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Abstract: Diverse forms of offshore oil and gas structures are utilized for a wide range of purposes and
in varying water depths. They are designed for unique environments and water depths around the
world. The applications of these offshore structures require different activities for proper equipment
selection, design of platform types, and drilling/production methods. This paper will provide
a general overview of these operations as well as the platform classifications. In this paper, a
comprehensive review is conducted on different offshore petroleum structures. This study examines
the fundamentals of all types of offshore structures (fixed and floating), as well as the applications of
these concepts for oil exploration and production. The study also presents various design parameters
for state-of-the-art offshore platforms and achievements made in the industry. Finally, suitable types
of offshore platforms for various water depths are offered for long-term operations. An extension of
this study (Part II) covers sustainable design approaches and project management on these structures;
this review helps designers in understanding existing offshore structures, and their uniqueness.
Hence, the review also serves as a reference data source for designing new offshore platforms and
related structures.

Keywords: offshore structure; offshore platform; fixed platform; floating platform; oil and gas
platform; production platform; drilling platform rig; coastal structure; marine structure; offshore
facilities and subsea systems; review; offshore

1. Introduction

With the increase in the need for more energy sources, fossil fuel has recently had huge
competition as a non-renewable energy source with other renewable energy sources. How-
ever, some of these newer platforms have extended technologies that stem from the existing
offshore platforms used in oil and gas exploration. Currently, there are advances made in
ocean engineering which include a variety of innovative offshore structure designs, ranging
from fixed platforms to floating platforms [1–5]. Some of these structures include the deep-
water semisubmersible platforms, jack-up rigs, floating offshore wind turbines (FOWTs),
FPS (floating production systems) units, floating production storage and offloading (FPSO)
units, FSO (floating storage and offloading) units, FSU (floating storage units), FPU (floating
production units), FDPSO (floating drilling production storage and offloading), MODU
(mobile offshore production unit) and FLNG (floating liquid natural gas vessel) [6–10].
However, there are other applications for offshore platforms, such as dynamic positioning,
exploratory activities, drilling/production, navigation, (un)loading ships, fluid transport,
and bridge support [11–16]. Offshore petroleum structures are utilized for a wide range of
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purposes and in a wide range of sea depths and environments around the world, hence they
need supporting attachments such as drilling marine risers [17–23], composite production
risers [24–30], marine hoses [31–40] and mooring lines [41–49]. Figure 1 shows different
fixed and floating offshore platforms operating in varying water depths (see details in
the caption).

Figure 1. Different types of deep-water offshore production facilities, showing (1,2) conventional fixed
platforms{150–412 m}; (3) compliant tower {457–914 m}; (4,5) tension leg platform (TLP) {457–2134 m};
(5) mini tension leg platform (TLP); (6) Truss SPAR {610–3048 m}; (7,8) semisubmersibles {457–1920 m};
(9) floating production, storage and offloading (FPSO) unit {1345–1500 m}; and (10) jacket platform
{150–412 m}; and (11) subsea completion and tieback to a host facility, and (12) subsea manifold.
(Adapted from public domain source, with permission obtained to re-use image; Courtesy: National
Oceanic and Atmospheric Administration, NOAA).

Offshore platforms could be used as artificial reefs for many years, as they have also
been used in a variety of aquatic environments. As a result, their design and upkeep are
extremely difficult. Hence, it is pertinent that the design and maintenance of offshore
structures are well considered, to prevent early decommissioning, high risks of corrosion,
oil spillage, and other irreversible environmental damages. The applications of these
offshore structures require different activities for proper equipment selection [50–57], de-
sign of platform types [58–64], engineering management of well bores [65–73] and other
drilling/production methods [74–80]. Offshore oil production is one of the most visible of
these applications, and it provides a significant task to the product designer or offshore
engineer [81–83]. The design considerations include environmental loadings [84–88], hy-
drodynamics [89–96], hydroelasticity [97], corrosion [98], failure analysis [99], ocean wave
mechanics [100–108], fluid content loadings [109–115], fatigue limits [116–120], reliabil-
ity [121–128], etc. Therefore, the designer must ensure that there is safety, stability, high
fatigue resistance with a long service life. The design with that is safe, but cost must be
considered; hence the designer should make it economical for the client. Generally, these
offshore assets must operate safely for at least twenty-five (25) years (depending on the
purpose of the offshore structure), because they are exposed to extremely severe marine
environments and varying sea depths. Hence the designs are conducted by using peak
loads provided during the platform design life by the hurricane wind and waves. Environ-
mental conditions are also important in designing different offshore structures [129–135].
Also, there are more developments made in oceanography and environmental sciences that
reflect in different designs of offshore structures [136–142]. The fatigue loads caused by
waves over the platform’s lifetime and platform motion are all critical design issues consid-
ered in standards elaboration such as the American Petroleum Institute (API) [136–141],
and Det Norske Veritas (DNV) [142–152]. Over time, these developed API standards have
been revised to include hurricane conditions in the Gulf of Mexico (GoM), adaptable in
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other seas [153–157]. Strong currents can sometimes hit the platforms, putting strain on
the entire system’s integrity. Another challenge that oil corporations face is the project
scheduling involving the length of time for the design and construction of these offshore
assets. Furthermore, the size of these offshore structures is a consideration in designing
their stability and hydrodynamics. Figure 2 shows the number of global deep water drilling
activities across five (5) continents. Although it reflects a decrease in oil drilling/exploration
activities due to the decline in oil price globally in 2016, it is evident that the highest drilling
activities were recorded in South America in the time range from 2010 to 2021. Due to the
recent COVID19 pandemic in 2020/2021, the exploration also had a decrease in oil well
exploration; however, it was seen to pick up in 2021/2022.

Figure 2. Global deep water exploration wells drilled by region for 2010–2021 with forecast for
2016**–2021** using data from QuestOffshore (Image Courtesy: Author 1—C.V.A.).

Another consideration factored in the design is the material density. Most offshore
platforms are fabricated in shipyards using massive steel, or in-situ using concrete, as seen
in gravity-based structures. These offshore structures- both fixed and floating structures are
mostly used for energy generation or oil production. Offshore constructions are meant to
be installed thousands of kilometers from shorelines in the open sea, lakes, gulfs, and other
bodies of water. Steel, reinforced concrete, or a combination of the two, may be used to
construct these buildings. Most oil and gas platforms are produced from a variety of steel
grades. These range from mild steel to high-strength steel, despite some earlier structures
being made of reinforced concrete called the Concrete Gravity Based Structures (CGBS).
Steel platforms come in different sizes and shapes, based on their intended function and,
most importantly, the water depth in which they will operate [29–34]. However, proper
failure analysis and reliability studies have to be carried out on these offshore structures.
Offshore platforms are extremely hefty and among the world’s tallest man-made structures.
Floating structures have been classified, based on water depths, such as shallow water
(91–120 m and lesser than 91 m), mid water (121–305 m), deep water (306–1219.50 m)
and ultra-deep water (1220.50–2285.69 m and greater than 2285.69 m). These offshore
structures are available at different locations, from Offshore West Africa (OWA) to the
Baltic Sea, the Persian Sea, the North Sea (NS) and the Gulf of Mexico (GoM). These seas
have different oil companies and energy operators involved in offshore operations across
different geographical locations. Presently, different oil companies have high impact oil
wells as seen in some operators of various offshore platforms. These oil operators range
from Exxon, Total, Petronas, CNOOC, Equinor, Qatar Energy, BP, Petrobras, Pemex, Hess,
Aker BP, Lukoil and Lundin, as seen in the high impact drilling represented in Figure 3.
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Figure 3. High impact exploration drilling activities in 2021 by different oil companies (Courtesy:
Westwood Global Energy Group).

Part I of the review is conducted on different types of fixed and floating offshore
structures. Details of the sustainable design approaches and project management for these
offshore structures are given in Part II [5]. In this review, Section 2 provides an overview of
sustainable drilling/production operations, the platform classifications and applications.
Section 3 presents different types of offshore structures. Section 4 discusses various appli-
cations, advantages and disadvantages of various offshore structures. Section 5 presents
the conclusions and recommendations for future research. This review helps designers in
understanding existing structures and their uniqueness and helps to serve as a reference
data source for designing new offshore platforms and other related structures.

2. Overview of Platform Installations

The historical development of different offshore platforms differ over varying time-
lines, as seen in designs, inventions and patents. This section presents the historical
backgrounds of certain offshore structures, depending on the classification of the structure.
In addition, these platform installations have evolved with different standards. In addition,
various standard bodies have also evolved in the general design of offshore structures such
as the following: API [158–170], DNV [171–181], Det Norske Veritas and Germanischer
Lloyd (DNVGL) [182–186] the American Bureau of Shipping (ABS) [187–198] and Interna-
tional Organization for Standardization (ISO) [199–211]. Historically, most of the earlier
offshore constructions had standards as bulletins, and they were developed over time.
These standards ensure that the design of the offshore structure, including its attachments
(such as the marine risers and the mooring system), as well as different dynamic effects
(such as vortex shedding) are specified [212–219]. Today, there are more standards that
are used for the design and analysis of offshore structures, oil and gas exploration, and
production and extraction activities [220–231]. Figures A1–A6 of Appendix A show the
variety of offshore platforms deployed in deep waters. Table 1 shows an inventory of
deep-water offshore platforms in the Gulf of Mexico (GoM).

Statistically, the number of offshore platforms is not as high as that of land buildings
such as high-rise buildings or sky-scrapers. However, some of these offshore platforms are
taller than the tallest structures (such as high-rise buildings), although some of their lengths
are underneath the sea, as seen in Appendix A. From the image illustrated in Figure A1
of Appendix A, the tallest Truss SPARs (Perdido SPAR in GoM and Aasta Hansteen in
Norway) has been compared along the tallest structures in the world such as the Eiffel
Tower in Paris, France, the Burj Khalifa in Dubai, United Arab Emirates (U.A.E.) and the
One Twin Towers in New York, United States of America (U.S.A.), NICOM House in Lagos,
Nigeria, and ONE Shell Plaza in Houston, U.S.A. These structures were found to be tall
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but not quite as much as the depth of these offshore structures, as most of the structural
length of the offshore structures lie under water. However, the illustration in Appendix A
also showed that, compared to other offshore structures such as semisubmersibles and the
Tension Leg Platforms, the Truss SPARs are very tall.

Table 1. Inventory of deep water platforms in GoM; (Courtesy: BOEM, data retrieved in 2016).

Platform Sidetrack Subsea Well Sidetrack Dry Trees Well Amount Subsea Field

FPSO 1 (2) 2 (0) 1 1 (1)
Mobile offshore production units (MOPU) 6 (13) – – 1 – (2)
Semisubmersible 32 (28) 22 (16) 9 6 (18)
Mini TLP 17 (17) 11 (16) 5 1 (6)
Tension Leg Platform (TLP) 51 (60) 123 (150) 10 8 (14)
Single Point Anchor Reservoir (SPAR) 34 (43) 133 (129) 16 13 (18)
Fixed Platform (FP) 47 (49) 630 (449) 50 49 (30)
Compliant towers (CT) 3 (1) 76 (46) 3 4 (2)
AGGREGATE 191 (213) 997 (806) 95 82 (91)

By function characterization, the fixed structures are fixed while the floating structures
float [232–241]. Generally, a platform can be physically anchored to the sea floor in shallow
water in some cases which is referred to as a fixed platform setup. The ‘legs,’ which extend
down from the platform and are secured to the bottom with piles, are made of concrete or
steel. The weight of the legs and seafloor platform on some concrete constructions is so vast
that they do not need to be physically anchored to the seafloor and can just rest on their
mass. These fixed, permanent platforms can be designed in a variety of ways. The main
advantages of these platforms are their stability and minimal vulnerability to movement
due to wind and waves because they are anchored to the sea floor [242–250]. However,
these platforms cannot be used in ultra-deep water since the cost of construction columns
(or legs) that are very lengthy is not economically viable. For ultra-deep waters, specific
offshore platforms are designed and deployed in such cases. Although offshore platforms
could be fixed or floating structures used, the size of an offshore platform can differ as well
as the type of the platform and the water depth where it will be operating [251–261]. Various
types of offshore floating platforms operating in varying water depths are illustrated in
Figure A2 of Appendix A and Section 3.

Based on platform classification, the selection of offshore platforms for any specific
site is determined by the environmental and operational water depth where the oil and
gas deposits are discovered. Hence, the following alternatives for the offshore fields were
presented by Sadeghi [83], based on the environment and seawater depths:

(a) Jack-up rig or Tender rig for extraction of oil/gas, drilling and templates (jackets) in
water depths up to 150 m;

(b) A semi-submersible drilling rig with a template (jacket) platform for extraction of
oil/gas, at sea depths of 150 to 300 m;

(c) A semi-submersible drilling rig with guyed-tower platforms for oil/gas extraction at
depths of 300 to 400 m;

(d) Semi-submersible drilling rig with tension leg platform or semi-submersible oil/gas
extraction platform for water depths of 400 m to 1800 m;

(e) Drillship rig with tension leg, subsea system, or spar platforms for oil/gas extraction
in depths greater than 1800 m;

(f) Floating production storage and offloading (FPSO) are found operating in water
depths ranging from 200 m to more than 3000 m [260] and depending on the envi-
ronmental condition, they are maintained in position using either a spread or turret
mooring system.
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2.1. Floating Production Systems

Floating production systems are similar to semi-submersible drilling rigs, but they
also include petroleum production equipment in addition to drilling equipment. Ships can
potentially be utilized as floating manufacturing platforms. Large, heavy anchors or the
dynamic positioning mechanism utilized by drillships can be used to keep the platforms in
place. With a floating production system, the wellhead is attached to the seafloor rather
than the platform once the drilling is completed. The extracted petroleum is delivered by
risers from the wellhead to the semi-submersible platform’s production facilities. These
production devices can work in up to 6000 feet of water.

2.2. Fixed Offshore Platform Design

Fixed Offshore Platforms such as the template type platforms made of steel are the
most often used offshore platforms in the U.S.A.’s Gulf of Mexico, California shorelines,
Niger Delta regions of Nigeria, and the Persian Gulf for oil/gas exploration and produc-
tion [14,83]. These offshore constructions must be designed and analyzed in compliance
with the American Petroleum Institute (API)’s recommendations. There are four different
types of fixed offshore platforms, which are conventional fixed platforms, compliant towers,
junction platforms and bridged platforms (or complexes, as seen in Figure 4).

Figure 4. Typical platforms showing (a) conventional jacket platforms and (b) bridged fixed jacket
platform on Zuluf oil field in Arabian Gulf, offshore northeast Saudi Arabian coast, with the water
depth of about 40 m (Image (b) Courtesy: Saudi Aramco).

2.3. Subsea System

Wells on the sea floor, rather than at the surface, are used in subsea production systems.
Petroleum is extracted at the seafloor, similar to a floating production system, and then
‘tied-back’ to an existing production platform. The well can be drilled with a mobile rig, and
instead of constructing a production platform for that well, the recovered oil and natural
gas can be delivered to a nearby production platform through a riser or even an undersea
pipeline. This enables a single strategically located production platform to service a large
number of wells across a vast area. Subsea systems can be installed in both shallow waters
and deep waters. They are normally utilized at depths of 2100 m (6890 feet) or more, and
they can only extract and transfer, not drill. Subsea systems are typically those systems
whereby their wells have the wellhead mounted upon the floor of the seabed after drilling
operations from the wells, by any of the drilling platforms deployed. Recent advances
made in sea systems can be seen in the realization of Statoil’s Subsea Factory [232–234], as
seen in Figure 5. The targeted ambition for such subsea systems is summarized in Table 2.
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Figure 5. Subsea Production Systems in the Statoil Subsea FactoryTM (Courtesy: Statoil).

Table 2. Targeted ambitions for subsea factory.

Key Parameters Heavy Oil Fields Oil Fields Gas/Condensate Fields

Colder (heavy/complex fluids) Cold transport Cold flow Sour/Acid gas issues

Colder (arctic environment) Harsh environment Under ice Under ice

Deep water (deeper environment) 2000 m 3000 m 3000 m

Longer power 50 MW 20 MW 100 MW

Longer transport 50 km 200 km 250 km

3. Types of Offshore Platforms

Different types of offshore oil rigs and platforms are utilized depending on the water
depth and location of the offshore oil/gas field. To drill wells and produce oil and gas, rigs
are employed, and platforms are set up in the field. To achieve fossil fuels from oil products,
drilling and production activities must be carried out using oil rigs and platforms. Drilling
can be used for obtaining natural gas and oil offshore, offshore. Most of the oil deposits
are far from the closest mainland, which involves a series of obstacles not encountered
when drilling onshore. When drilling at sea (i.e., offshore), the sea floor could be many
meters below sea level. As a result, while onshore drilling uses the land as a platform,
drilling at sea necessitates the construction of an artificial drilling platform. Since there are
different types of offshore structures as depicted in Figures 1 and 6, a comparative analysis
of offshore structures is necessary.
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Figure 6. Types of Drilling Rigs.

3.1. Moveable Offshore Drilling Platforms

Offshore drilling rigs/platforms are divided into two categories. The first is a mobile
offshore drilling rig that can be moved from one location to another, while the second is a
stationary offshore drilling rig. Historically, the first submersible mobile drilling equipment
to drill offshore in 1954 was called Mr. Charlie [261]. Over the years, newer developments
have been made on moveable platforms. Offshore drilling platforms (and drilling rigs) are
those platforms that can be moved from one drilling location to another or even higher
application in the industry, as seen in recent leases. A mobile offshore drilling unit (MODU)
or unit is a ship that can conduct drilling operations to explore for petrochemical minerals
or exploit resources such as liquid or gaseous hydrocarbons, sulfur or salt that are present
beneath the seabed. MODU can be jack-up, semi-submersible, barge-type or ship-shaped.
For offshore oil and gas drilling, rigid platforms are necessary for drilling operations.
They can be moved and retained in place by their own azimuth thrusters with dynamic
positioning or hauled into place by a tugboat and moored. A recognized design and
operational standard for semi-submersible mobile offshore drilling units (MODU) is the
IMO’s MODU Code.

3.2. Drilling Barges

Drilling barges are commonly used for shallow-water inland drilling. Drilling barges
are massive floating platforms that require tugs to transport from one location to another.
Canals, lakes, rivers, marshes, and other bodies of water are frequent areas for this to occur.
Drilling barges are only suitable for still, shallow waterways and cannot survive the water
movement found in vast open sea conditions. Figure 7 shows some drilling barges used in
earlier oil explorations.
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Figure 7. Drilling barge.

3.3. Jackup Drilling Platforms/Rigs

With one difference, jackup rigs are identical to drilling barges. After a jack-up rig is
towed to the drilling location, three or four ‘legs’ are lowered until they land on the seafloor.
Unlike a floating barge, the working platform can be raised above the water’s surface.
Jackup rigs, on the other hand, are only suitable for shallower seas due to the impossibility
of extending these legs too far. This rig can only operate in waters up to 500 feet deep.
These rigs are usually safer to operate than drilling barges since their working platform
is elevated above the sea level [262]. In addition to exploration operations, jack-ups are
utilized for drilling operations and wind farms service. Figure 8 shows a Jack-up platform
in operation and a labelled projection.

Figure 8. Typical Jack-up Structures showing (a) a jack-up in operation and (b) a labelled projection
of the jack-up platform.
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3.4. Offshore Wind Turbine Platforms

The global concern about the emission of greenhouse gases has provided a line of
research into alternative renewable and clean energy. In this regard, wind power is one of
the fastest-growing alternative technologies. However, this technology could help power
a clean energy transition only if it can overcome hurdles of cost, design and opposition
from fishing. More so, the application of offshore structures in renewable energy has taken
more interests on breakwater devices, water energy converters, and wind turbines (such
as FOWTs). The scale of wind turbines are larger and more adaptable forms of offshore
structures are seen today. Offshore wind turbines may either be fixed-bottom or floating
types [263]. The fixed-bottom platform is quite common in off the coast of Denmark,
consisting of 91 wind turbines [264]. By design, offshore wind turbines, which are anchored
to the seabed with monopile or jacket foundations, can only operate in waters less than
50 m deep. This eliminates sites with the greatest winds and, in many cases, easy access
to large markets. However, there are exceptions as the application of Fixed-bottom wind
turbines is more economical as it operates in shallow water depths of 50 or 60 m [265].
On the other hand, the floating wind turbines are anchored to the seabed using mooring
lines, thus, are suitable for deeper water locations and areas with the soft seabed. Floating
wind turbines have been used in water depths of up to 700 m [264,265]. Different concepts
have been identified in on FOWTs projects with different platform types. The projects
include DeepCWind, HyWind, WindFloat, NRMI, DTU and MARINTEK wind turbines.
The ability to install FOWTs in deeper waters has an open huge amount of the oceans
for the generation of renewable wind power. Table 3 shows some existing wind turbines
with details.

Table 3. List of some offshore wind farms by capacity.

Name Installation Year Diameter Tower Height Capacity Status

Hornsea 2 2002 167 m 190 m 1396 MW Active

Burbo Bank Extension 2017 164 m 113 m 800 MW Active

Westermost Rough 2014 154 m 102 m 600 MW Active

Anholt 2012 120 m 82 m 360 MW Active

Horns Rev 2 2009 93 m 68 m 230 MW Active

Nysted 2003 82.4 m 69 m 230 MW Active

Middelgrund 2000 76 m 64 m 200 MW Active

Vindeby 1991 35 m 35 m 4.95 MW Inactive

Although, the floating wind energy is still in its early stage of utilization, close to 80%
of the wind power potential is found in deeper water. However, only about 80 megawatts
of a total of about 32 GW (0.25%) of the installed offshore wind capacity is from floating
wind turbines [265]. This narrative may change in the near future with the US government
under USA’s President Joe Biden pledging to build more than 30 GW of offshore wind
turbines by the year 2030, worth more than $100 m [265]. Hence, this might bring the
assertions of the National Renewable Energy Laboratory (NREL) to reality, which suggests
that the floating turbine projects could achieve cost parity with the fixed turbines by the
year 2030.

By classification, there are four main types of floating platforms, namely the spar-buoy,
the tension leg platform, the semi-submersible and the Pontoon-type (Barge-type) floating
wind turbines. However, there are other types and design concepts because these are the
most common platform already installed and adapted for various planned projects, such
as the Semi-submersible platforms which are expected to be used in about 50% to 75% of
projects. Figure 9 shows four (4) types of offshore wind turbines.
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Figure 9. Different types of offshore wind turbines, showing (a) the spar-buoy, (b) the tension leg
platform, (c) the semi-submersible and (d) the Pontoon-type (Barge-type) floating wind turbines
(Original Illustration by Josh Bauer of NREL, Courtesy: NREL and DNV; Image adapted with
permission from NREL and DNV, by Author 1—C.V.A.).

3.5. Semisubmersible Platform

Semisubmersible platforms are offshore oil rigs with floating drill units that incor-
porates pontoons and columns that, if flooded, will sink to a predetermined depth. The
most common type of offshore drilling rig is a semi-submersible rig, which combines the
advantages of submersible rigs with the ability to drill in deep water. Historically, the
first semi-submersible was BlueWater Rig 1 in 1961 [64]. Semisubmersible rigs are similar
to submersible rigs in that the lower hull ‘inflates’ and ‘deflates.’ Despite being partly
underwater, the rig floats over the drill site. The rig is stabilized while drilling by the lower
hull, which is filled with water. Semi-submersible rigs are held in place by massive anchors
weighing up to 10 tons each. The platform is sturdy and safe to use in turbulent offshore
waters thanks to these anchors and the rig’s submerged component.

Semisubmersible drilling rigs are also floating production systems. It is made up of
drilling and petroleum production equipment that is simultaneously positioned on the
system. This mechanism is properly grounded at the seabed’s bottom. In small oil storage
facilities, this type of technique is more effective. Based on the system working described,
it can be utilized from 1500 to 6000 feet. In general, these systems are less stable when
subjected to high wave stress. Submersible rigs, such as jackup rigs, are ideal for shallow
water and come into contact with the ocean or lake floor. Platforms with two hulls stacked
on top of one another make up these rigs. The living accommodations for the crew, as
well as the actual drilling platform, are located in the upper hull. The lower hull functions
similarly to a submarine’s outer hull: when the platform is moved from one location to
another, the lower hull is filled with air, making the entire rig buoyant. The air is released
out of the lower hull when the rig is positioned over the drill location, and the rig submerges
to the sea or lake floor. This style of rig has the benefit of being mobile in the water, but it
can only be used in shallow water.

By classification, there are three types of semisubmersibles: ship-shaped semisub-
mersibles, column-stabilized semisubmersibles and bottle-type semisubmersibles. These
three types of semisubmersibles are classified by the method of rig submergence in water.



J. Mar. Sci. Eng. 2022, 10, 1074 12 of 52

While the ship shaped semisubmersibles can be designed as ships, as the name implies,
they are also one of the most often used hull systems for the design and construction of
offshore deep water drilling and production platforms, followed by the column stabilized
semisubmersible platform [56,58,219,252,253]. The bottle-type semisubmersible platform,
on the other hand, is made up of bottle-shaped hulls that are positioned beneath the drilling
deck and can be submerged by filling them with water. Bottle-type semisubmersibles, the
first manifestation of this type of drilling rig, were designed as submersible rigs. The bottles
below the rig were totally submerged due to this design consideration for the submersible,
which rests on the ocean floor. Furthermore, the rig of the bottle-type semisubmersible pro-
vided remarkable drilling stability. It also provides stability for rolling, as well as reducing
pitching caused by waves and wind. This type of semisubmersible needs to be studied be-
cause of the various environmental conditions. Some drilling sites are always difficult, with
turbulent waves and occasional weather concerns such as hurricanes, storms, cyclones, high
tides, and strong winds. As a result, it is necessary to dig into deeper and more turbulent
seas. Semi-submersibles have recently opened up a new path for exploration and develop-
ment operations. However, as time went on, naval architects understood that if the bottles
were only partially submerged, the rig would keep its stability when drilling in deeper
seas. The semisubmersibles are moored using mooring lines, and the anchors are the only
connection the rig has with the seafloor. These bottle-type rigs were eventually designed to
only be used as semisubmersibles. Bottle-type semisubmersibles’ configuration and design
have a different impact on their hydrodynamic behavior in rough weather situations, and
hence on their use and functionality in ocean engineering. The semisubmersibles can have
other classifications based on evolution such as sixth generation semisubmersibles, and by
design, such as the Dry-Tree Semisubmersible (DTS). Since the construction of drilling rigs
have traditionally taken place during economic booms, different “batches” of drilling rigs
have been constructed. Depending on the year of construction and water depth capability,
offshore drilling rigs have been roughly categorized into nominal “generations”. Table 4
gives different generations for classifying semisubmersibles.

Table 4. Classification of semisubmersibles by generations.

Generation Timelines
Water Depth

Meters (m) Feet (ft)

First Early 1960s 200 m about 600 ft

Second 1969–1974 300 m about 1000 ft

Third Early 1980s 500 m about 1500 ft

Fourth 1990s 1000 m about 3000 ft

Fifth 1998–2004 2500 m about 7500 ft

Sixth 2005–2012 3000 m about 10,000 ft

Seventh 2013–2022 >3000 m over 10,000 ft

Generally, semisubmersibles are multi-legged offshore floating structures consisting
of a large deck, with several legs interconnected at the bottom underwater with horizontal
buoyant members referred to as pontoons. The semisubmersibles are one of the preferred
floating offshore platforms alternatives due to their advantages, including, stability and
motion. However, their natural frequencies vary inversely with the draft and length, the
appropriate selection of the geometric shape constitutes an essential criterion in the design
of semisubmersibles [266]. Semi-Submersible may be stationed using dynamic positioning
systems or anchored using mooring systems. For example, in 2002, a semi moored was
deployed using spread mooring lines at a water depth 1875 m in offshore Malaysia, while
another installation using a dynamic positioning system in 2003 was deployed in Brazil
operating at a water depth of 2890 m. In the same year, a semi operating in 2730 m water
depth was also positioned in the Gulf of Mexico (GoM) [267]. However, more recent



J. Mar. Sci. Eng. 2022, 10, 1074 13 of 52

developments have been made. Table 5 presents the list of some semisubmersible platforms
used in recent developments. The most recent is the Appomattox semisubmersible platform
operated by Shell in GoM, which was installed in 2019, as shown in Figure 10a. Figure 10b
illustrates the parts of a semisubmersible.

Table 5. List of some semisubmersible platforms for deep water drilling and production.

Platform Water Depth (m) Operator Installation Year Location

Appomattox 2195 m Shell 2019 GoM, USA

Thunder Horse PDQ 1841 m BP & ExxonMobil 2010 GoM, USA

Na Kika 1829 m Shell & BP 2003 GoM, USA

Atlantis PQ 2134 m BP & BHP 2007 GoM, USA

Argos /Mad Dog Phase 2 1311 m BP 2022 GoM, USA

Vito 1189 m Shell 2022 GoM, USA

Delta House 1370 m LLOG 2015 GoM, USA

Figure 10. Semisubmersibles showing (a) Appomattox Semi-Submersible oil platform in GoM
installed in 2019 (Courtesy: Shell), and (b) an illustration of part of a semisubmersible.

3.6. Dynamic Positioned Drillships

Drillships are exactly what they sound like: ships that are used to conduct drilling
operations. These boats are designed specifically to transport drilling platforms to deep-sea
areas. A typical drillship will feature a drilling platform and derrick in the middle of its
deck, in addition to all of the other equipment found on a huge ocean ship. Drillships also
have a hole called a “moonpool” that runs the length of the ship and down through the hull,
allowing the drill string to extend through the boat and into the water. This offshore oil rig
is capable of drilling in extremely deep water. ‘Dynamic positioning’ systems are used by
drillships. Drillships have electric motors mounted on the underside of the hull that can
move the ship in any direction. These motors are incorporated into the ship’s computer
system, which employs satellite positioning technology and sensors on the drilling template
to guarantee that the ship is always directly over the drill site. Dynamic positioning can
also be used to keep semi-submersible rigs in place. Drilling rigs that are Semi-submersible
drilling rigs can drill in much deeper water than the rigs mentioned earlier. Deeper depths
of up to 6000 feet (1800 m) may now be reached safely and quickly thanks to technological
advancements. Figure 11 shows a drillship semisubmersible by Transocean.
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Figure 11. DrillShip semisubmersible (Courtesy: Transocean).

3.7. SPAR Platforms

Spar platforms are among the most often used offshore platforms. The acronym
SPAR stands for Single Point Anchor Reservoir. The SPAR platform is an offshore floating
platform with a relatively large draft to diameter ratio (aspect ratio). Its deep draft made
the natural periods outside the wave ranges thereby attributing to its wide acceptance for
different operational scenarios, especially in deeper waters.

The Spar platform is the world’s largest oil extraction platform which can be employed
at depths up to 10,000 feet. This platform is mainly comprised of a massive cylinder support
system and a standard fixed rig platform. This large cylinder does not stretch all the way
to the seabed. It is held together by large steel cables that are attached to the seabed. The
extraction devices are mounted above this cylinder and will perform their duties. A big
cylinder supports a standard fixed rig platform on these massive platforms. The cylinder,
on the other hand, does not reach all the way to the seafloor and is instead held in place
by several cables and wires. The big cylinder helps to keep the platform afloat while also
allowing for mobility to absorb the energy of any impending hurricanes.

Currently, the Perdido platform, operated by Shell, is the tallest SPAR, and is compara-
tively one of the tallest structures in the world at 267 m, as depicted in Figure 12. However,
the Perdido SPAR which operates in a water depth of 2450 m installed in 2010 has been
overtaken by Stone FPSO operating in a water depth of 2925 m installed in 2016, and both
are operating in the Gulf of Mexico (GoM).

Figure 12. Perdido deep water SPAR platform in the Gulf of Mexico (GoM), (Courtesy: Statoil).

In September of 1996, the first SPAR platform was placed in the Gulf of Mexico (GoM)
was commissioned. The platform’s cylinder was 770 feet long and 70 feet in diameter, and
it functioned at a sea depth of 1930 feet (see details in Table 6). Unlike the semi-submersible,
the spar platform consists of a single large diameter cylinder supporting a deck. The hull is
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normally maintained in position using a taut mooring system consisting of lines ranging
from 6–20 [267]. Based on the design, spar platforms are available in three configurations,
namely: Truss spar, cylindrical, and cell spar, as illustrated in Figure 13. Table 6 gives a list
of some SPARs, while Figure A3 of Appendix A shows a list of different SPAR platforms
that have evolved over the years.

Table 6. List of some SPAR platforms constructed.

Platform Water Depth (m) Type Length (ft) Diameter (ft) Operator Installation Year Location

Neptune SPAR 1935 ft Classic 705 ft 72 ft Noble Energy 1996 GoM, USA

Medusa SPAR 2223 ft Truss 586 ft 94 ft Murphy E&P 2003 GoM, USA

Front Runner SPAR 3350 ft (1021 m) Truss 587 ft 94 ft Murphy E&P 2004 GoM, USA

Mad dog SPAR 4500 ft (1311 m) Truss 555 ft 128 ft BP 2005 GoM, USA

Perdido SPAR 7817 ft (2450 m) Truss 555 ft 118 ft Shell 2010 GoM, USA

Genesis SPAR 2590 ft Classic 705 ft 122 ft Chevron USA 1998 GoM, USA

Hoover Diana
DDCV SPAR 4825 ft Classic 705 ft 122 ft Exxon Mobil 2000 GoM, USA

Boomvang SPAR 3450 ft Truss 543 ft 90 ft Anadarko 2002 GoM, USA

Nansen SPAR 3680 ft Truss 543 ft 90 ft Anadarko 2001 GoM, USA

Horn Mountain 5400 ft Truss 555 ft 106 ft Anadarko 2002 GoM, USA

Gunnison 3122 ft Truss 549 ft 3122 ft Anadarko 2003 GoM, USA

Holstein 4344 ft Truss 746 ft 149.28 ft Anadarko 2004 GoM, USA

Constitution SPAR 5000 ft Truss 550 ft 98 ft Anadarko 2005 GoM, USA

Kikeh SPAR 4364 ft Truss 465 ft 106 ft Murphy 2007 Malaysia

Tahiti SPAR 4200 ft Truss 555 ft 128 ft Chevron USA 2008 GoM, USA

Lucius SPAR 7000 ft Truss 605 ft 110 ft Anadarko 2014 GoM, USA

Devils Tower SPAR 5610 ft Truss 586 ft 94 ft Eni US 2004 GoM, USA

Heidelberg SPAR 5300 ft Truss 605 ft 110 ft Anadarko 2016 GoM, USA

Gulfstar SPAR 4600 ft Classic 584 ft 85 ft Hess 2014

Aasta Hansteen SPAR 4265 ft Truss 643 ft 164 ft Equinor 2019 North Sea,
Norway

Red Hawk SPAR 5300 ft Cell 560 ft 64 ft Kerr McGee &
Devon Energy 2004 GoM

Figure 13. Types of Spar Platform: (a) Classic (b) Truss (c) Cell.
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3.8. Jacket Platforms

Jacket platforms are simply platforms for template (jacket) development. This steel-
based fixed platform is commonly found along the shorelines of the Persian Gulf, Gulf
of Mexico (GoM) USA, Niger Delta regions of Nigeria, etc. [14,83,87]. Jackets, decks, and
heaps are the most common components of template platforms [116,119]. The Template
(Jacket) type is used on different petroleum platforms and Seas like the Persian Gulf. Jack-
Up platform is shallow water floating offshore structure used for exploration of offshore oil
and gas. As the name implies, it has movable legs which can be retracted and extended
vertically, that is, once in contact with the seabed the platform begins moving upwards
and outside the water surface [268]. Jacket platforms are used for drilling and exploration
operations. However, there are other platforms that are also used, based on the requirement
of the drilling/production field [269–281]. Tables 7 and 8 respectively show the list of some
jacket platforms constructed, and some wellhead jacket platforms (WHP).

Table 7. List of some jacket platforms constructed.

Platform Water Depth, m (ft) Operator Installation Year Location

Amberjack 314 m (1100 ft) BP 1991 USA

Pompano 393 m (1290 ft) BP/Stone Energy 1994 USA

Heritage 326 m (1070 ft) Exxon 1993 USA

Harmony 366 m (1201 ft) Exxon 1993 USA

Virgo 344 m (1129 ft) Elf/W & T Energy 2000 USA

Cyrus 134 m (440 ft) Chevron USA 2002 USA

Salsa 211 m (693 ft) Shell 1998 USA

Ligera 282 m (924 ft) Fieldwood SD 1982 USA

Tequila 201 m (660 ft) Fieldwood SD 1984 USA

Snapper 263 m (863 ft) Fieldwood SD 1985 USA

Tarantula 148 m (484 ft) Fieldwood Energy 2004 USA

Cerveza 285 m (935 ft) Fieldwood SD 1981 USA

Coelacanth 361.5 m (1186 ft) Water Oil & Gas 2015 USA

Simba 203 m (667 ft) Ankor Energy 2005 USA

Spirit 220 m (722 ft) Fieldwood Energy 1998 USA

Enchilada 215 m (705 ft) Shell 1997 USA

Spect. Bid 165 m (541 ft) Flextrend Development 1995 USA

Phar Lap 205 m (673 ft) Flextrend Development 1995 USA

Alabaster 145 m (476 ft) Energy XXI GOM 1991 USA

Corrla 189 m (619 ft) Eni US 1992 USA

Pimento 219.8 m (721 ft) Triton Gathering 1993 USA

Tick 219.5 m (720 ft) Chevron USA 1991 USA

Lobster 236 m (775 ft) EnVen Energy Ventures 1994 USA

Marquette 184 m (604 ft) MC Offshore Petroleum 1989 USA

Boxer 229 m (750 ft) Shell Oil 1988 USA

Boxer 229 m (750 ft) Whistler Energy II 1986 USA

Boubon 130 m (428 ft) Fieldwood Energy 1978 USA

East Belumut A 73 m (240 ft) Newfield 2008 Malaysia

Agbara 70 m (230 ft) Agip Energy 2000 Nigeria

Amenam 40 m (131 ft) TotalFinaElf 2003 Nigeria

Litchendjili 30 m (98 ft) Eni Congo 2015 Congo

Dong Fang 13-2 70 m (230 ft) Offshore Oil Eng. Co. China

Lu Feng 241 m (791 ft) Offshore Oil Eng. Co. 2021 China
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Table 7. Cont.

Platform Water Depth, m (ft) Operator Installation Year Location

CaNgu Vang 113 m (371 ft) Hoan Vu Joint Oper. Co.
(HVJOC) 2008 Vietnam

Annamaria B 59 m (194 ft) Eni E &P Italy

Erskine jacket 90 m (295 ft) Texaco NS UK 1997 UK

West Franklin 90 m (295 ft) Elf Exploration 2011 UK

Tiffany field 126 m (413 ft) Agip UK 1993 UK

Zuluf field 40 m (131 ft) Saudi Aramco 2020 Saudi Arabia

Table 8. List of some wellhead jacket platforms (WHP) constructed.

Platform Water Depth (m) Operator Installation Year Location

Valhall flank West WHP 70 m (230 ft) BP 1982 Norway

Huldra Phase 1 WHP 125 m (410 ft) Statoil 2001 Norway

Eldfisk 2/4 B WHP 70 m (230 ft) ConocoPhillips 1979 Norway

Blacktip WHP 50 m (164 ft) Eni 2006 Australia

Elgin B WHP 90 m (295 ft) Elf Exploration 2012 UK

3.9. Compliant Towers (Tower Platforms)

Fixed platforms are similar to compliant towers. They are made up of a slender tower
that is attached to a seafloor foundation and extends up to the platform. In contrast to the
relatively hard legs of a permanent platform, the compliant tower is flexible [241]. Since it
can ‘absorb’ most of the pressure placed on it by the wind and waves, it can function in
much deeper water. The compliant tower system is sturdy enough to survive hurricane
conditions despite its flexibility. A compliant tower (CT) is a fixed rig structure utilized for
offshore oil and gas production. The rig is made up of compliant towers that are flexible,
narrow, and made on a pile foundation that supports. This foundation holds the tower,
its standard drilling and production deck. Compliant towers are utilized in water depths
ranging from 450 to 900 m and are designed to withstand substantial lateral deflections
and stresses (1500 to 3000 feet) [282–286]. These structures are self-contained, and free-
standing but their media are given supports by water. They exhibit static stability but have
a far higher degree of lateral deformation/flexibility (about 2.5%:0.5%) than land-based
structures, and are partially supported by buoyancy. In the early 1980s, the commissioning
of Exxon’s Lena oil platform led to the development of the first compliant tower. The
Chevron’s Petronius compliant tower, which was 531 m and is now 623 m deep, is currently
the deepest, as recorded in Figure 14 and detailed in Table 9.

The compliant towers are designed by considering the natural frequency of the struc-
ture. Resonance is minimized and wave forces are de-amplified when flex elements such as
axial tubes and flex legs are used. This rig construction can be customized to fit existing fab-
rication and installation machinery [287–289]. Production risers are more traditional than
floating systems such as tension-leg platforms and SPARs, and are subjected to less struc-
tural loads and bending. However, constructing compliant towers in water depths larger
than 1000 m gets uneconomical. Even with the higher cost of anchorage (or moorings) and
marine risers, it becomes most appropriate to use of a floating production system [290–293].
However, one good advantage of the compliant tower system is that it is quite sturdy
enough to survive hurricane conditions, despite its flexibility [294–299]. Figure 15 shows
different concepts of the compliant tower. It shows a cross-section of different concepts of
compliant towers used in the oil and gas industry, showing: (a) “dumb” tower; (b) com-
pliant piled tower; (c) compliant tower with ‘mass trap’; (d) buoyant tower with flex joint;
(e) guyed tower with flex joint; and (f) articulated column [298].



J. Mar. Sci. Eng. 2022, 10, 1074 18 of 52

Figure 14. Illustrations showing (a) the Five Compliant Tower Platforms in the World including those
sanctioned, installed and operating platforms while (b) shows a labelled compliant tower. (Revised
image (a), adapted from Offshore Magazine Poster, Courtesy: Wood Group Mustang).

Table 9. Parameters of compliant towers showing the structural weights.

Platform Parameters Petronius Lena Guyed
Tower Baldpate Bullwinkle (Fixed) Cognac

Benguela-Belize
Lobito-Tomboco
(BBLT)

Tombua-
Landana

Location GoM GoM GoM GoM GoM Angola Angola

Installation Year 1997 1983 1998 1988 1978 2006 2009

Design Type Type ‘b’ Type ‘e’ Type ‘a’ Type ‘a’ Type ‘a’ Type ‘e’ Type ‘e’

Operator Chevron ExxonMobil Hess Shell Shell Chevron Chevron

Natural Period (s) 33 28 ~30 ~30 ~30 ~29 ~28

Wave height Hs (m) 22.49 12.5 18.2 18.2 21.34 8.84 8.84

Water Depth, (m) 535 m 305 m 503 m 413 m 314 m 390 m 366 m

Topside weight, (tons) 8800 9500 9000 2033 14,000 43,500 36,000

Structure weight, (tons) 43,000 23,400 28,900 49,375 59,000 49,800 56,400

Well slot 21 21 19 60 62 40 46

Base Dimension (m) 33.53 × 33.53 37 × 37 42.67 × 42.67 148 × 124 122 × 116 33.53 × 33.53 33.53 × 33.53

Section 2 2 2 2 3 2 2

Diameter of flex-leg 2.13 m (84”) 1.37 m (54”) - - 2.1 m (83”) 2.59 m (102”) 2.59 m (102”)

No. of flex-legs 12 8 12 12 24 12 12

Diameter of
foundation piles 2.44 m (96”) 1.83 m (72”) 2.13 m (84”) - 2.4 m (96”) 2.74 m (108”) 2.74 m (108”)

No. of Foundation piles 12 8 12 12 24 12 12

Max. pile penetration (m) 141.7 m 167.6 m 162 m - 137.2 m 154.8 m 160.8 m
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Figure 15. Cross-section of different concepts of compliant towers used in the oil and gas indus-
try, showing (a) “dumb” tower, (b) compliant piled tower, (c) compliant tower with ‘mass trap’,
(d) buoyant tower with flex joint, (e) guyed tower with flex joint, and (f) articulated column.

3.10. Tension Leg Platform and Seastar Platform

The Tension Leg platform is a type of platforms that is held by tendons. The tension
leg platform operates on the same principles as the SeaStar platform. Since there is no
water chamber to oppose the lateral movement, such a construction is less stable than a
SeaStar platform. The Seastar platform is a larger form of the Tension Leg platform. The
platform’s long, flexible legs are anchored to the seafloor and run up to it. These legs,
like the SeaStar platform, allow for a lot of side-to-side movement (up to 20 feet) but very
limited vertical mobility. Tension leg platforms are capable of working at depths of up to
7000 feet. SeaStar platforms resemble tension leg platforms in size. The platform is made
up of a floating rig, similar to the semi-submersible type (as mentioned in Section 3.5) [299].
When drilling, a lower hull is filled with water, increasing the platform’s stability against
wind and sea movement. Seastar platforms, in addition to this semi-submersible rig, also
include the tension leg system found on larger platforms. Long, hollow tendons that go
from the seafloor to the floating platform are known as tension legs. These legs are kept
under continual tension and prevent the platform from moving up or down. Their elasticity,
on the other hand, allows for side-to-side movement, allowing the platform to endure the
power of the ocean and the wind without breaking the legs. When it is not cost-effective
to build a larger platform, Seastar platforms are often employed for smaller deep-water
reservoirs. They can operate in up to 3500 feet of water.

A floating rig, a lower hull, and tension cables comprise the Seastar platform. A
water-filled lower shell boosts the platform’s stability against wind and water movement.
It also has a tensioned system in addition to the semi-submersible rig. The tension leg,
which is made out of high-strength steel cables, is part of the tension system. Tension stress
is not a problem with these wires. This construction is vulnerable to high wave and wind
pressures, but the water-filled body will mitigate these effects, making the structure more
stable. Figure 16 shows an illustration of typical TLP.

The Tension Leg Platform has been used in making notable historical developments in
the oil and gas industry. The Heidrun Tension Leg Platform (TLP) was the first platform
where a composite riser joint was deployed in 2002. It is also the first platform that
composite riser joint was successfully deployed after extensive composite research. The
TLP has 56 well slots on the subsea riser template. The Heidrun TLP has a total height of
109 m, a square pontoon having a box cross-section, a pontoon height of 110 m, a pontoon
height of 13 m, and eight decks located near each of the four circular columns located at
each corner. It is the first and biggest floating TLP with a concrete hull. It is the largest
floating structure carrying the largest deck load ever, with a topside weight of 43,000 tons,
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and a total platform displacement of 288,200 tons. Conoco discovered the Heidrun field
in 1985, which lies about 175 km off Norway’s coast and north of Kristiansund at a water
depth of about 350 m. It produces 65,000 barrels of oil daily, 110,000 barrels of water
daily, and 760 m3 of natural gas. The Heidrun TLP has produced over 944 million oil
and gas barrels since October 1995, at 05:37 when the choke valve was opened to become
operational. Figure 17 shows the Heidrun Tension Leg Platform (TLP), while Table 10 lists
some tension leg platforms constructed with their details.

Figure 16. Illustrations showing (a) the tension leg platform (TLP), and (b) a labelled TLP.

Figure 17. Heidrun Tension Leg Platform (TLP). (Courtesy: Statoil.).
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Table 10. List of some tension leg platforms constructed.

Platform Water Depth (m) Operator Installation Year Location

Prince TLP 454 m EnVen Energy Corp. 2001 GoM, USA

Kizomba TLP 1012 m Esso Exploration 2004 Angola

Marlin TLP 986 m BP & Anadarko 1999 GoM, USA

Marco Polo TLP 1311 m Anadarko Petroleum Corp. 2003 GoM, USA

Ram-Powell TLP 1000 m Shell 1997 GoM, USA

Magnolia ETLP 1420 m ConocoPhillips 2003 GoM, USA

Heidrun TLP 350 m Conoco 1995 North Sea, Norway

Moho Nord TLP 1200 m Total Energies 2015 Congo

Stampede TLP 1067 m Hess Corporation 2017 GoM, USA

Shenzi TLP 1333 m BHP Billiton Petroleum Inc. 2008 GoM, USA

URSA TLP 1204 m Shell 1999 GoM, USA

Olympus /Mars B 914 m Shell 2014 GoM, USA

Mars TLP 896 m Shell 1996 GoM, USA

Auger TLP 872 m Shell 1993 GoM, USA

Jolliet TLP 536 m MC Offshore Petroleum & Conoco 1989 GoM, USA

Hutton TLP 148 m ConocoPhillips 1984 North Sea, UK

Snorre TLP 310 m Saga Petroleum 1992 North Sea, Norway

Oveng TLP 271 m Hess 2006 Equatorial Guinea

Okume/Ebano TLP 503 m Hess 2006 Equatorial Guinea

Brutus TLP 910 m Shell 2001 GoM, USA

Malikai TLP 500 m Shell 2014 Malaysia

3.11. FPSO

The acronym FPSO stands for floating production storage and offloading. As the name
implies, the FPSO is a production system equipped with processing equipment for the
separation and treatment of crude oil and gas together with a large storage hull to store the
treated oil for export [260,268–270]. With the continuous push of production activities into
deeper waters, the FPSOs have over the years dominated the oil and gas industry mainly
due to their attributed advantages which include large storage hulls, and their suitability
for application in remote offshore areas [269,270]. The International Maritime Association
(IMA) and World Energy Reports (WER) reveal a total of 175 FPSO units in operation as of
November 2022, which is equivalent to 68% of the overall floating production systems.

Shuttle tankers are also classified as FPSOs used for offshore production activities, such
as with loading and discharging fluid products using (un)loading marine hoses [31–39].
Depending on the environmental condition, FPSOs are either maintained in position using
a spread or turret mooring system as illustrated in Figure 18. A spread of FPSOs located in
different geological locations is presented in Table 11 and Figure A4 of Appendix A.

Figure 18. FPSO mooring system: (a) Internal turret (b) external turret, and (c) spread mooring system.



J. Mar. Sci. Eng. 2022, 10, 1074 22 of 52

Table 11. List of some FPSOs globally used on oil and gas facilities.

FPSO Water Depth (m) Vessel Length (m) Storage Capacity
(Barrels) Operator Owner Year Fields

Stones (or
Turritella FPSO) 2914 m 247 m 800,000 Shell SBM Offshore 2016 GoM, USA

Bonga FPSO ~1800 m 295 m 2,000,000 Shell Shell & NNPC 2005 Niger Delta,
Nigeria

Agbami FPSO ~1463 m 319.99 m 2,150,000 Chevron Chevron &
NNPC 2007 Agbami, Nigeria

Parque das
Conchas (BC-10) ~1800 m 330 m 2,000,000 Shell Shell 2010 Brazil

Kikeh FPSO ~1350 m 337 m 2,000,000 MDPX Sdn Bhd MDFT Labaun 2007 Malaysia

Peregrino FPSO 100 m 332.99 m 1,600,000 Statoil Maersk 2010 Brazil

Sevan Piranema
FPSO 1100 m 66 m (dia.) 300,000 Petrobras Teekay 2008 Brazil

Goliat FPSO 420 m 112 m (dia) 1000,000 Eni & Statoil Eni 2015 Barents Sea,
Norway

Polvo FPSO 160 m 340.6 m 1,266,000 HRT BW Offshore 2007 Brazil

Frade FPSO 1128 m 337.06 m 1,550,000 Chevron SBM Offshore 1976, 2009 Brazil

Cidade de
Vitoria FPSO 1386 m 337 m 1,900,000 Petrobras Saipem 2007 Brazil

Marlim Sul FPSO 1670 m 342.99 m 1,000,000 Petrobras SBM Offshore 2004 Brazil

Terra Nova FPSO 100 m 292.25 m 960,000 Suncor Suncor 2001 Canada

Aquila FPSO 1233 m 700,000 Eni Eni 2013 Adriatic Sea, Italy

Triton FPSO 95 m 244 m 630,000 Dana Dana 2000 UK

Gryphon FPSO 112 m 257.6 m 540,000 Total Energies Maersk 1993 UK

Äsgard A FPSO 300 m 276 m 910,000 Statoil & Eni Statoil 1998 Norway

Alvheim FPSO
(converted Odin) 112 m 285 m 560,000 Marathon & Det

Norske Statoil/Marathon 2008 North Sea, Norway

Firenze FPSO 815 m 268 m 700,000 Eni Saipem 2011 Adriatic Sea, Italy

3.12. Concrete Gravity-Based Structure (GBS)

A support structure maintained in place by gravity is referred to as a “gravity-based
structure,” most prominently offshore oil rigs. Due to their protected area and adequate
depth, fjords are frequently used to build these structures. The basis of construction for
the Concrete Gravity-Based Structure was the application of reinforced concrete. The
base’s design incorporates vacuum spaces or caissons to provide the structure with natural
buoyancy, allowing it to be floated to a field development site. Once on site, the blank
spaces on the seabed are flooded, and the topside modules are hauled into place. The
vacant holes were then filled with permanent iron ore ballast or utilized as crude oil storage
compartments. Due to the sheer massive weight of concrete structures, foundation piles are
not required, thus the name gravity base structure [299–307]. Figure 19 illustrates a typical
GBS, showing Troll A concept.

An example of a concrete gravity-based structure is the Troll A platform (as shown in
Figure 20), which exists off the west coast of Norway, in the Troll gas field. This offshore
structure was built in 1996, and it is recorded as the largest structure ever moved and
dropped into the ocean [301,307]. Table 12 and Figure A5 of Appendix A show different
GBS platforms with their details.

Table 12. Installation of different concrete gravity-based structures.

Installation Water Depth (m) Type Location Year Operator

Troll A 303 m Condeep, 4 shafts North Sea, Norway 1995 Norske Shell

Beryl A 120 m Condeep, 3 shafts North Sea, UK 1975 Mobil

Brent B 140 m Condeep, 3 shafts North Sea, UK 1975 Shell
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Table 12. Cont.

Installation Water Depth (m) Type Location Year Operator

Brent D 140 m Condeep, 3 shafts North Sea, UK 1976 Shell

Frigg TCP2 104 m Condeep, 3 shafts North Sea, Norway 1977 Elf

Stratfjord A 146 m Condeep, 3 shafts North Sea, Norway 1977 Mobil

Stratfjord B 146 m Condeep, 4 shafts North Sea, Norway 1981 Mobil

Stratfjord C 146 m Condeep, 4 shafts North Sea, Norway 1984 Mobil

Gullfaks A 135 m Condeep, 4 shafts North Sea, Norway 1986 Statoil

Gullfaks B 142 m Condeep, 3 shafts North Sea, Norway 1987 Statoil

Oseberg A 109 m Condeep, 4 shafts North Sea, Norway 1988 Norsk Hydro

Gullfaks C 216 m Condeep, 4 shafts North Sea, Norway 1989 Statoil

Draugen 251 m Condeep, 1 shaft North Sea, Norway 1993 Shell

Sleipner A 82 m Condeep, 4 shafts North Sea, Norway 1993 Statoil

Figure 19. Illustrations showing (a) the concrete gravity base structure (GBS), and (b) a labelled GBS.

Figure 20. The Troll A concrete gravity base structure (Courtesy: Statoil).

4. Applications of Offshore Platforms

There are a variety of applications for offshore platforms, with the advantages pre-
sented in this section.
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4.1. Advantages and Disadvantages of Offshore Platforms

This study presented different fundamentals of the main types of offshore structures
(fixed and floating) in Sections 2 and 3. The design considerations have also shown that
these offshore structures have unique capacities. Each offshore platform is designed for
specific purpose, however some offshore platforms such as drilling submersibles could
have general application for drilling different well sites. Hence, the applications of these
concepts in the offshore platforms are dependent on the functionalities which lead to
their advantages. Offshore platforms have a variety of uses in the marine industry. For
example, oil or gas platforms might provide storage facilities for oil and gas before being
transported to refineries. The advantages have been reported on a variety of offshore
structures [299,300]. The design and development of these structures have been identified in
a variety of literature on CGBS [300–312], FPSOs [313–329], compliant platforms [330–344],
fixed jacket platforms [345–369] and SPARS [370–389]. Another well-known application of
offshore platforms is for generating energy via offshore wind farms [390–400].

Although, offshore platforms are subjected to a variety of strong forces (such as ocean
waves, wind, and currents), and the materials used to construct them must withstand
these forces. Based on platform design, steel and concrete are the most common offshore
construction materials, although most concrete based structures are not very popular
in recent times due to their limitations. The advantages and disadvantages of different
offshore platforms are summarized in Table 13. Figures A6 and A7 of Appendix A show
the location of most of the deep water offshore structures in the Gulf of Mexico.

Table 13. Advantages and Disadvantages of offshore platforms.

Platform Advantages Disadvantages

Jacket Platform
• Can handle significant topsides weights
• Good motion characteristics
• Suitable for drilling/workover operations

• Mating of jacket structures
• Weight increases as water depth increases
• Requires heavy lift, Derrick Barge
• Requires offshore hook-up
• Limited water depth range

Gravity
Platform

• construction onshore for transport;
• towing to the site of installation;
• quick installation by flooding; and
• use of traditional methods and labor for installation.

• unsuitability for sites with poor soil conditions;
• long construction periods delaying the start

of production;
• natural frequencies falling within the range of

significant power of the input wave spectrum.

Compliant
Tower

• Good motion characteristics
• Suitable for drilling/workover operations
• Dry tree
• Robust relative to payload changes
• Lighter than fixed jacket platforms
• Installation flexibility

• Requires heavy lift Derrick Barge
• Requires offshore hook-up
• Limited water depth range

SPAR

• Superior stability
• Dry trees
• Accommodates payload changes
• Friendly to offset drilling
• Passive hull system
• Low maintenance cost
• low heave and pitch motion compared with other platforms
• use of dry trees (i.e., on the surface);
• ease of fabrication;
• unconditional stability because the center of gravity is

always lower than the center of buoyancy, resulting in a
positive GM; and

• derives no stability from the mooring system and hence
does not list or capsize even when completely disconnected
from its mooring system.

• Topside lift at the installation site
• Large derrick barge required for topsides installation
• Difficulty of installation because the hull and the

topsides can only be combined offshore after the spar
hull is upended;

• Little storage capacity, which brings along the
necessity of a pipeline or an additional FSO; and

• Lack of any drilling facilities.
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Table 13. Cont.

Platform Advantages Disadvantages

TLP

• Dry tree
• Dry wellheads
• Quayside topsides-hull integration
• deep water capability;
• Low maintenance cost;
• mobility and reusability;
• low-cost increase with the increase in water depth; and
• stability, because the platform has minimal vertical motion.

• Sensitive to deck payload change
• Active hull system
• Not friendly to offset drilling
• Tendon fatigue
• high initial cost;
• fatigue of tension legs;
• high subsea cost;
• little or no storage; and
• difficult maintenance of subsea systems.

Semisubmersible

• A large number of flexible risers possible
• Good motion response
• having better stability in harsh environments,
• large deck area; and
• higher mobility

• Wet tree only
• High maintenance cost
• Fatigue motion unfriendly to risers
• Limited topside weight capacity
• No oil storage facility

FPSO

• Early production
• Providing field storage
• Extensive deck area of a large tanker provides flexibility in

process plant layout
• Less weight sensitive than other types of floating

production systems
• Ability to utilize aging or surplus tanker hulls for

conversion to an FSPO vessel;
• low cost;
• mobility and reusability;
• reduced lead time;
• quick disconnecting capability which can be useful in

iceberg-prone areas;
• little infrastructure required; and
• turret mooring system enables FPS (converted ship type) to

head into the wind/waves reducing their effect.

• The subsea tiebacks connected with FPSOs typically
result in increased well maintenance expenses.

• limited to small fields;
• low deck load capacity;
• damage to risers due to motion;
• poor stability in rough seas; and
• little oil storage capabilities.

4.2. Exploratory Application of Offshore Platforms

This study presented various exploratory applications of offshore structures (fixed
and floating) used in the oil and gas industry. Due to the orientation of the superstructure,
the foundation of this semi-submersible in deeper waters needs high payload integration
for minimized motion responses across every degree of freedom (DoF). During production
on the platform, the oil and gas are separated and transferred to shore via pipelines or
tankers. To achieve these, proper planning must be conducted for the lifting, transportation,
installation, design, fabrication, and commissioning of these offshore petroleum platforms.
Among the exploratory applications are (un)loading hose applications via shuttle tankers
(or FPSO) and single point mooring (SPM) buoys. Other applications are ocean monitoring
buoys, breakwater and wave energy devices. However, larger exploratory applications
are seen as presented in recent luxury semisubmersibles, semisubmersible crane vessels
(SSCV), offshore support vessels (OSV), and rocket launch pads.

4.2.1. Luxury Cruise

Due to the obvious level of stability that semisubmersibles can provide through recon-
figuration, deep-draft semisubmersibles are the wave of the future for ocean engineering.
Various press publications, ranging from a Cable News Network (CNN) article to an ex-
clusive Forbes article, New York Times, Huffington Post, The Sun News, and Yatch World
review made reviewed this Kokomo Ailand [400–407]. These journalists published articles
covering the event on a novel kind of luxury cruise that was fashioned after a mini-island in
September of 2015 [390]. Migaloo Private Submersible Yachts designed the floating system
by using he column stabilized semisubmersible concept to construct the hull of the floating
mini island. This hull would have an exceptionally high level of stability in order to operate
as a yacht or luxury cruise ship [254]. The type and extent of deck support integration were
the main advantages it provided over traditional cruise ships [400–407]. Recent years have
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seen some rather bizarre ideas in yacht design, from Lego-inspired vessels to futuristic craft
that resemble Concorde jets on water [400]. Different rendered views of the super yacht are
given in Figure 21.

Figure 21. Views of the Mini Island Semisubmersible—Migaloo’s Kokomo Ailand, showing (a) iso-
metric view and (b) front view (Adapted/Reused with permission from Christian Gumpold, CEO of
Migaloo Private Submersible Yachts and Migaloo Submarines. Courtesy: Migaloo).

According to Migaloo [401], the Kokomo Ailand is a private floating habitat based
on semi-submersible platforms with an overall length of 117 m, a beam of 78 m and a
draft between 20.5 m to 9.7 m. However, it is still safe to say that nothing compares to
Kokomo Ailand, an 80-m-tall private floating island with two beach clubs, a waterfall, and
a shark feeding station. The fact that Kokomo is a real place is arguably the most amazing
of all. In reality, the project’s designers, Migaloo, presented their ideas at the ‘Monaco
Yacht Show’, and they already had “quite strong” expressions of interest from clients all
around the world, at the time of its design [400]. The structure gives a better look at the
stunning layout of a super yacht as well as a semisubmersible. The untrained eyes may
mistake the ship for an upscale oil rig, despite the fact that it is much more opulent. The
futuristic floating island has two elevators, a jacuzzi with a glass bottom, and a penthouse
that is 80 m above sea level. However, to transport large, hefty vessels would require time
and movement at a speed of eight knots using eight (8) Azipods [402]. It is simply a piece
of floating land, yet it is designed like an island that was influenced by nature. It can be
supported by specially made support vessels, which are currently popular in the yachting
and shipping sectors. Thus, it functions as an offshore primary base or hideaway from
which one may travel anyplace. However, the design is also inspired by owners demands
and the need to evolve from conventional designs. In a recent article by Migaloo [401], it
depicted the evolution of the floating structure (submersible yacht) as a result of the impact
of sustaining technological changes with disruptive concepts using the model by Professor
Christensen C.M. [408], as seen in Figure 22.
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Figure 22. The impact of evolution and sustaining technological changes with disruptive concepts to
meet market demands and product performance (Courtesy: Migaloo).

4.2.2. Offshore Rocket Launch and Landing Platform

Another application is an offshore rocket launch and landing platform. Space Explo-
ration Technologies (SpaceX) is investigating the potential use of modified semi-submersible
oil drilling rigs for the launch and landing of their new completely reusable rocket Starship
on a specific Starship offshore platform [409–417]. SpaceX has acquired two old offshore oil
drilling rigs as the ENSCO/Valaris 8506 offshore model, which is a specified destination
for the Starship spaceship. The two floating spaceports—Phobos and Deimos, were given
them the names as the named after the moons of Mars. However, launch pads can also
be used in other ways. A semi-submersible drilling rig called Ocean Odyssey has been
modified to use as a rocket launcher. The drilling platforms were essentially identical when
they were built and when Elon Musk, the owner of SpaceX, purchased them under the
names ENSCO/Valaris 8500 and 8501, respectively. As part of a six-month effort, Phobos
was relocated from the Port of Galveston to Pascagoula, Mississippi, in January 2021 to start
the retrofit of the rig for Starship operations. The majority of the outdated equipment on
the rig’s deck has been removed as of July 2021. Since one of the platforms was supposed
to be substantially operational by the end of 2021 and that Starships would fly out to sea
and land on the platform later in 2022 to be carried to the platforms, refitting had also
started around January 2021 on Deimos at the Port of Brownsville, USA. At the time of this
publication, the Deimos platform was still under development. Figure 23 shows Deimos
ocean offshore spaceport which is an offshore launch platform.
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Figure 23. Rendering views of the Deimos rocket launch platform to be completed in 2022/2023,
showing (a) the starship fueling up before liftoff on its offshore launch platform, and (b) the aerial
view of ocean offshore spaceport Deimos (Courtesy: SpaceX).

4.2.3. Converted Offshore Structures

In recent times, the use of converted offshore structures has been seen to have increas-
ing advantages in exploratory, drilling and production activities. For floating offshore
units, there are eight (8) distinct hull types to choose from [418]. These converted offshore
structures include Mobile offshore drilling units (MODU), Service Offshore Vessels (SOV),
and Offshore support vessels (OSV). The ship-shaped monohull is the most prevalent kind
of vessel, such as the use of the Floating Storage and Offloading unit (FSO) P-47 which was
converted from a former Very Large Crude Cargo (VLCC).

The offshore energy market is subject to frequent fluctuations, which also affect the
demand for installation tools, floating structures, and support vessels [419]. The cost of new
construction is high, and it frequently takes too long to reap the benefits of an opportunity
when it arises. Another option is to upgrade or convert an existing unit. There are different
tiers of capability growth when converting or upgrading existing equipment. With each
level come higher complexity, hazards, and rebuilding expenses. Options include extending
the life and modernising an older ship, temporarily converting it, increasing its capacity,
adding features, altering its current function, and finally, completely converting an older
merchant cargo ship into a brand-new offshore unit. If a major vessel conversion project is
properly planned and managed, it is possible for it to be competitive with newbuilding
choices. There are a lot of excellent prospects for upgrades and conversions within the
sizable pool of current commercial and offshore vessels, both ageing and new vessels. This
new lease on life broadens their operational and financial horizons and assists the offshore
industry in making extraordinary strides in the performance of transport, building, and
installation [418–422].

The considerations for the selection of offshore platforms are very important also for
converting offshore structures from one purpose to another [419]. Purpose-built production
semi-submersible platforms were created when the oil industry expanded into harsher
regions and deeper waters. ‘Deepsea Saga’ was converted on Agyll oil field, as Agyll FPF
semi-submersible which was later converted to Deepsea Pioneer. The Transworld 58 was
the first purpose-built semi-submersible production platform used on the Balmoral field in
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the UK North Sea, was built in 1986 and later converted. There were various platforms that
were converted, though [235,423–432]. The Spirit of Columbus drilling rig was converted
into Petrobras 36, which sank in 2001. Another offshore vessel that was renovated as part of
a joint venture between BP and BHP was the Atlantis PQ. However, the largest converted
semi-submersible platform for Production-Drilling-Quarters purpose is Thunder Horse
PDQ with GVA40000 design.

Due to their excellent stability, wide deck areas, and variable deck load, semi-submer-
sibles are particularly well suited for some operations which the offshore support vessel
can perform [249,433–442]. Some vessels have two (2) build dates because the second one
represents the date they were rebuilt. However, the latest dates are mostly considered,
because it represents the current qualification class and classification for the vessel or
offshore structure. These vessels include the offshore multiservice vessel Q4000 which was
built in 2002 for Caldive. The Transocean Marianas which is a 1979-built Offshore Safety
Support Vessel was later transformed into a drilling vessel. While Sedco/Phillips SS was
the first vessel built in accordance with Red Adair’s suggestions, Iolair, an offshore safety
support vessel, was built for BP in 1982. After being decommissioned, offshore production
platforms have also been transformed into other offshore constructions [443–453]. Drilling
semi-submersibles were modified for use as integrated drilling and production platforms
when oil fields were initially created offshore. The Transworld 58 drilling semi-submersible
was converted into the Argyll FPF, the first semi-submersible floating production platform,
in 1975 for the Hamilton Brothers North Sea Argyll oil field. These vessels provided
incredibly reliable and affordable platforms, such as the recent Norwind Breeze SOV
converted by VARD for Norwind Offshore in 2022 [454–456]. Table 14 shows the list of
some converted vessels and offshore platforms with conversion/delivery date.

Table 14. List of some converted vessels and offshore platforms with conversion/delivery date.

Conversion Name Former Platform Name Owner Location Conversion /Delivery Date

Atlantis PQ Atlantis PQ BP and BHP GoM, USA 2007

Thunder Horse PDQ
(Production, Drilling, Quarters) Thunder Horse PDQ BP and ExxonMobil GoM, USA 2005

Transocean Marianas
semi-submersible drilling unit

Tharos from 1979 to 1994, Polyportia
from 1994 to 1996, and P. Portia from

1996 to 1998.
Chevron GoM, USA; Offshore

West Africa (OWA) 1979

Greater Stella FPF 1 FPF1 (2017), AH001 (2012),
Sedco/Phillips SS (1986)

Petrofac Facilities
Management Stella Field, North Sea 2017

Transworld 58 drilling
semi-submersible

Transworld 58 Floating Production
semisubmersible (1975), North Sea
Pioneer, Norscot Producer, drilling

semi-submersible, Duncan FPF
semi-submersible (1985)

Hamilton Brothers Oil
and Gas North Sea 1975

Deepsea Pioneer FPF
semi-submersible

‘Deepsea Saga’-converted Agyll FPF
semi-submersible (1971–1975),

Deepsea Pioneer (1984)

Hamilton Brothers Oil
and Gas Agyll Field, North Sea 1983

Petrobras P-36
semi-submersible

Spirit of Columbus drilling rig
(1984–1994), P-36 (1997–1999) Petrobras Roncador Oil Field, 1995

West Defender jack-up Offshore Defender jack-up Scorpion Offshore - 2007

Mr. Demp jack-up
later Loosbrock Sun, Songa Sun,

Achilles, RBF 192, THE 192, Blake
505, GPS Producer 1, Mopu Sepat

Marine Drilling - 1981

Vanguard I jack-up Later Dual Rig 41, Ensco 51,
Deepsea Fossil Huthnance Drilling - 1982

Ulstein Service Operations
Vessel (SOV)

Ulstein PX121 Platform Supply
Vessels (PSV) Ulstein North Sea 2022

Norwind Breeze SOV (2022) Skandi Responder Offshore
Tug/Supply Ship (2015) Norwind Offshore North Sea 2015/2022

FSO Africa Hellespont Metropolis (2002), TI
Africa (2004), FSO Africa (2010) - Persian Gulf 2010

FSO Asia Hellespont Alhambra (2002), TI Asia
(2004), FSO Asia (2009) - Persian Gulf 2010
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Table 14. Cont.

Conversion Name Former Platform Name Owner Location Conversion /Delivery Date

Transworld Rig 64 jack-up
Later Noble Rig 64, Johnnie

Hoffman, Noble Johnnie Hoffman,
Paragon 8301

Transworld Drilling - 1976

Pool Rig 53 Later Well Services Rig 53 Pool Company - 1982

Zephyr I semi-submersible Later Ocean Zephyr, now
Atlantic Zephyr Odeco - 1973

Pat Rutherford Sr. Later Dixilyn-Field 95, Sonat D-F 95,
Boss Prithvi, Seadrill, Odin Neptune Viking Offshore A/S - 1974

5. Conclusions and Recommendations for Future Research

The manuscript presents a comprehensive review on different offshore structures—fixed
and floating offshore platforms to examine some sustainable design approaches. It gives
very interesting data and provides a valuable tool in support the general understanding, de-
sign and management of these structures, certainly in accordance with the industry design
guidelines. The manuscript includes an introduction with a description of the state-of-art
of the different types of offshore facilities and their purpose, classification of different types
of these applications, with their advantages and disadvantages. Part II of this review [5]
presents an in-depth review on considerations of most relevant parameters influencing
the design process, a section focused on considerations regarding the management of the
offshore facilities and the need for future research.

In this paper, the comprehensive review included the state-of-the-art on various
offshore platforms and achievements made in the industry. Suitable types of offshore plat-
forms for various seawater depths are offered for long-term operations, high productivity,
high serviceability and sustainability. From this review, it has been identified that these
platforms are divided into numerous sorts based on their functionality, and application and
the depths of water where they operate. Therefore, it is evident that each offshore platform
is different, as this review shows their variabilities and unique applicability. Although
these platforms are subjected to somewhat large changes as a result of widespread wave
activity. These platforms also remain extremely robust in a severe ocean environment,
with a large portion of their structure submerged. An example of such platforms is the
semisubmersible, as different oil and gas corporations have taken notice of its adaptable
but durable properties.

In general, this type of platform is favored due to its ability to produce oil and gas as
well as its cost effectiveness. However, other types of offshore platforms are also utilized
based on their respective unique applications. Drilling rigs and Semisubmersible platforms
were found to be the most promising design in the review study, and they are a viable
choice for offshore exploration and production. These designs are also carried out in a
variety of geographic locations and environmental conditions. Fixed jacket platforms have
been seen in the North Sea and Persian Sea, as these areas do not require offshore structures
with ultra-deep drafts, and the weather are not very extreme as most locations in the Gulf
of Mexico. Furthermore, the efficient factors required to thoroughly improve the service
life and failure patterns of these offshore structures should be considered. In more recent
designs, there are exploratory applications of new concepts, production facilities and related
devices such as wave energy and breakwater devices. Hence, new and sustainable design
approaches have been applied as these techniques are more adaptable to these devices,
and aid faster design of offshore structures. However, adequate validation to verify each
design is recommended. In a nutshell, this review presents types of application, benefits
and challenges of offshore structures. The solutions from these different technologies can
aid in the design and construction of offshore structures by presenting a reference data
source. This review also sheds more light towards the understanding of offshore structures
to enable designers with more innovative concepts that are more resilient, efficient, durable
and sustainable in the industry.
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Abbreviations

2D Two-Dimensional
3D Three-Dimensional
AISC American Institute of Steel Construction
API American Petroleum Institute
ASTM American Society for Testing and Materials
BOEM Bureau of Ocean Energy Management
BOP Blowout Preventer
CFD Computational Fluid Dynamics
CEV Carbon Equivalent Value
CNN Cable News Network
CPU Central Processing Unit
CT Compliant Tower
DD Semi Deep Draft Semisubmersible
DDCV Deep-Draft Caisson Vessel
DNV Det Norske Veritas
DoF Degree of Freedom
DTS Dry-Tree Semisubmersible
FDPSO Floating Drilling Production Storage and Offloading
FLNG Floating Liquid Natural Gas
FOWT Floating Offshore Wind Turbine
FPS Floating Production Systems
FPSO Floating, Production, Storage and Offloading
FPU Floating Production Units
FSU Floating Storage Units
FSO Floating Storage and Offloading
GBS Gravity Base Structure
GoM Gulf of Mexico
IMA International Maritime Association
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MET-INT Metocean Interim
MODU mobile offshore drilling unit
MOPU Mobile Offshore Production Unit
NOAA National Oceanic and Atmospheric Administration
NREL National Renewable Energy Laboratory
OSV Offshore Support Vessel
PSV Platform Service Vessel
RAO Respond Amplitude Operator
RP Recommended Practice
SCR Steel Catenary Risers
SOV Service Offshore Vessel
SpaceX Space Exploration Technologies
SPAR Single Point Anchor Reservoir
SPM single point mooring
TLP Tension Leg Platform
TTR Top Tension Riser
U.A.E. United Arab Emirates
U.S.A. United States of America
VIV Vortex Induced Vibration
VLCC Very Large Crude Carrier
WEC Wave Energy Converter
WER World Energy Report

Appendix A

Figure A1. Offshore oil platforms compared to tallest building structures [Credit: Author 1—C.V.A.].
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Figure A2. History of Offshore Deep water platforms showing different offshore platforms, their
water depths and installation years [Image Credit: Author 1—C.V.A.].

Figure A3. Historical development of SPAR platforms (Courtesy: Technip).
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Figure A4. Worldwide distribution and location of floating production, storage and offloading (FPSO)
vessels (Courtesy: Offshore magazine, Wood & EMA.).

Figure A5. Different Condeep concepts of gravity based structures in the North Sea (Courtesy:
Dr.techn, OlavOlsen A.S).
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Figure A6. Map of breakdown of Application envelopes for deep-water platforms in the Gulf of
Mexico {Illustrated by: Author 1—C.V.A.}.

Figure A7. Map of Gulf of Mexico showing Deep water explorations as at 2020 (Courtesy: QuestOff-
shore and Offshore Magazine).
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