to be dominant, based on the
fluorometer analysis results. In addition, pico-sized phytoplankton were a predominant com-
munity in a fluorometer results, whereas their composition was lowest in the DPA results in
autumn. These discrepancies may have been caused by the pigment-based size fractionation of
DPA, which could lead to over-estimation of micro-sized phytoplankton and under-estimation
of the contribution of nano-sized phytoplankton, as further discussed below.

The results for the size-fractionated phytoplankton communities calculated by the
CHEXTAX program are presented in Figure 5. The large-sized phytoplankton group
(>20 µm) was dominated by diatoms (89.0 ± 10.6%) during the study period. In particular,
large-sized diatoms accounted for the majority (99.4± 1.0%) in winter, while the proportion
decreased from winter to fall. Among the large-sized phytoplankton group, cyanobacteria
were first detected in summer (14.4 ± 27.5%), but their relative proportion increased in
autumn (20.9 ± 29.7%). In comparison, other phytoplankton communities were rarely
observed in the large-sized phytoplankton group, with contribution rates of less than 1%.
Compared to the large-sized phytoplankton group, various phytoplankton communities
were observed in the small-sized phytoplankton group (<20 µm). Diatoms were also
the dominant phytoplankton community (41.9 ± 9.1%) in the small-sized phytoplankton
group. The relative proportion of small-sized diatoms was highest in winter (54.7 ± 16.0%),
followed by spring (42.1 ± 10.8%), summer (36.2 ± 12.4%), and autumn (34.6 ± 16.7%).
The relative proportion of small-sized cryptophytes was high in winter (28.6 ± 10.8%) and
low in summer (5.8 ± 9.2%). The proportion of small-sized chlorophytes was low in winter
(8.0 ± 5.1%) and increased along the seasons. The small-sized cyanobacteria were first
observed in summer (25.2 ± 18.1%) and decreased to 9.4 ± 7.6% in autumn.
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Figure 5. Relative contributions of the size-fractionated phytoplankton community in the YS during
the study period in 2019: (a) large-sized group; and (b) small-sized group.

In contrast to the assumption for the DPA that diatoms mainly make up the micro-
sized phytoplankton [35,43,59], a significant presence of diatoms (41.9 ± 9.1%) was found
in the small-sized phytoplankton group based on the results from the size-fractionated
pigment analysis in this study. In particular, the over-estimated contribution of micro-sized
phytoplankton was conspicuous in winter, where the small-sized diatoms accounted for
more than half of the total diatom community (72.4 ± 12.1%). In [60], it was reported that
many diatoms belong to the nano-sized phytoplankton group, and a few species even
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overlapped with the pico-sized phytoplankton class. According to [21], the most dominant
diatom species in the YS are Chaetoceros sp., Cylindrocystis sp., Proboscia, and Skeletonema
costatum. In particular, Proboscia and Skeletonema costatum are nano-sized diatoms with
a diameter of less than 20 µm [33]. Therefore, the existence of these nano-sized diatoms
should be considered when conducting DPA, as DPA requires a careful interpretation of
the size-fractionated phytoplankton biomass.

3.4. Seasonal Variation in the Size Structure of Diatoms

During the study period, the concentrations of large-sized diatoms (0.82 ± 0.65 µg/L)
and small-sized diatoms (0.54 ± 0.35 µg/L) were significantly higher in spring than other
seasons (t-test, p < 0.05). In contrast, similar concentrations of large- and small-sized
diatoms were observed in other seasons (Figure 6).
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Figure 6. The concentrations of size-fractionated diatoms: (a) large-sized diatoms; and (b) small-sized
diatoms. An asterisk (*) indicates an outlier.

In the YS, diatom blooming is observed during spring [32,41,61]. The proportion of
small-sized diatoms in the total diatoms during the study period varied between 14.8% and
97.9% (Figure 7). The seasonally averaged proportion of small-sized diatoms was highest
in winter (72.4 ± 12.1%), followed by autumn (70.9 ± 23.0%), summer (61.6 ± 27.4%), and
spring (44.4 ± 23.7%). Overall, small-sized diatoms were dominant in the YS (62.3 ± 12.9%)
during our study period.
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Figure 7. Relative contributions of size-fractionated diatoms during the study period in 2019:
(a) winter; (b) spring; (c) summer; and (d) autumn.
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In [62], it was reported that environmental changes (e.g., global warming and human
impacts) decrease the cell size structure of phytoplankton, especially centric diatoms. In
agreement with this, [63,64] reported that the size of the diatoms decreases as the water
temperature increases. The annual SST in the YS has gradually increased over the past
few decades (from 10.5 ◦C in 1976 to 13.5 ◦C in 2000) [44], and an increasing trend of
0.0135 ◦C/yr was observed from 1982 to 2017 [65]. Therefore, the increasing SST could af-
fect the transition in the phytoplankton size structure. Furthermore, subsequent increasing
stratification and nutrient limitations could affect cell size reductions in phytoplankton com-
munities [66]. Therefore, if the water temperature continues to increase and stratification
is strengthened in the YS, the proportion of small-sized diatoms may gradually increase.
In small-sized phytoplankton-dominated ecosystems, the total primary production and
energy transfer efficiency could be altered [38,67]. A further monitoring programs for
phytoplankton communities, especially considering small-sized phytoplankton groups,
should be conducted in the YS with respect to ongoing environmental changes.

4. Summary and Conclusions

This study is the first to report seasonal variations in the size-fractionated phyto-
plankton community structure in the YS. Overall, diatoms were dominant (55%) in the YS,
with the community size being strongly associated with salinity and the concentrations
of DIP and NH4, based on CCA analysis. Compared to previous studies, the contribu-
tion of diatoms was lower and the contribution of cryptophytes was higher in this study,
which may be due to the recent shift in inorganic nutrient conditions in the YS [44,45].
The size-fractionated phytoplankton community results demonstrated that the large-sized
phytoplankton group was largely dominated by diatoms (89.0 ± 10.6%), whereas the
small-sized phytoplankton group was dominated by small-sized diatoms (41.9 ± 9.1%)
and cryptophytes (19.2 ± 9.8%). Until recently, the importance of small-sized diatoms has
been overlooked, as it is difficult to detect and identify them. However, this study showed
that small-sized diatoms contributed greatly to the total diatoms in the YS, accounting
for 62.3%. Environmental changes due to continuous climate warming are expected to
decrease the cell size of phytoplankton—especially centric diatoms—which could largely
affect the quantity and quality of food sources in marine ecosystems. This study provides
an important baseline for understanding the seasonal variations in different size groups
of the phytoplankton community, especially different sizes of diatoms. However, this
study was conducted only at the surface layer, and specific identification of diatom species
was lacking. Therefore, further detailed studies should be conducted in order to better
understand the potential ecological roles of small-sized diatoms.
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