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Abstract: Robust nonlinear filtering is an important method for tracking maneuvering targets in
non-Gaussian noise environments. Although there are many robust filters for nonlinear systems, few
of them have ideal performance for mixed Gaussian noise and non-Gaussian noise (such as scattering
noise) in practical applications. Therefore, a novel cubature formula and maximum correntropy
criterion (MCC)-based robust cubature Kalman filter is proposed. First, the fully symmetric cubature
criterion and high-order divided difference are used to construct a new fifth-degree cubature formula
using fewer symmetric cubature points. Then, a new cost function is obtained by combining the
weighted least-squares method and the MCC loss criterion to deal with the abnormal values of
non-Gaussian noise, which enhances the robustness; and statistical linearization methods are used to
calculate the approximate result of the measurement process. Thus, the final fifth-degree divided
difference–maximum correntropy cubature Kalman filter (DD-MCCKF) framework is constructed.
A typical surface-maneuvering target-tracking simulation example is used to verify the tracking
accuracy and robustness of the proposed filter. Experimental results indicate that the proposed filter
has a higher tracking accuracy and better numerical stability than other common nonlinear filters in
non-Gaussian noise environments with fewer cubature points used.

Keywords: maximum correntropy criterion; fully symmetric cubature criterion; weighted
least-squares method; cubature Kalman filter; surface target tracking

1. Introduction

Accurate and robust state estimation is important for the stable target tracking of
conventional ships and surface unmanned ships. It is one of the main target-tracking
processes for realizing sensor data fusion and anti-interference performance via a filtering
algorithm. For linear Gaussian state space models, the Kalman filter (KF) is a powerful
optimal estimation algorithm based on minimum mean square error. It is the most widely
used adaptive filter because of its analytical optimality, algorithm stability, and simplicity.
However, most commonly used target-tracking models are nonlinear, and this limits the
role of the traditional KF, which only applies to linear models in practical applications.

Therefore, a nonlinear filtering algorithm in the Gaussian filter framework is required
for target tracking. The extended Kalman filter (EKF) [1–3] is a common filtering method
that linearizes the nonlinear model by using the multivariate Taylor formula of the nonlinear
function to perform local linear approximation for obtaining a linear model, which degrades
the model to the general KF model. However, for functions with strong local nonlinearity,
the fitting accuracy is poor, the effect of filtering is not ideal, and the calculation of the
Jacobian matrices of complex multivariate functions is difficult. As a better alternative to the
EKF, the unscented Kalman filter (UKF) [3–5] was proposed to deal with highly nonlinear-
state estimation problems. While optimizing the model performance, the Jacobian matrix in
the EKF need not be calculated, solving the problem of complex calculations. It is a widely
used nonlinear filtering method, but has a disadvantage in that the weight may have a
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negative value in the process of untraced transformation, and the positive definiteness of
the covariance matrix is difficult to maintain with an increase in the system dimension,
eventually leading to filtering divergence [6]. Thus, filtering stability is poor for systems
with strong nonlinearity.

To avoid the Jacobian matrix that must be calculated in the EKF, Norgarrd et al.
proposed the central difference Kalman Filter (CDKF) [7]. The CDKF uses the Stirling
polynomial interpolation formula to approximate the nonlinear system and inserts it into
the nonlinear Bayesian filter framework for obtaining a new nonlinear KF. However, the
accuracy and computational performance of the filter must be improved for a highly
nonlinear system. The Gauss–Hermite quadrature filter (GHQF) [8] is a more accurate
nonlinear filter method that uses the Gauss–Hermite numerical integration formula to
estimate the parameters of the nonlinear KF and embed it into the framework of the KF
to form a new nonlinear filter. Although the numerical integration formula of GHQF
improves the parameter estimation accuracy of filtering obviously compared with CDKF,
the number of points required in the integral formula grows exponentially as the system
dimension increases, which increases the computational burden for parameter estimation,
leading to the problem of “dimension explosion”.

Arasaratnam et al. [6] proposed a cubature Kalman filter (CKF) based on the third-
degree spherical–radial criterion, which uses the spherical–radial cubature criterion to solve
the probability density integrals in the framework of the nonlinear KF, providing a system-
atic solution to the problem of high-dimensional nonlinear filtering. Furthermore, the CKF
based on the square-root criterion was derived to improve the numerical stability in the
calculation process [9]. The growth rate of the cubature points used in the spherical–radial
numerical integration formula with an increase in the dimension is significantly lower
than that for the GHQF, avoiding the problem of “dimension explosion” and bringing
considerable advantages with regard to computational complexity and stability. However,
the filter constructed by the third-degree spherical–radial criterion is not as accurate as
the GHQF. Bin Jia et al. [10] proposed a high-degree spherical–radial criterion that can
calculate an arbitrary order accuracy according to the third-degree spherical–radial crite-
rion, and on this basis, they proposed the high-degree cubature Kalman filter (HDCKF).
Because high-degree cubature formulas are used, the nonlinear KF has higher precision,
and better numerical stability is achieved. According to the spherical–radial criterion, Dong
Meng et al. [11] proposed a high-degree CKF calculation formula for the seventh-degree
spherical–radial criterion. Table 1 shows the performance comparison of some commonly
used filters.

Table 1. Performance comparison of some commonly used filters.

Filters Linearization
Error

Suitable
for Nonlinear

Systems

Dimension
Error

Problem

Dimension
Explosion
Problem

Jacobian
Matrix

Calculation

EKF Yes Yes No No Yes
UKF No Yes Yes No No
CKF No Yes No No No

GHQF No Yes No Yes No

Xinchun Zhang et al. [12] used the fully symmetric cubature criterion of J. McNamee [13]
to approximate the probability density function integral in the nonlinear KF and then
combined it with the KF framework to obtain an embedded CKF (ECKF). Compared
with the previous five-degree filter constructed according to the spherical–radial cubature
criterion, the embedded cubature filter has fewer cubature points and can reduce the
number of computations while maintaining the filtering accuracy. Additionally, because the
coordinates of the cubature points do not increase with the system dimension n, compared
with spherical–radial quadrature filter, the stability of the nonlinear filter is enhanced.
However, even the embedded KF with fewer cubature points and a lower structural
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complexity than the HDCKF has problems related to computational stability. It is necessary
to develop a quadrature formula that can improve the stability of CKF iteration while
maintaining the filtering accuracy and controlling the number of computations.

Conventional CKFs and high-order spherical–radial filtering algorithms have high
performance under Gaussian noise conditions, but their accuracies decrease or even diverge
under non-Gaussian noise or mixed Gaussian noise conditions because they are based
on second-order information estimation via the KF framework. Unfortunately, in most
practical applications, because the system is affected by the surrounding environment,
e.g., unmanned equipment maneuvering extensively in a short time, process noise and
measurement noise typically do not obey the simple Gaussian distribution, which degrades
the performance of the conventional target-tracking algorithm of the cubature-based filter.

To solve this problem, scholars proposed some robust filters based on the conventional
KF framework, which can adapt to the noise of non-Gaussian systems. For a general linear
system containing non-Gaussian noise, Izanloo R et al. [14] developed a new optimization
objective function based on the maximum correntropy criterion (MCC) and combined it
with the weighted least squares (WLS) method. The fixed-point iteration method was used
to obtain the optimal solution of the state estimation equation, which was inserted into
the standard flow of the conventional KF to obtain the MCC-KF. The MCC-KF has the
same structure as the KF and uses higher-order (>2) statistics to obtain state estimation
parameters. Compared with the UKF and the Gaussian sum filter (GSF) [15], the MCC-KF
has a smaller estimation error and does not require the use of multiple filters or sigma
points; additionally, it has a lower computational complexity and less computations than
the UKF and GSF. Guoqing Wang et al. [16] proposed the maximum correlation entropy
unscented Kalman filter (MC-UKF) and unscented information filter (MC-UIF) based on
the MCC combined with the framework of the UKF and information filtering to solve the
filtering problem of nonlinear systems in non-Gaussian noise environments. Compared
with the existing UKF algorithm, similar or better estimation results are obtained. When the
core bandwidth is infinite, the proposed MC-UKF and MC-UIF converge to the UKF and
UIF, respectively. Qingwen Meng et al. [17] proposed a robust KF based on the third-degree
spherical–radial CKF and the smallest Cauchy kernel loss (CKL) function. Under the
filtering framework of the third-degree CKF, a new optimization objective function was
obtained by combining the WLS method with the smallest CKL function. The simulation
results of typical nonlinear systems verify that the MCK-CKF has strong robustness and a
high filtering efficiency against non-Gaussian noise. He et al. [18] proposed an adaptive
and robust CKF based on the MCC of the variable decibel Bayesian (VB) method to solve
the problems of unknown measurement noise covariance and outliers in a visual and dual
inertial measurement unit integrated-attitude system.

To overcome the shortcomings of robust KFs based on the MCCKF, MC-UKF, and
GSF algorithms with regard to the filtering accuracy and numerical stability, a new robust
nonlinear KF, based on a novel cubature formula and MCC is proposed in this study. In
contrast to the general spherical–radial criterion-based CKF, a new numerical integral
quadrature formula was first constructed using a fully symmetric quadrature criterion
and high-order divided difference formula to approximate the probability density of the
Gaussian weighted integral form in the CKF state and measurement update. A cubature
formula with good comprehensive performance is obtained, which considers the number
of cubature points, numerical stability, and calculation accuracy. Then, a new optimization
objective function and parameter estimation equation are defined by combining the WLS
method and MCC. The solving process is combined with the filtering process of the
constructed high-degree CKF framework to obtain a nonlinear KF, i.e., the fifth-degree
divided difference-maximum correntropy cubature Kalman filter (DD-MCCKF). Finally,
typical surface-target-tracking simulation examples were used to verify the performance
of the filter. The experimental results indicate that the fifth-degree DD-MCCKF has high
filtering accuracy and stability as compared to third-degree MCCKF, fifth-degree MCCKF,
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embedded MCCKF, and MC-UKF when there are two different types of non-Gaussian
mixture noise.

2. Construction of New High-Degree Cubature Formula
2.1. Nonlinear Filtering Problem and Gaussian Weighted Integral (GWI)

Consider the following nonlinear systems that can be described by discrete nonlinear
state–space models: {

xk+1 = f(xk, uk) + wk
zk = h(xk, uk) + vk

, (1)

where f(x, u) and h(x, u) are arbitrary nonlinear functions and wk and vk are the mutually
independent system process noise and measurement noise with covariance matrices Qk
and Rk, respectively. Further, uk represents the control input, and xk and zk represent the
system state and measurement, respectively, at time k.

The state posterior distribution p(xk|Zk) of the above discrete system at time k can
be estimated using the measurement set Zk = {z1, z2, . . . , zk} formulated in Equation (1),
according to the Bayesian estimation theory. Using the Chapman–Kolmogorov equation,
the posterior density can be estimated and updated as follows:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (2)

p(xk|Zk) =
p(zk|Zk)p(xk−1|Zk−1)∫
p(zk|Zk)p(xk|Zk−1)dxk

(3)

For nonlinear systems, the posterior density cannot be directly calculated because
the high-dimensional integral in the equation does not have an exact analytical solution.
Therefore, approximate or suboptimal Bayesian algorithms must be used for nonlinear
systems. There are some limitations to using the existing methods to filter nonlinear
non-Gaussian systems.

Because Equations (2) and (3) cannot be calculated accurately, and in consideration of
the accuracy and computational complexity, CKF is typically used as a Gaussian approxi-
mation filtering algorithm. Before using it, the following key assumptions of the one-step
posterior predictive PDF of the state xk and measurement zk conditioned by Zk must first
be made:

p(xk|Zk−1) = N
(

xk; x̂k|k−1, Pk|k−1

)
(4)

p(zk|Zk−1) = N
(

zk; ẑk|k−1, Pzz
k|k−1

)
(5)

By Equations (4) and (5) and the Bayesian rule, the posterior PDF of the state is also
Gaussian, that is, p(xk|Zk) = N

(
xk; x̂k|k, Pk|k

)
. In this manner, we transform the general

nonlinear filtering problem into a Kalman filtering problem under a Gaussian framework.
CKF is a suboptimal filtering algorithm that combines precision and computational

performance. The difficulty in the CKF filtering process lies mainly in calculating the
following Gaussian weighted integral (GWI):

G(f) =
∫

Rn
f(x)N(x; µ, Σ)dx . (6)

where f(x) is a multivariate function, x = (x1, x2, . . . , xn), which does not yield exact results
that conform to analytical expressions when f(x) is nonlinear and must be calculated by
numerical integral approximation methods.

As we know the expression of normal distribution function N(x; µ, P) from
Equation (7), this integral can be simplified by linear transformation of the integral variable.

N(x; µ, Σ) =
1

(2π)n/2|Σ|1/2 exp

(
− (x− µ)TΣ−1(x− µ)

2

)
. (7)
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Then, let x =
√

2Σv + µ. The specific integral form of the Gaussian weighted integral
can be simplified as follows:

G(f) =
∫

Rn
f(x)

(2π)n/2|Σ|1/2 exp
(
− (x−µ)TΣ−1(x−µ)

2

)
dx

= 1
(π)n/2

∫
Rn f
(√

2Σv + µ
)

exp
(
−vTv

)
dv

. (8)

The integral can be approximated numerically via many proposed numerical ap-
proximation methods. A typical example is the use of unscented transform (UT) or the
spherical–radial cubature criterion for approximation, which can be combined with the
KF framework to obtain the UKF or CKF, respectively. The third-degree spherical–radial
numerical integration formula is as follows:

∫
Rn

f
(√

2Σv + µ
)

exp
(
−vTv

)
dv ≈ (π)n/2

2n

N

∑
k=1

(
f
(√

2nΣek + µ
)
+ f
(
−
√

2nΣek + µ
))

(9)

where N = n represents the system dimension, and ek is the kth column in the n-order identity
matrix E. The identity matrices E and −E form the first set of fully symmetric cubature points in the
numerical approximation formula. This formula can stably approach the original integral with a
minimum number of cubature points.

From the numerical analysis point of view, the formula of untraced transformation (UT) shows
that when the dimension of the system, n, exceeds three, its stability decreases linearly with the
increase in dimension N, thus causing a significant disturbance in the numerical estimation of the
moment integral. Because there is no square root solution in the UKF, when the pseudo-square root
operation is performed on the error covariance matrix, a non-positively determined updated matrix
can be obtained owing to the existence of sigma points with negative weights in the UKF. Therefore,
it is impossible to express the square root UKF with a numerical advantage similar to the square
root-CKF by formula. The covariance matrix calculated by the UKF is not always guaranteed to be
positive definite, and the unavailability of the square root covariance causes the UKF to stop running.
However, the set of cubature points in the CKF does not have these problems. The cubature point
method is mathematically more accurate and principled than the sigma point method [6].

2.2. Commonly Used High-Degree Cubature Rules
The accuracy of the numerical integration formula is determined primarily by the order of the

fitting polynomial. Cubature formulas of the fifth degree can obtain higher numerical approximation
accuracy at the cost of using more cubature points. In the third-degree cubature formula, only the
GWI corresponding to polynomial

{
1, x2

1
}

is accurate, and its approximation error mainly comes from
the fourth order or higher polynomial integration in the expansion of function f (x). In the formula of
the fifth degree, the GWI corresponding to

{
1, x2

1, x4
1, x2

1x2
2
}

is accurate, and its approximation error
mainly comes from the GWI corresponding to the sixth and higher order polynomials. To ensure
numerical stability, the fifth degree can approximate GWI with higher numerical accuracy and obtain
more accurate integral results in simple numerical calculation problems.

To increase the approximation accuracy of the numerical integration for the cubature formula,
the third-degree cubature criterion in the CKF can be extended to higher degrees. For simplicity, we

use u(x) instead of f
(√

2Σx + µ
)

in this section.

2.2.1. Basic Formulas and Theorems
We consider the fully symmetric numerical integration formula of the following form:

G(u) =
∫

Rn
u(x) exp

(
xTx

)
dx ≈

N

∑
k=1

Wk∑
FS

u
(

r1k, r2k, . . . , rpk, 0
)

k
(10)

where
(

r1k, r2k, . . . , rpk, 0
)

k
represents the kth generator of cubature coordinate points and rpk repre-

sents the pth coefficients of the points. Further, Wk is the weight of the corresponding part of each
generator, and FS is a set of fully symmetric cubature points. The integral region Rn and the integrand
weighted function exp

(
−xTx

)
are completely symmetric, with exp

(
−xTx

)
> 0. In Rn, if the set of

evaluation points is fully symmetric and S is the union of the fully symmetric set Si, Equation (10)
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is called a fully symmetric numerical integration formula. The cubature points are generated by

different generators
(

r1k, r2k, . . . , rpk, 0
)

k
, and each generator corresponds to exactly one weight.

In addition, another integration method, the spherical–radial quadrature method, was proposed. In
Gaussian weighted integrals, the integrand weight function is of the form exp

(
−xTx

)
. Thus, Cartesian in-

tegration can be converted into a spherical integration via the n-dimensional spherical coordinate transfor-
mation x = rp with p = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 . . . sin θn−2 cos θn−1, sin θ1 . . . sin θn−2 sin θn−1).
Using the above coordinate transformation, variable substitution of the Gaussian weighted integral is
performed as follows:

G(u) =
∫

Rn u(x) exp
(
−xTx

)
dx

=
∫

Sn
dS
∫ ∞

0 u(rp)rn−1 exp
(
−r2)dr ≈

Nr

∑
k=1

Np

∑
l=1

wrkwplu(rksl)
(11)

This is the spherical radial integral. The integral region of the surface integral
Sn =

{
p ∈ Rn : p2

1 + p2
2 + . . . + p2

n = 1
}

is an n-dimensional hypersphere with radius 1. This spe-
cial surface integral can be approximated using the spherical isomorphic integration criterion and
Stroud’s integration formula. The radial integral can be calculated using the moment matching
algorithm and the generalized Gauss–Laguerre quadrille criterion.

In the approximate expression of Equation (11), rk and wrk are the corresponding points of radial
integrals and their weights respectively. sl and wpl are vectors corresponding to spherical integrals
and their weights, respectively. According to the cubature integration rules and the numerical
method of radial integration, the Gaussian weighted integral can be approximated using a fifth-
degree numerical integration formula with the radial integral formula and spherical integral formula.
All the fifth-degree cubature formulas based on the spherical–radial criterion can be summarized by
the form of Equation (11) [19].

To evaluate the computational complexity and numerical stability of the cubature formula, the
following two theorems were introduced:

Theorem 1. The cubature formula of degree 2s–1 has the minimum number of cubature points and given as
follows [20]:

Pmin =


(

n + s− 1
n

)
+

n−1
∑

k=1
2k−n

(
k + s− 1

k

)
, s = 2p, p ∈ N+

(
n + s− 1

n

)
+

n−1
∑

k=1

(
1− 2k−n

)(k + s− 2
k

)
, s = 2p− 1, p ∈ N+

. (12)

Theorem 2. When the system dimension n is so large that the signs of different weights of the cubature
formula are not always positive, the stability of the cubature formula can be evaluated according to the stability
coefficient discriminant, as follows:

stb =

M
∑

u=0

N
∑

k=1

∣∣Wu,k
∣∣

M
∑

u=0

N
∑

k=1
Wu,k

=

M
∑

u=0

N
∑

k=1

∣∣Wu,k
∣∣

G(1)
≥ 1 . (13)

According to Theorem 1, for all third-degree cubature formulas (including the common third-
degree spherical–radial rule-based formula), the minimum number of cubature points is 2n. Next, we
consider formulas of the fifth degree.

2.2.2. Fifth-Degree Cubature Formulas
• Formula I

Stroud et al. [21] provided a fully symmetric fifth-degree cubature formula based on the
spherical–radial integration method, which is one of the most widely used cubature formulas
in high-degree CKF robust algorithms. This formula uses Stroud’s formula [22] to approximate
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the spherical integral, and the radial integral is approximated via the Gauss–Laguerre numerical
integration method. It can be expressed as

G(u) ≈ 2(π)n/2

n + 2
u(0) +

(4− n)(π)n/2

2(n + 2)2 ∑
FS

u(s, 0) +
(π)n/2

(n + 2)2 ∑
FS

u(r, r, 0) , (14)

where s =
√

n
2 + 1 and r =

√
n
4 + 1

2 . The generation method for fully symmetric cubature points is
as follows:

(s, 0) =
√

2

 s 0 0 −s 0 0
· · · · · · · · · · · · · · · · · ·
0 0 s 0 0 −s


U1 =

√
2r(e1 + e2, . . . , e1 + en, e2 + e3, . . . , e2 + en, . . . , en−1 + en)︸ ︷︷ ︸

n(n−1)/2

U2 =
√

2r(e1 − e2, . . . , e1 − en, e2 − e3, . . . , e2 − en, . . . , en−1 − en)︸ ︷︷ ︸
n(n−1)/2

(r, r, 0) = (U1,−U1, U2,−U2)

(15)

Bin Jia et al. applied Stroud’s cubature formula to the parameter estimation of a nonlinear KF
and obtained the HDCKF. In the high-degree KF of [10], Equation (14) is rewritten as

G(u) ≈ 2(π)n/2

n+2 u(0) + (4−n)(π)n/2

2(n+2)2

n
∑

k=1

(
u
(√

n + 2ek
)
+ u

(
−
√

n + 2ek
))

+ (π)n/2

(n+2)2

n(n−1)/2
∑

k=1

(
u
(√

n + 2l+k
)
+ u

(
−
√

n + 2l+k
)

+u
(√

n + 2l−k
)
+ u

(
−
√

n + 2l−k
)) , (16)

where l+k = ek + el, l−k = ek − el, k < l ≤ n. Equations (14) and (16) are essentially identical. The
total number of cubature points is 2n2 + 1. According to Theorem 2, when n is sufficiently large, its
asymptotic stability coefficient converges to 3, resulting in a cubature formula with good numerical
stability.

• FormulaII

Mysovskikh [23] derived the spherical integral formula according to the transformation group
of the regular simplex. Lu and Darmofal [24] proposed a new fifth-degree cubature formula based on
the integral formula of Mysovskikh, which is similar to the formula proposed by Stroud et al. It also
decomposes the Gaussian weighted integral into the product of the spherical and radial integrals:

G(u) ≈ 2(π)n/2

n+2 u(0)

+
n2(7−n)(π)n/2

2(n+1)2(n+2)2

n+1
∑

k=1

(
u
(√

n
2 + 1ak

)
+ u

(
−
√

n
2 + 1ak

))
+

2(n−1)(π)n/2

(n+1)2(n+2)2

n(n+1)/2
∑

k=1

(
u
(√

n
2 + 1bk

)
+ u

(
−
√

n
2 + 1bk

))
.

(17)

In this formula, the values of the cubature points and parameters are given as follows:

ak =
(
a1,k, a2,k, . . . , an,k

)T , k = 1, 2, . . . , n + 1

ai,k =


−
√

n+1
n(n−i+2)(n−i+1) , i < k√
(n+1)(n−k+1)

n(n−k+2) , i = k
, bk =

√
n

2(n−1)vk,

Vn× n(n+1)
2

= (a1 + a2, . . . , a1 + an+1, a2 + a3, . . . , a2 + an+1, . . . , an + an+1)︸ ︷︷ ︸
n(n+1)/2

,

(18)

where ak represents the n + 1 vertices of n-dimensional hypersphere Sn, and bk represents the
topological mapping of the midpoints of the vertices of the simplex on hypersphere Sn. The number
of cubature points required by this formula is n2 + 3n + 3. For low dimensional systems, this formula
requires more cubature points than the cubature formula of HDCKF, and resulting in unnecessary
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costs. According to Theorem 2, the stability index of the formula can be calculated as stb = 3,
indicating that the algorithm has good numerical stability. However, it is difficult to extend and
improve the formula, because of the complex structure of the spherical simplex criterion.

• FormulaIII

According to Stroud’s invariance theory for cubature integrals, McNamee et al. [13] constructed
a group of fully symmetric integration formulas with order 2k + 1 in the n-dimensional space as:

G(u) ≈ T(u) = W0u(0) + W1∑
FS

u(r, 0) + W2∑
FS

u(r, r, 0) (19)

This cubature formula is a special form of Equation (10) in the fifth-degree case. Zhang et al. [12]
applied it to nonlinear Kalman filtering and formed an ECKF. The fully symmetric quadrature
formula of the fifth degree is

G(u) ≈ (n2−7n+18)(π)n/2

18 u(0)

+ (4−n)(π)n/2

18 ∑
FS

u
(√

3
2 , 0
)
+ (π)n/2

36 ∑
FS

u
(√

3
2 ,
√

3
2 , 0
)

.
(20)

In this formula, nonlinear equations are constructed and weight coefficients are obtained by
solving the fully symmetric cubature criterion. The number of required cubature points is 2n2 + 1,
leading to a simple structure and a small number of calculations. In contrast to Equations (16) and (17)
obtained using spherical radial integration, the coefficient of cubature points

√
3/2 is a fixed value

and does not increase with the system dimension n. The problem of cubature points exceeding the
integral domain in the spherical integral formula is avoided. However, according to Theorem 2, the
stability coefficient is 2n2−8n+9

9 ; thus, the numerical stability of this formula is poor. In addition, for
systems with sufficiently large values of n, the weights are negative, which further affects the stability.

2.3. Novel High-Order Cubature Formula Based on Fully Symmetric Cubature Criterion and
Divided Difference Formula

This section describes the construction of a novel fifth-degree cubature formula using a new
method to maintain the filtering accuracy and numerical stability while controlling the number of
cubature points required for integration.

First, the partial-derivative formula is used to modify the original formula to increase accuracy.
Generally, it is difficult to directly calculate the partial derivative of a multivariable continuous
function at a certain point. To avoid complex calculations, we use discrete high-order divided
difference formulas to approximate the value of the partial derivatives and write them as linear
combinations of the original functions. Because the weight function of the Gaussian weighted integral
is a fully symmetric function, the integral of the partial derivatives of odd order is zero, and only
the partial derivatives of the even order must be considered. From Equation (19), the new cubature
formula modified by the high-order divided difference and even-order divided difference formula of
f (x) is expressed as follows:

Ĝ( f ) = T( f ) +
n
∑

k=1
∇xk

4 f (x)x=0 + ∑
k<l
∇xk

2
(
∇xl

2 f (x)
)

x=0

∇x
2n f (x) =

2n
∑

k=0

(2n)! f (x−(n−k)r)
2n−k−1

∏
u=0

(r(2n−k)−ur)
2n
∏

u=2n−k+1
(r(2n−k)−ur)

.
(21)

For example, the first two high-order divided difference formulas can be expressed as follows:

∇x
2 f (x) = f (x−r)−2 f (r)+ f (x+r)

r2 ,

∇x
4 f (x) = f (x−2r)−4 f (x−r)+6 f (r)−4 f (x+r)+ f (x+2r)

r4 . . .
, (22)

where r represents the selected step size for the divided differences. By combining the above formulas,
Equation (21) with the fully symmetric integral formula with Equation (19), a new form of the fifth-
degree cubature formula is obtained as follows:

Ĝ(u) = W0u(0) + W1∑
FS

u(r, 0) + W2∑
FS

u(2r, 0) + W3∑
FS

u(r, r, 0) . (23)
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The definitions of cubature generators (r, 0) and (r, r, 0) are identical to those in Equation (15).
Compared with Equations (14), (17), and (20), the newly constructed cubature formula uses discrete
derivatives and has a higher accuracy. However, it uses more cubature points. To determine the
weight coefficient of the above equation, it is necessary to construct a set of higher-order algebraic
equations. According to the fully symmetric cubature criterion, consider the Gaussian weighted
integral of the following even-power monomial function:

I2s1,2s2,...2sv =
∫ ∞

0 (x1)
2s1 (x2)

2s2 . . . (xv)
2sv exp

(
−xTx

)
dx

i ≤ j, 0 ≤ si ≤ sj, 2 ∑
k≤v

sk ≤ 5. (24)

Note the above conditions for the sk value; in the fifth-degree cubature formula, only the
integrals I0,0, I0,2, I0,4 and I2,2 must be calculated. The following formula based on the gamma
function is used to calculate the integrals:

I2a,2b =
∫

Rn (x1)
2a(x2)

2b exp
(
−xTx

)
dx

=
(∫ ∞

0 (x1)
2ae−x2

1 dx1

)2(∫ ∞
0 (x2)

2be−x2
2 dx2

)2∫
Rn−2 exp

(
−
(

x(n−2)
)T

x(n−2)
)

dx(n−2)

= Γ
(

a + 1
2

)
Γ
(

b + 1
2

)
(π)n/2−1, a, b ≥ 0.

(25)

By combining the coefficients of the above monomial function with the newly constructed
cubature formula of Equation (23), the following fully symmetric polynomial can be obtained [13]:

Mua,b ,Ia,b = 2rN

p

∑
k1=1
· · ·

p

∑
kv=1

(n− v)!r2s1
k1

. . . r2sv
kv

(n− rN)!

 p

∏
j=1

(
pj − qj

)
!

−1

(k1,...,kv)

(26)

This polynomial is used to calculate the coefficient-matrix elements of the higher-order algebraic
equations corresponding to the newly constructed cubature formula. Here, rN represents the number
of nonzero vector coefficients at the cubature points used in each part of Equation (23), and p
represents the number of nonzero vector coefficients in each generator of the new formula which is
different from the others. Thus, rN and p can be easily obtained using the above formula. pj and qj
represent the numbers of times that the coefficient r of the cubature points and the integer j appear in
the counting units k1, . . . , kv of the sum, respectively.

According to the different cubature points in Equation (23), different integral trajectories are
selected, and the parameters are calculated using Equations (25) and (26). Thus, the coefficient matrix
of the higher-order algebraic equation can be obtained:

rN = 2, p = 1⇒ (r, r, 0)
rN = 1, p = 1⇒ (ar, 0)

rN = 0, p = 0⇒ 0
→

0 (r, 0) (2r, 0) (r, r, 0)
⇓ ⇓ ⇓ ⇓

1 2n 2n 2n(n− 1)
0 2r2 2(2r)2 4(n− 1)r2

0 2r2 2(2r)2 4(n− 1)r4

0 0 0 4r4


Mu,I

.
(27)

Using Equations (23), (25), and (26), we can construct a higher-order algebraic system for solving
weight coefficients: 

W0 + 2nW1 + 2nW2 + 2(n− 1)nW3 = I0,0

2W1r2 + 8W2r2 + 4(n− 1)W3r2 = I0,2

2W1r4 + 32W2r4 + 4(n− 1)W3r4 = I0,4

4r4W3 = I2,2

 . (28)

To solve the above algebraic equations, the following unique solution of the weight coefficients
can be obtained:

W0 =
πn/2(2n2−10nr2+n+16r4)

16r4 , W1 =
πn/2(8r2−3n)

24r4 ,

W2 =
πn/2(3−2r2)

96r4 , W3 = πn/2

16r4

. (29)
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To maintain the approximate accuracy and numerical stability while minimizing the number
of cubature points used, we can take r =

√
3n/8 or

√
3/2 obtain a new set of weight coefficients.

When r =
√

3/2, we obtain the cubature formula of the embedded KF in Equation (20), which has
inadequate numerical stability; thus, we take r =

√
3n/8. The weight solution is as follows:

W0 =
2(n + 2)πn/2

9n
, W1 = 0, W2 = − (n− 4)πn/2

18n2 , W3 =
4πn/2

9n2 . (30)

Therefore, Equation (23) can be written as

Ĝ(u) = 2(n+2)πn/2

9n u(0)− (n−4)πn/2

18n2 ∑
FS

u
(√

3n
2 , 0

)
+ 4πn/2

9n2 ∑
FS

u
(√

3n
8 ,
√

3n
8 , 0

)
.

(31)

The total number of points in the new cubature formula is 2n2 + 1, and the stability coef-
ficient is 11n−8

9n > 1 (when n > 4). The numerical stability of this formula is superior to that of
Equation (20) for the embedded KF, and the number of cubature points used is equal to that for
Equation (16). The new formula has a simpler structure and a smaller cubature-points coefficient
r than Equations (14) and (17), which improves the numerical stability. To ameliorate the non-local
sampling problem of point coordinates caused by the increase in system dimensions, we adjust the
coordinate parameters of the cubature points in the above cubature formula:

Ĝ(u) = 2(n+2)πn/2

9n u(0)− (n−4)πn/2

18n2 ∑
FS

u
(√

3(n−c)
2 , 0

)
+ 4πn/2

9n2 ∑
FS

u
(√

3(n−c)
8 ,

√
3(n−c)

8 , 0
)

, 0 < c < 1.
(32)

Fine-tuning the parameters can not only maintain the accuracy of the cubature formula but also
reduce the influence of nonlocal sampling problems.

3. Robust KF Based on New Cubature Formula and MCC
3.1. Cross-Correntropy Formula

As a statistical measure of the similarity between two random variables, the cross-correntropy
formula has been widely used in non-Gaussian noise-signal processing. Cross-correntropy is a
generalized variable that characterizes the correlation between a pair of scalar random variables
and can measure not only second-order information but also high-order moments of the joint
probability density. The cross-correntropy between two scalar random variables can be expressed by
the mathematical expectation of the positive-definite kernel function Kσ(x, y) [14]:

Hσ(X, Y) = E(Kσ(X, Y)) =
x

R2

Kσ(x, y) fXY(x, y)dτ. (33)

Here, fXY(x, y) is the joint probability density function between two random variables. Under
normal circumstances, the joint distribution function between random variables cannot be accurately
obtained; thus, it can only be estimated using a discrete approximation formula and a limited number
of sample data points:

HσE =
1
n

n

∑
k=1

Kσ(xk, yk). (34)

In the above expression, {xk, yk}n
1 is a sample extracted from the joint distribution function

FXY(x, y). We selected the Gaussian correlation entropy function for the estimation, which is a
positive definite kernel function that satisfies Mercer’s theory:

Kσ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
. (35)

where e = x− y and σ represents the bandwidths of the kernel function. The Gaussian function has a
series of advantageous properties. For example, it is positive and bounded, and the maximum point
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is zero. The MCC is obtained using the correlation entropy estimation formula based on the Gaussian
function. Expanding the kernel function in Equation (34) using the Taylor series:

HσE =
∞

∑
k=0

1
k!

(
− 1

2σ2

)k
E
[
(X−Y)2k

]
(36)

According to the series expression above, the correlation entropy can extract the information
of all even moments of X − Y under the appropriate kernel bandwidth. This helps us to use the
higher-order moment information of the signal better.

3.2. Parameter Estimation Method Based on Correntropy Criterion
According to the derivation process of the original Kalman filter, the state update equation of

the conventional Kalman filter can be obtained under the assumption that the innovation conforms
to a Gaussian distribution. When interference values and outliers exist in the noise of the state or
observation information, the hypothesis that innovation conforms to the Gaussian distribution in
Equations (4) and (5) is no longer satisfied, resulting in a reduced filtering effect. Therefore, a robust
method should be introduced to optimize the original Kalman filter framework.

Izanloo R et al. [14] combined the weighted matrix with the cost function of the c-filter and
obtained the cost function of the WLS method and the MCC for a linear system, so that the least-
variance estimation and high-order moment information were combined in the filtering process, and
the estimation process was embedded into the conventional KF framework. A KF with robustness
was obtained. According to this cost function, a new generalized cost function is designed, and its
parameter estimation process is extended to the filtering process of nonlinear systems. Using the
nonlinear filter framework presented in Section 2.1, together with the WLS method and MCC, we
give the generalized cost function as follows:

J = Gσ

(
‖xk −

^
xk|k−1‖

2
P−1

k|k−1

)
+ γGσ

(
‖zk −

¯
Hkxk −

^
zk|k−1 +

¯
Hk

^
xk|k−1‖

2
¯
R
−1

k

)
, (37)

where ‖x‖2
R = xTRx, xk,

^
xk|k−1, zk

^
zk|k−1 and Pk|k−1 are the prediction, the update state vector, the

observation vector and the state covariance matrix in the KF framework, respectively. γ is an
undetermined constant. We use statistical linearization [25] to solve nonlinear filtering problems.
¯
Rk = Pzz −

¯
HkPk|k−1

¯
H

T

k is the noise covariance matrix of the statistically linearized observation

vector, and
¯
Hk = PT

xzP−1
k|k−1 is the coefficient matrix of the statistically linearized observation vector.

To minimize the above objective function J, we first calculate its derivative with respect to xk:

∂J
∂xk

= γ
HT

k R−1
k Gσ

(
‖zk−Hkxk−ẑk|k−1+Hkx̂k|k−1‖

2
R−1

k

)
(zk−Hkxk−ẑk|k−1+Hkx̂k|k−1)

σ2

−Gσ

(
‖xk − x̂k|k−1‖

2
P−1

k|k−1

)
P−1

k|k−1(xk−x̂k|k−1)
σ2

. (38)

By setting this to 0, the following matrix equation is obtained:

γGkHT
k R−1

k

(
zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1

)
= P−1

k|k−1

(
xk − x̂k|k−1

)
Gk =

Gσ

(
‖zk−Hkxk−ẑk|k−1+Hkx̂k|k−1‖

2
R−1

k

)
Gσ

(
‖xk−x̂k|k−1‖

2
P−1

k|k−1

) (39)

According to the equation, we take the constant parameter γ = 1, and simplify the above
equation to obtain a simple equation involving xk:(

P−1
k|k−1 + GkHT

k R−1
k Hk

)
xk = GkHT

k R−1
k

(
zk − ẑk|k−1

)
+
(

P−1
k|k−1 + GkHT

k R−1
k Hk

)
x̂k|k−1

xk =
(

P−1
k|k−1 + GkHT

k R−1
k Hk

)−1
GkHT

k R−1
k

(
zk − ẑk|k−1

)
+ x̂k|k−1

(40)
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Then, we obtain the new state-estimation expression for a robust KF:

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
;

K̂G
k =

(
P−1

k|k−1 + GkHT
k R−1

k Hk

)−1
GkHT

k R−1
k .

(41)

In the KF framework, we replace Hkxk with Hkx̂k|k−1 and substitute the corresponding state
estimation vector of xk:

Gk =
Gσ

(
‖zk −Hkxk − ẑk|k−1 + Hkx̂k|k−1‖

2
R−1

k

)
Gσ

(
‖xk − x̂k|k−1‖

2
P−1

k|k−1

) ⇒
Gσ

(
‖zk − ẑk|k−1‖

2
R−1

k

)
Gσ

(
‖x̂k|k−1 − x̂k−1|k−1‖

2−1
Pk|k−1

) (42)

Then, we obtain the following state-estimation expression for a robust KF:


Kk = Pxz

k|k−1(P
zz
k|k−1)

−1

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
Pk|k = Pk|k−1 −KkPPz

z
k|k−1KT

k

⇒



Hk =
(

Pxz
k|k−1

)T
P−1

k|k−1

Rk = Pzz
k|k−1 −HkPk|k−1HT

k

Gk =
Gσ

(
‖zk−ẑk|k−1‖2

R−1
k

)
Gσ

(
‖x̂k|k−1−x̂k−1|k−1‖2

Pk−1−1

)

K̂G
k =

(
P−1

k|k−1 + GkHT
k R−1

k Hk

)−1
GkHT

k R−1
k

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
Pk|k =

(
E− K̂G

k Hk

)
Pk|k−1

(
E− K̂G

k Hk

)T

+K̂G
k Rk

(
K̂G

k

)T

traditional(a) robust(b)

(43)

The above formula is used to replace the gain in the original Kalman filtering process and to update the
state vector and covariance estimation. The algorithm flow of robust Kalman filtering can be obtained using the
new cubature formula derived in Section 2.3.

3.3. Robust KF Based on New Fifth-Degree Cubature Formula and MCC
In the following algorithm, we use diagonalization transformation to solve the square root of the matrix.

With regard to numerical stability, the diagonalization transformation is better than the Cholesky decomposition
method used in the general CKF algorithm. Cholesky decomposition requires the matrix to be positive-definite,
which may lead to process instability or even to algorithm divergence.

We now present the time update and measurement update processes of the proposed robust KF algorithm.

3.3.1. Initialization of Cubature Points and Parameters
The state vector and covariance matrix are initialized as follows:

x̂0|0 = E(x0), P0|0 = E
[(

x0 − x̂0|0

)(
x0 − x̂0|0

)T
]

. (44)

The trajectory nodes of the integration required by the fifth-degree algorithm are generated:

U1 =
√

3(n−c)
4 (e1 + e2, . . . , e1 + en, e2 + e3, . . . , e2 + en, . . . , en−1 + en)︸ ︷︷ ︸

n(n−1)/2

U2 =
√

3(n−c)
4 (e1 − e2, . . . , e1 − en, e2 − e3, . . . , e2 − en, . . . , en−1 − en)︸ ︷︷ ︸

n(n−1)/2

(45)

Then, we initialize the different weights in the cubature formula and their corresponding cubature points:
N f = 2n2 + 1
χ(1) = 0
χ(2,...,2n+1) =

√
3(n− c)(E,−E)

χ(2n+2,...,2n2+1) = (U1,−U1, U2,−U2)

,


w(1) =

2(n+2)
9n

w(2,...,2n+1) = −
(n−4)
18n2

w(2n+2,...,2n2+1) =
4

9n2

. (46)



J. Mar. Sci. Eng. 2022, 10, 1070 13 of 24

3.3.2. Time Update
The diagonalization transformation given above is used to calculate the square-root matrix of the covariance

matrix [26]:
Pk|k = UIΛk|kUT

I , Uk|k = UI
√

Λk|kUT
I

Λk|k =


√

λ1 0 · · · 0
0

√
λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · ·

√
λn


Pk|k

.
(47)

Then, the new cubature points are calculated by substituting the integral variable into Equation (8) and its
corresponding state function value:

Xl
k−1|k−1 = Uk−1|k−1χk−1 + x̂k−1|k−1, X(l)

k−1|k−1 = f
(

Xl
k−1|k−1

)
(48)

Next, the state-vector prediction and state error covariance matrix prediction are calculated:
x̂k|k−1 =

N f

∑
l=1

wlf
(

Xl
k−1|k−1

)
=

N f

∑
l=1

wlX
(l)
k−1|k−1

Pk|k−1 =
N f

∑
l=1

wl

(
X(l)

k−1|k−1 − x̂k|k−1

)(
X(l)

k−1|k−1 − x̂k|k−1

)T
+ Qk−1

. (49)

3.3.3. Measurement Update
Similar to Equation (46), diagonalization transformation is performed on the state prediction covariance

matrix to obtain the square-root matrix:

Pk|k−1 = UJΛk|k−1UT
J , Uk|k−1 = UJ

√
Λk|kUT

J . (50)

The new cubature points are calculated after the Gaussian integral substitution, along with the correspond-
ing measurement-function value:

Xl
k|k−1 = Uk|k−1χk + x̂k|k−1, Zl

k|k−1 = h
(

Xl
k|k−1

)
. (51)

The measurement vector estimation, autocorrelation covariance matrix, and cross-covariance matrix
are evaluated: 

ẑk|k−1 =
N f

∑
l=1

wlh
(

Xl
k|k−1

)
=

N f

∑
l=1

wlZl
k|k−1

Pzz
k|k−1 =

N f

∑
l=1

wl

(
Zl

k|k−1 − ẑk|k−1

)(
Zl

k|k−1 − ẑk|k−1

)T
+ Rk

Pxz
k|k−1 =

N f

∑
l=1

wl

(
Xl

k|k−1 − x̂k|k−1

)(
Zl

k|k−1 − ẑk|k−1

)T
.

(52)

We calculate the statistical linearization update matrix and covariance matrix of the measurement function:

Hk =
(

Pxz
k|k−1

)T
P−1

k|k−1, Rk = Pzz
k|k−1 −HkPk|k−1HT

k . (53)

We then compute the correlation entropy coefficient based on the Gaussian kernel function and
weighted norm:

Gk =

Gσ

(
‖zk − ẑk|k−1‖

2
¯
R
−1

k

)

Gσ

(
‖x̂k|k−1 − x̂k−1|k−1‖

2
P−1

k|k−1

) . (54)

Finally, we calculate the new gain matrix of the robust KF; then, the updated state vector estimation and
updated covariance matrix are computed according to the new gain matrix:

K̂G
k =

(
P−1

k|k−1 + GkHT
kR−1

k Hk

)−1
GkHT

kR−1
k

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
Pk|k =

(
E− K̂G

k Hk

)
Pk|k−1

(
E− K̂G

k Hk

)T
+ K̂G

k Rk

(
K̂G

k

)T

. (55)

4. Simulation Experiment of Target Tracking Based on Proposed Algorithm
4.1. Filtering Simulation Experiment and Numerical Analysis of Cubature Formulas

We evaluated the filtering performance of the CKF using the cubature formula proposed in Section 2 through
simulation experiments.
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Consider the following nonlinear system equation with trigonometric functions, exponential functions, and
power functions [20]: 

Process equation :

xk =


x(1)k

x(2)k

x(3)k

 =


3 sin2

(
5x(2)k−1

)
x(1)k−1 + e−0.05x(3)

k−1 + 10

0.2x(1)k−1

(
x(2)k−1 + x(3)k−1

)
+ wk−1

Measurement equation :

zk = cos
(

x(1)k

)
+ x(2)k x(3)k + vk

. (56)

The process noise is wk ∼ N(0, Q), Q = 0.1E3, where En is the n-dimensional identity matrix.
The measurement noise is vk ∼ N(0, R), R = 1.0. In the simulation experiment, the initial vector
was set as x0 = (1, 1, 1)T , and the initial covariance matrix was set as P0|0 = diag(0.1, 0.1, 0.1). In
addition to the proposed 5th-degree DDCKF (Equation (32)), the following HDCKFs were used
for comparison:

• Equation (11), 3rd-degree CKF;
• Equation (14), 5th-degree simplified CKF (SCKF);
• Equation (17), 5th-degree CKF; and
• Equation (20), 5th-degree ECKF.

The initial conditions of all the filters were identical at the beginning of each simulation, and the
simulation time was 40 s. The root-mean-square error (RMSE) was used as an evaluation index for
the filtering performance. The RMSE and average RMSE (ARMSE) were defined as follows:

RMSE(x,xt) =

√
1
N

N
∑

k=1

3
∑

l=1

(
x(l)k − x̂(l)k|k

)2

ARMSE(x) =
1
A

A
∑

k=1
RMSE(x,xk)(k)

(57)

where N represents the number of Monte Carlo simulation runs, and A represents the timestep
(in s) of the simulation experiment. We set N = 100 and A = 40. Additionally, we set c = 0 in
Equations (45) and (46). The simulation results are shown in Figure 1.

From the RMSE results of the simulation experiment in Figure 1, it can be concluded that the
filtering accuracy of the 3rd-degree CKF was the lowest when the system was highly nonlinear,
because it only used 2N cubature points and the low-order cubature formula with low accuracy to
approximate the probability density; thus, it could not obtain a good approximation. Among the
5th-degree formulas, the SCKF had a slightly higher average filtering accuracy than the ECKF, and
the proposed DDCKF had the highest accuracy. In such a low-dimension nonlinear system, the
cubature of the 5th-degree CKF is n2 + 3n + 3; thus, the number of cubature points required by the
5th-degree CKF exceeded those for the other filters, leading to a larger number of computations.
According to the experimental results, compared with the other 5th-degree algorithms, the DDCKF
has better filtering performance for systems with a high degree of nonlinearity. The ARMSE values of
the algorithms are presented in Table 2.

Table 2. Performance indices of the different filters used in Experiment 4.1.

Cubature Filters Number of Points ARMSE Pos

3rd -degree CKF 2n = 6 2.2091
5th-degree SCKF 2n2 + 1 = 19 1.3428
5th-degree CKF n2 + 3n + 3 = 21 1.5959

5th-degree ECKF 2n2 + 1 = 19 1.5284
(Proposed) 5th-degree

DDCKF 2n2 + 1 = 19 1.0193
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According to the ARMSE results, the 3rd-degree CKF requires the least number of cubature
points, but it has the lowest filtering accuracy. The proposed DDCKF algorithm achieved the highest
filtering accuracy when the number of cubature points was maintained.

4.2. Simulation Experiment of Robust Target Tracking Based on DD-MCCKF and Surface
Target-Tracking Models
4.2.1. Simulation Experiment of Robust Filtering Based on the Constant Velocity (CV)
Tracking Model of the Surface Target

In this experiment, the following target-tracking model is used to verify the filtering performance
of the proposed robust CKF algorithm for the model with high maneuvering speed and non-Gaussian
noise. Consider the following constant velocity (CV) surface target-tracking model:

State equation :

xk =


xk.
xk
yk.
yk

 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




xk−1.
xk−1
yk−1.
yk−1

+


T2

2 0
T 0
0 T
0 T2

2

wk−1

Measurement equation :

zk =


√

x2
k + y2

k

arctan
(

yk−yl
xk−xl

)
+ vk

. (58)

The CV model is a type of coordinate-uncoupled model. These models assume that the target
maneuvering process in three orthogonal directions is uncoupled in three-dimensional space. Target
maneuvering is caused by acceleration changes caused by external forces. Therefore, the difficulty
of maneuvering modeling lies in the description of the target acceleration. For high-speed surface
targets, the CV model is often used to describe the movement of such targets.

In this model, wk and vk are the mutually independent system process noise and measurement
noise with covariance matrices Qk and Rk, and the sampling period is T.

The position RMSE, velocity RMSE, and ARMSE were defined as the filtering-accuracy evalua-
tion criteria:

RMSECVpos =

√
1
N

N
∑

k=1

[(
xk − x̂k|k

)2
+
(

yk − ŷk|k
)2
]

RMSECVvel =

√
1
N

N
∑

k=1

[( .
xk −

.̂
xk|k
)2

+
( .

yk −
.̂
yk|k

)2
]

ARMSEany = 1
A

A
∑

k=1
RMSEany(k) ,

(59)
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where N represents the number of Monte Carlo simulation runs, and A represents the timestep of the
simulation experiment. The initial values of the state variable and the error covariance matrix are x0
and P0|0, respectively. In this experiment, the parameters were initialized as follows:

Q1 = q2
1

[
M1 0
0 M1

]
, Q2 = q2

2

[
M2 0
0 M2

]
q1 = 0.2, q2 = 0.3, Mk =

[
T3

k /3 T2
k /2

T2
k /2 Tk

]
, T1 = 1, T2 = 1

2

R1 = 0.1diag
{
(20 m)2,

(
6π
180

)2
rad
}

, R2 = 0.1diag
{
(30 m)2,

(
8π
180

)2
rad
} . (60)

To set different types of the non-Gaussian state noise and measurement noise environment

based on
{

wk ∼ (1− η)N(0, Q1) + ηN(0, Q2)
rk ∼ (1− η)N(0, R1) + ηN(0, R2)

, we considered the following conditions:

Condition 1. Under mixture noise, η = 1
2 :

wk1 ∼
1
2

N1(0, Q1) +
1
2

N2(0, Q2) , rk1 ∼
1
2

N1(0, R1) +
1
2

N2(0, R2) . (61)

Condition 2. Under mixture noise, η = 2
3 :

wk2 ∼
1
3

N(0, Q1) +
2
3

N(0, Q2) , rk2 ∼
1
3

N(0, R1) +
2
3

N(0, R2) . (62)

Experiment 1. Comparison of the filtering performance between robust and regular 3rd-degree CKF in the
non-Gaussian noise Environment (61).

First, to verify the strong tracking performance of the algorithm proposed in this study and
compare it with the traditional nonlinear Kalman filter in a non-Gaussian noise environment, a target
tracking experiment based on a 3rd-degree CKF was carried out for the above CV tracking model, in
which the status update process of CKF(regular) was implemented using Formula (43a). The status
updating process of CKF(robust) was realized using Formula (43b).

We set the initial value of the state variable and the error covariance matrix as
x0 = (100 m, 30 m/s, 100 m, 20 m/s)T and P0|0 = diag

(
10 m2, 1 m2/s2, 10 m, 1 m2/s2

)T
, respec-

tively. In this experiment, we set N = 200 times and A = 150 s. Additionally, we set c in Equations (45)
and (46) as 1/3. Other parameters and initial values in the experiment were evaluated according to
Equation (60).

The simulation results are shown in Figures 2 and 3:
Therefore, from the above experiments, the state-updating process proposed in this study is

more robust than the traditional nonlinear Kalman filter in a strong non-Gaussian noise environment.
This experiment proved that the proposed method is effective and feasible.

Experiment 2. Comparison of the filtering performance of five types of robust nonlinear Kalman filters in a
non-Gaussian noise environment, Equations (61) and (62), respectively:

In the experiment in this section, the robust filter MCUKF proposed in [16], MCSCKF proposed
in [27], and E-MCCKF and S-MCCKF, which are formed by Equations (14) and (20), and the MCC
method proposed in this study were compared with the robust algorithm DD-MCCKF proposed in
this study in a non-Gaussian state and measured noise Environment (61) and (62).

We set the initial value of the state variable and the error covariance matrix as
x0 = (100 m, 30 m/s, 100 m, 20 m/s)T and P0|0 = diag

(
10 m2, 1 m2/s2, 10 m, 1 m2/s2

)T
, respec-

tively. The number of Monte Carlo simulation N = 1× 105 times and A = 120 s. Additionally, we
set c in Equations (45) and (46) as 1/3, and the other parameters and initial values in the experiment
were evaluated according to Equation (60).
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The simulation results are shown in Figures 4–6:
The running time of the algorithm was 120 s. The results show that, similar to related properties

introduced in Section 2.1, the comprehensive numerical performance of UKF was not as good as
that of 3rd-degree CKF, resulting in the highest mean square error and the lowest filtering accuracy
of MCUKF. In addition, when n = 4, the number of cubature points used by 5th-degree SCKF and
ECKF was the same as those used by the DDKCF proposed in this study. The formula structure was
similar. Thus, the calculation amount was very similar. Because DD-CKF maintains the numerical
stability when the system dimension is large while calculating with fewer cubature points, and
Formula (32) carries out a certain displacement of the coefficient of cubature points to reduce the
non-sampling error, the accuracy of DD-MCCKF was slightly higher than that of other algorithms in
tracking experiments.

As shown in Table 3, the proposed DD-MCCKF algorithm had the highest estimation accuracy
under the premise of using fewer cubature points in a non-Gaussian noise environment.
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Table 3 shows the number of points and ARMSE of each algorithm in Experiment 2 above.
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Table 3. Number of points used by different filtering algorithms in Experiment 1, along with the
ARMSE for the position and velocity.

Robust Filters Number of
Points

ARMSE Pos
(C1, C2)

ARMSE Vel
(C1, C2)

MCUKF 2n = 8 63.26 39.98 3.261 2.444
3rd-degree MCSCKF 2n = 8 25.28 24.47 1.496 1.428
5th-degree E-MCCKF 2n2 − 2n + 1 = 25 21.92 20.91 1.432 1.354
5th-degree S-MCCKF 2n2 − 2n + 1 = 25 20.37 19.43 1.401 1.323
(Proposed) 5th-degree

DD-MCCKF 2n2 − 2n + 1 = 25 18.96 18.49 1.392 1.320

4.2.2. Simulation Experiment of Robust Filtering Based on Cooperative Turning Tracking
Model of Surface Targets

The cooperative turning (CT) model is a coordinate coupling model. In most cases, the coordi-
nate coupling model refers to a turning motion model. Because this type of model is closely related
to the coordinates, it can be divided into two types: two-dimensional and three-dimensional turning
models. The two-dimensional turning model is also called the planar turning model, that is, the
CT model.

The CT model is one of the most important maneuvering models in surface target tracking. It is
a commonly used model to describe maneuvering target in USV tracking. The state equation and
measurement equation of the CT model are as follows:

xk =


xk.
xk
yk.
yk
ωk

 =



1 sin(ωk−1T)
ωk−1

0 cos(ωk−1T)−1
ωk−1

0

0 cos(ωk−1T) 0 − sin(ωk−1T) 0

0 1−cos(ωk−1T)
ωk−1

1 sin(ωk−1T)
ωk−1

0

0 sin(ωk−1T) 0 cos(ωk−1T) 0

0 0 0 0 1




xk−1.
xk−1
yk−1
yk−1
ωk−1

+ wk−1

zk =


√

x2
k + y2

k

arctan
(

yk−yl
xk−xl

)
+ vk

, (63)

where xk is the system state variable, and xk, yk and
.
xk

.
yk represent the position and velocity of the

target in the x and y directions, respectively. T represents the sampling period, and ωk represents
the steering angular velocity. wk represents the process noise, which has covariance matrix Qk, and
vk represents the measurement noise, which has covariance matrix Rk. The initial value of the state
variable is x0, and the correlation covariance matrix is P0|0. To enhance the mobility of the surface
target, the parameters were initialized as follows:

Q1 = q2
1

 M1 0 0
0 M1 0
0 0 T1/3

], Q2 = q2
2[

M2 0 0
0 M2 0
0 0 T2/3


q = 0.05, q1 = 0.2, q2 = 0.3, Mk =

[
T3

k /3 T2
k /2

T2
k /2 Tk

]
, T1 = 1

4 , T2 = 1
6

x0 =
(

100 m, 80 m/s, 100 m, 120 m/s,− 8π
180 rad

)T

P0|0 = diag
(

10 m2, 1 m2/s2, 10 m2, 1 m2/s2, 0.1 rad2/s2
)

R1 = qdiag
{
(25 m)2,

(
3π
180

)2
rad
}

, R2 = qdiag
{
(30 m)2,

(
9π
180

)2
rad
}

. (64)

To set up the different types of non-Gaussian state noise and measurement noise environment

based on
{

wk ∼ (1− η)N(0, Q1) + ηN(0, Q2)
rk ∼ (1− η)N(0, R1) + ηN(0, R2)

, we considered the conditions as follows:
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Condition 3. Under mixture noise, η = 1
2 :

wk3 ∼
1
2

N1(0, Q1) +
1
2

N2(0, Q2) , rk3 ∼
1
2

N1(0, R1) +
1
2

N2(0, R2) . (65)

Condition 4. Under mixture noise, η = 2
3 :

wk4 ∼
1
3

N(0, Q1) +
2
3

N(0, Q2) , rk4 ∼
1
3

N(0, R1) +
2
3

N(0, R2) . (66)

In the simulation experiment, we used the RMSE and ARMSE to evaluate the filtering perfor-
mance. The RMSE and ARMSE of the displacement, velocity, and steering angle were defined as
follows:

RMSECTpos =

√
1
N

N
∑

k=1

[(
xk − x̂k|k

)2
+
(

yk − ŷk|k
)2
]

RMSECTvel =

√
1
N

N
∑

k=1

[( .
xk −

.̂
xk|k
)2

+
( .

yk −
.̂
yk|k

)2
]

RMSECTomg =

√
1
N

N
∑

k=1

[(
ωk − ω̂k|k

)2
]

ARMSEany = 1
A

A
∑

l=1
RMSEany(l).

(67)

Here, N represents the total number of Monte Carlo simulations, and A represents the timestep
of each Monte Carlo simulation. In the simulation experiment, We set c in Equations (45) and (46) as
1/3, and we set N = 1× 105 times and A = 140 s. Lines 1–3 of Equation (67) give the position RMSEs
obtained from the real value and estimated value of the position vector and the velocity RMSE and
angular-velocity RMSE obtained via the same method as the position RMSE, respectively. Finally, the
calculation formula for the ARMSE is presented.

Because the CT model has a strong nonlinearity, and the collaborative CT model can better
describe the USV high-speed maneuvering steering process on the water surface in reality than
the uniform turning model, this experiment used the CT model to conduct the last robust filtering
experiment based on the nonlinear system in a non-Gaussian environment.

As with Experiment 2 in Section 4.2.1, in the experiment of this section, the robust filter MCUKF
proposed in reference [16], the MCSCKF proposed in reference [27] and E-MCCKF and S-MCCKF
which are formed by Formula (14), Formula (20) and the MCC method proposed in this paper are
used to compare with the robust algorithm DD-MCCKF proposed in this paper in a non-Gaussian
state and measured noise environments above. The simulation results for the CT target-tracking
model are presented in Figures 7–10.
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The running time of the algorithm was 140 s. Among the position errors of the simulation
results, the accuracy of the MCUKF was the worst owing to the numerical instability and inaccurate
UT. Because of the high system dimensions, the approximation process of the ECKF was unstable,
and its filtering performance was worse than that of the S-MCCKF. Especially in the position RMSE
index, the ECKF was particularly affected by the instability of its formula value, and its filtering
accuracy is even lower than that of the 3rd-degree MCCKF.

The DD-MCCKF and S-MCCKF were similar with regard to the structure of the cubature
formula and the number of cubature points used. Thus, they had similar filtering accuracies. Because
the DD-CKF integrates the two indexes of numerical stability and the number of cubature points
used, it is better at improving accuracy and reducing the calculation amount. In addition, the smaller
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coefficient of the cubature points of the DD-CKF can better reduce non-local sampling problems,
which helps further improve its filtering accuracy.

By fine-tuning parameter c in Equations (45) and (46), the non-local sampling problem caused by
the increase in the system dimension was alleviated, and the filtering accuracy was increased. For the
estimation of the velocity and course angular velocity, the UKF and 3rd-degree CKF had the lowest
accuracy, whereas the 5th-degree ECKF and SCKF had similar performance, and the DD-MCCKF had
the highest accuracy. Furthermore, as indicated in Table 4, the ARMSEs obtained via the proposed
algorithm were lower than those for the 5th-degree ECKF and SCKF.

Table 4. Number of points and the ARMSEs of the position, velocity and course angular velocity for
different robust filtering algorithms in the target tracking simulation of Experiment 4.2.2.

Robust
Filters

Number of
Points

ARMSE
Pos-C1

ARMSE
Pos-C2

ARMSE
Vel-C1

ARMSE
Vel-C2

ARMSE
Omg-C1

ARMSE
Omg-C2

MCUKF 2n = 10 10.41 18.84 40.38 27.29 4.532 4.613
3rd-degree
MCSCKF 2n= 10 11.78 14.66 26.88 26.07 4.430 4.539

5th-degree
E-MCCKF 2n2 + 1 = 51 9.824 15.17 23.29 26.63 4.143 3.923

5th-degree
S-MCCKF 2n2 + 1 = 51 8.456 13.78 22.47 19.21 4.087 3.931

(Proposed)
5th-degree

DD-MCCKF
2n2 + 1 = 51 5.956 11.85 15.50 17.42 3.492 3.869

5. Conclusions
A high-degree robust CKF algorithm, based on a new cubature formula and MCC, was devel-

oped. First, according to the construction method of the fully symmetric cubature formula, different
cubature-point coordinate generators were used to construct a new high-degree cubature formula
and fine-tune its parameters to increase its accuracy. Subsequently, a new robust cost function was
constructed by combining the MCC and WLS methods.

As a statistical measure of the similarity between random variables, MCC can extract information
from all even moments under the appropriate kernel bandwidth. This helped us make better use of
the higher-order moment information of the signal. Therefore, in filtering applications, MCC is more
robust to non-Gaussian mixture noise than the conventional nonlinear Kalman filter, which can only
use second-order information. The fixed-point iteration solution of the equation was embedded in the
nonlinear Kalman filtering process to obtain a robust filtering algorithm. Finally, a new high-degree
robust CKF algorithm was obtained by combining the new estimation process with the KF framework.
The aim was to use as few cubature coordinate points as possible to achieve the highest filtering
accuracy and stability in a non-Gaussian noise environment. The proposed method was applied to
the target tracking of an unmanned surface vessel. The simulation experiment exhibited a smaller
number of computations, higher filtering accuracy, and better numerical stability when compared to
(or similar results to) other algorithms of the same order.

The new-proposed filter probably has a certain application value in practical application scenar-
ios, such as the course tracking of unmanned surface vessels, tracking for maritime moving targets
or surface vessel rescuing, and in the sea area with strong environmental interference (e.g., wind
and waves). The autonomous navigation target of obstacle avoidance on the water surface may be
achieved under the condition of large errors in sensor distance and angle measurement. However,
owing to the uncertainty and complexity of the surface environment, the measurement process based
on sensors and satellite positioning may be affected or temporarily unavailable. At the same time,
some state estimation problems in more complex environments are also the focus of research, such as
estimation with bias compensation, nonlinear filtering based on state constraints, robust constraints,
state estimation in complex domain impulsive noise etc. As mentioned in References [28–45]. These
issues need to be further studied in the following work.
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