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Abstract: Netting damage limits the safe development of marine aquaculture. In order to identify and
locate damaged netting accurately, we propose a detection method using an improved Mask R-CNN.
We create an image dataset of different kinds of damage from a mix of conditions and enhance it
by data augmentation. We then introduce the Recursive Feature Pyramid (RFP) and Deformable
Convolution Network (DCN) structures into the learning framework to optimize the basic backbone
for a marine environment and build a feature map with both high-level semantic and low-level
localization information of the network. This modification solves the problem of poor detection
performance in damaged nets with small and irregular damage. Experimental results show that
these changes improve the average precision of the model significantly, to 94.48%, which is 7.86%
higher than the original method. The enhanced model performs rapidly, with a missing rate of about
7.12% and a detection period of 4.74 frames per second. Compared with traditional image processing
methods, the proposed netting damage detection model is robust and better balances detection
precision and speed. Our method provides an effective solution for detecting netting damage in
marine aquaculture environments.

Keywords: marine aquaculture; netting damage; machine vision; deep learning; object detection;
feature extraction

1. Introduction

The increase in contemporary demand for high-quality protein has led to marine
aquaculture becoming a significant part of producing higher-quality aquaculture products
while protecting the ocean environment [1]. Several types of marine aquaculture facilities
exist, including deep-sea cage farming, raft farming, deep-sea platform farming, and net
enclosure farming [2]. After years of development, the engineering and construction of
aquaculture facilities such as cages and net enclosures have made clear progress and greatly
improved their resistance to waves [3]. Netting is the main component of aquaculture
facilities, but it is easily damaged, with the damage being difficult to detect. The result
is a problem in urgent need of a solution. Every year, huge economic losses are caused
by the escape of cultured fish due to damaged netting. For example, in Ocean Farm 1,
about 16,000 salmon with an average weight of 4 kg escaped due to torn nets in September
2018 [4], and a similar incident happened in August 2020, leading to the escape of an
unknown number of salmon, which caused large economic losses to the farm [5]. Netting
damage detection has become a significant obstacle restricting the development of marine
facility aquaculture.

At present, damage detection for underwater netting systems relies mainly on diver
inspection, a process that is inefficient, costly, and inherently risky for the divers. In
recent years, various underwater cameras and submersibles have been developed and
combined with machine vision algorithms to examine netting for damage in hopes of
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replacing manual visual inspection [6]. However, traditional machine vision methods often
require different image processing algorithms tailored to specific environments, which is
a cumbersome process with low reusability [7]. In response, research has shifted to deep
learning models [8] that have been successfully applied in other engineering fields, such as
U-Net [9], Mask R-CNN [10], YOLO [11], and Cascade R-CNN [12]. Automatic, reliable
damage detection using these methods has become an area of great interest in the field of
marine aquaculture.

In the case of underwater netting damage detection, there are three implementation
schemes typically used for machine (rather than manual) analysis: embedded detection
methods, sensor-based digital twin technology [13], and underwater detector-based image
analysis methods. The embedded detection method adds metal wire with an insulation
layer to each mesh. When the netting is damaged, current is conducted through the seawa-
ter and electrodes, enabling the damaged location to be decoded [14–16]. However, this
method increases the hydrodynamic load of the netting, and the laying and maintenance of
the conductors are more costly and difficult than netting without the wire. Digital twin tech-
nology is a new approach that outputs the state of the netting based on the data monitored
by sensors. By training the artificial neural network with a large quantity of sensing data
from numerical simulation models of the netting, a digital twin can be generated to detect
whether the net is damaged or not based on the input data such as wave height, period,
and tension value [13]. The image analysis method finds damage using computer vision
algorithms to identify damage in images of the netting taken underwater by cameras on a
remotely operated underwater vehicle (ROUV or just ROV) [17,18]. A traditional image
algorithm detects the damaged area by analyzing the characteristics of its features, such as
the distribution of mesh nodes [19] and the characteristic gradient curve of mesh holes [20].
This algorithm model is less effective at detecting netting that has deformed under actual
high sea conditions. The rapid development of deep learning in engineering fields has also
led to its use in marine facility aquaculture [21]. Liao et al. used an improved multiscale
fusion algorithm and MobileNet-SSD target detection framework for damage detection
using deep-sea netting images collected by an autonomous underwater vehicle (AUV)
to detect netting damage quickly [22]. Small areas of damage are not detected correctly,
although small areas usually develop into larger ones. Thus, this convolutional neural
network (CNN) method still needs to be optimized to enhance the detection accuracy for
better application.

CNNs have pushed the field of object detection to a new level and are reliably adapt-
able to different situations [23]. Object detection frameworks using CNNs are usually
categorized as one-stage or two-stage detection frameworks. A one-stage framework
directly and quickly generates detection results from the image. Representative exam-
ples include SSD [24] and YOLO. Two-stage methods use an R-CNN [25] structure that
greatly improves the detection accuracy. Such methods extract the region proposals from
the image and then obtain the detection results by secondary correction using the region
proposals. Typical implementations combine methods such as Faster R-CNN [26], Mask
R-CNN, and Cascade R-CNN with feature extraction techniques such as the Feature Pyra-
mid Network (FPN) [27] and Deformable Convolution Network (DCN) [28]. Two-stage
methods thus offer high detection accuracy with a speed that meets the requirements of
typical applications.

In this paper, we propose a scheme for underwater netting damage detection in
aquaculture facilities using computer vision and deep learning algorithms. To detect
damage, we use the Mask R-CNN model. Our scheme then introduces the Recursive
Feature Pyramid (RFP) and DCN algorithms to improve the model’s ability to detect the
small-size and irregular damage as well as the convolution efficiency. We validate our
scheme using actual netting images and compare its results with the detection results from
other target detection models to evaluate the performance of this model.
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2. Materials and Methods
2.1. Damaged Netting Images Dataset
2.1.1. Netting Images Acquisition

The original image dataset used for the experimental training contains images of
actually damaged netting from aquaculture facilities and simulated damaged netting from
a laboratory wave flume that was captured at 0.2–0.5 m from the netting using a GoPro
camera (5312 × 2988 pixels). The structural parameters of the test netting are shown in
Table 1. The actual images were collected from a net enclosure facility on Taohua Island
and a net cage on Changqi Island in Zhoushan from July to September 2021, covering
a variety of sea conditions such as high tide, low tide, and clear and turbid water. The
simulated images were created by an MTS tensile machine with artificial abrasion to
simulate common netting damage from actual aquaculture, including narrow tears, twine
fractures, and irregular holes. Sample images of damaged netting are shown in Figure 1.
The dataset contains 2000 images in total, with a 9:1 ratio between simulated laboratory
samples to actual samples from an ocean facility.

Table 1. Structural parameters of the test netting.

Parameter Value

Height 0.6-m
Width 0.4-m

Twine diameter 1.2 mm, 3.0 mm, 4.8 mm
Length of mesh bar 1.5 cm, 3.0 cm

Material Polyethylene
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Figure 1. Sample images of damaged netting were taken under different conditions. (a) Real
marine aquaculture. (b) With wave influence. (c) With still and turbid seawater. (d) With still and
clear seawater.

2.1.2. Image Processing

Data augmentation refers to a series of image processing operations that increase the
size and diversity of the training sample set in response to overfitting in deep convolu-
tional neural networks. Augmentation is generally used to improve the generalization
performance of the model [29]. After translating, mirroring, rotating, and adding noise to
the original image (as in Figure 2), the final dataset size was enhanced to 12,000.
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2.1.3. Dataset Annotation

In order to generate training sample sets, we labeled the damaged netting images using
LabelMe 4.5.9 (a project created by the MIT Computer Science and Artificial Intelligence
Laboratory (CSAIL)) [30]. The process of labeling annotations and some training sample
mask layers are shown in Figure 3.
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2.2. Basic Network Selection

We use Mask R-CNN for detection, as this method offers the best performance for this
need. There are several other competing architectures that are generally comparable in
terms of performance in underwater detection: Faster R-CNN, YOLO, SSD, and Cascade R-
CNN. Mask R-CNN returns a mask label that performs a finer pixel-to-pixel segmentation
of detected objects. In our work, the mask representation is basically used as a secondary



J. Mar. Sci. Eng. 2022, 10, 996 5 of 16

task to explore the damaged area. Mask R-CNN has two main stages: region proposal
generation, followed by classification and segmentation.

The first stage is implemented based on a backbone CNN architecture to extract image
features. The performance of feature extraction is directly related to the depth of the
CNNs, but increasing network depth by simply connecting convolutional blocks will cause
the model degradation (of training accuracy) problem. The Residual Neural Network
(ResNet) [31] solves the degradation problem of the deep model using a residual block
structure, extending the number of model layers from 18 to 152 and increasing the network
performance with increasing depth. ResNet-101 is used as the backbone of this model
because it maintains strong semantic features at different resolution scales. Moreover,
the 1 × 1 convolution structures at the head and end of the residual block are designed
to reduce and recover the dimensions (shown in Figure 4), which effectively avoids the
vanishing gradient and exploding problems.
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The output of the backbone is passed to the Region Proposal Network (RPN), and RPN
detector heads are connected after each layer, as shown in Figure 5. Based on the extracted
fused feature maps from ResNet, the RPN generates a set of variable-sized regions (called
Regions of Interest (RoIs)) and rectangular bounding boxes.
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In the second stage, the RoIAlign layer properly aligns the feature map corresponding
to each variable-sized RoI with the input and warps it into a fixed size. Based on this, object
classification and bounding-box regression are performed by the fully connected (FC) layer,
and object segmentation is also solved by the pixel-wise operation of images using a Full
Convolutional Network (FCN) that outputs a binary mask for each RoI to achieve instance
object segmentation, as shown in Figure 6.
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2.3. Construction of the Netting Damage Detection Model

We construct our aquaculture facility netting damage detection model using the deep
convolutional neural network method (as shown in Figure 7). ResNet-101 combined
with RFP [32] is used as the backbone to extract and fuse the multiscale features of the
damage netting images, which effectively solves the problem of detecting damaged areas
of small size. Then, the last block of ResNet-101 is replaced by a DCN structure to im-
prove the convolution efficiency of the model for features of irregular mesh holes. The
final model is capable of solving the problems encountered in finding damaged nets in
marine aquaculture.
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2.3.1. Recursive Feature Pyramid (RFP)

Since the performance of the detection model is determined by the quality of target
feature extraction and fusion, the design of the feature extraction network structure is
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crucial. Netting damage starts very small, so the damage detection model needs a strong
ability to extract low-level minute features. Therefore, we use the RFP technique to improve
the model feature extraction network by incorporating feedback connections into the
bottom-up backbone of FPN. As shown in Figure 8, the RFP structure is unrolled to a 2-step
sequential network.
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In presenting the RFP, we let Bi denote the stage i operation of the bottom-up backbone,
∀ i = 1, . . . , N, where N is the number of stages. For example, N = 5 in Figure 8. Fi denotes
the i-th layer operation in the top-down FPN, and Ri denotes the feature transformation
operation before the i-th layer is recursively connected back to the backbone. Then the
output feature yi and the input feature xi of the first step in RFP are defined by

yi = Fi(Yi+1, Xi), xi = Bi(xi−1, Ri(yi)), (1)

which makes RFP a recursive operation. It can be unrolled as

yt
i = Ft

i (y
t
i+1, xt

i ), xt
i = Bt

i (xt
i−1, Rt

i(y
t−1
i )), (2)

where the number of recursive steps of the operation is denoted by the superscript t,
∀ t = 1,..., T, and T is the maximum number of unrolled iterations.

Thus, the backbone can fuse the feature maps after multiple views, and the RFP-
incorporated feedback connections contain the gradient signals of classification and re-
gression at the previous iteration, making it possible to update the backbone parameters
directly and greatly improving the model’s ability to detect minute features.

2.3.2. Deformable Convolution Network (DCN)

Convolution can be understood as the process whereby the convolution kernel slides
along the input in a left–right, top–bottom order, and outputs a new feature map. A 3 × 3
convolution kernel (i.e., the receptive field is 3 × 3) is the most frequently used standard
convolution kernel in CNN. However, damaged mesh holes are generally irregular, which
leads to low convolution efficiency. In response, the convolution kernel size needs to be
increased to improve the receptive field, but this greatly increases the computational effort.
Regular convolution kernels do not match the irregular input features and do not meet
the detection period and accuracy requirements of some complex shape objects. Then
the most intuitive and reasonable solution is to make the convolution kernels irregularly
shaped and trainable. The DCN is a convolution structure that can fully adapt to object size
variations. Based on the feature map, each sampling point is adaptively offset sampled in
the horizontal and vertical directions to achieve irregular sampling, as shown in Figure 9.
Without increasing the number of sampling points, the receptive field is expanded, and
better features are obtained.
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Due to the different causes of damage, the shape and distribution of mesh holes
are irregular depending on whether they were caused by twine fractures, narrow tears,
or large irregular holes. For such features with more complex deformations, the use of
traditional rectangular convolution kernel sampling is not flexible enough and handles
the target deformation poorly and inefficiently. Therefore, we introduce DCN into the
original backbone to improve the convolution efficiency and accuracy of feature extraction.
In addition, since training the offsets of convolution kernel sampling points requires
a semantic feature basis, only the last ResNet block of the backbone is replaced by a
DCN structure.

The standard convolution process divides the input feature map X into parts of the
same size as the convolution kernel R and then performs the convolution operation where
the position of each part on the feature map is fixed. Mathematically, this is expressed as

Y(P0) = ∑
r∈R

ω(r)X(P0 + r), (3)

where X() denotes the input feature mapping, R denotes the set of each sampling point in
the convolution kernel, r is the sample point, and ω() is the weight of r.

The deformable convolution is based on the standard convolution with a trainable
offset ∆ri. The output feature map Y on position P0 is calculated as

Y(P0) = ∑
r∈R

ω(r)X(P0 + r + ∆ri). (4)

Since sampling is performed in irregular regions and the increased ∆ri is generally a
floating-point number that does not correspond to the feature points actually present on the
feature map, the bilinear interpolation method is used to obtain the offset eigenvalues [28].

2.4. Loss Function

The model has three functional branches: classification prediction, border regression,
and mask segmentation branch. The multi-task loss function on each sampling RoI is
defined as

L = Lcls + Lbbox + Lmask, (5)

where Lcls denotes the classification loss as defined in Equations (6) and (7). Lbbox denotes
the regression loss of the detection bounding box as defined in Equations (8) and (9). Lmask
denotes the average binary cross-entropy loss of the mask segmentation layer, as shown in
Equation (10).

Lcls =
1

Ncls
∑

i
Lcls(Pi, P∗i ), (6)

Lcls(Pi, P∗i ) = − log[P∗i Pi + (1− P∗i )(1− Pi)]. (7)
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In Equations (6) and (7), Pi denotes the probability of the anchor being predicted as a
target. Pi

* = 1 when the object is detected, and 0 when it is not detected. Ncls is the total
number of anchors.

Lbbox = λ
1

Nreg
∑

i
P∗i Lreg(ti, t∗i ), (8)

Lreg(ti, t∗i ) = R(ti − t∗i ). (9)

In Equations (8) and (9), ti denotes a vector of four parameterized coordinates for
the predicted bounding box. ti

* has the same number of dimensions as ti, indicating the
offset of the bounding box relative to the actual annotation of the dataset. Nreg is the
number of dimensions of the feature map. R is the smooth-L1 function. λ is a balanced
parameter such that the two loss functions of classification and regression have essentially
the same weights.

Lmask = −∑
y

y ln(1− ỹ ) + (1− y) ln(1− ỹ ). (10)

In Equation (10), y denotes the actual segmentation output of the binarization mask,
and ỹ denotes the predicted segmentation output.

2.5. Training

We construct our aquaculture facility netting damage detection model using the deep
convolutional neural network method (as shown in Figure 7). ResNet-101 combined with
RFP is used as the backbone to extract and fuse the multiscale features of the damage netting
images, which effectively solves the problem of detecting damaged areas of small size. Then,
the last block of ResNet-101 is replaced by a DCN structure to improve the convolution
efficiency of the model for features of irregular mesh holes. The final model is capable of
solving the problems encountered in finding damaged nets in marine aquaculture.

2.5.1. Runtime Environment

The experimental training environment consisted of a computer with an Intel Core
i9-11900K CPU at 3.50 GHz and an Nvidia RTX 2080Ti GPU running Ubuntu 18.04. We
used the TensorFlow-GPU 2.3 deep learning framework (developed by the Google Brain
team) with CUDA 10.1 and cuDNN 7.6 for the model training.

2.5.2. Model Parameters

The damaged netting dataset was divided into training and test sets in a 9:1 ratio. The
parameters set during model training are shown in Table 2.

Table 2. Parameters of the training model.

Parameter Value

Batch size 16
Iteration 675
Epoch 300

Initial learning rate 0.01
Decay rate 0.98

Dropout rate 0.4

The design of the learning rate decay strategy accelerates the convergence of the model
in the early stage of training and avoids the oscillation of the loss function when the latter
converges to the optimal point. Figure 10 shows the training loss curves of the model
and its branches. The loss value gradually converged with larger numbers of training
epochs, and the model loss value rapidly converged to below 0.20 after 140 epochs. It then
stabilized and converged near 0.01. The loss function did not appear to diverge or stagnate,
indicating that the model structure was effectively designed and well trained.
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2.6. Evaluation Metrics

In order to evaluate the effect of the model objectively and accurately, we selected
Precision–Recall (P-R), average precision (AP), balanced F score (F1-Score), and detection
FPS as evaluation indexes. Table 3 shows the confusion matrix used to calculate the values
of precision and recall.

Table 3. Confusion matrix.

Prediction

Positive Negative

Actual
True True Positive (TP) True Negative (TN)
False False Positive (FP) False Negative (FN)

Precision is defined as the probability of the actual positive sample among all the
predicted positive samples, as shown in Equation (11). The higher its value, the better the
model’s ability to distinguish negative samples:

Precision =
TP

TP + FP
. (11)

Recall is defined as the probability of the predicted positive sample among all the
actually positive samples, as shown in Equation (12). The higher the Recall value, the better
the model’s ability to identify positive samples:

Recall =
TP

TP + FN
. (12)

AP is the average of all Precision values on the P-R curve, which is the integral
operation of the P-R curve. Its definition is shown in Equation (13)

AP =
∫ 1

0
P(r)dr. (13)

F1-score is defined as the harmonic average of Precision and Recall, as shown in
Equation (14). The higher the F1-score, the more robust the classification model:

F1 = 2× precision× recall
precision + recall

. (14)

3. Results and Discussion

We present our results in this section. The first part discusses the ablation experiments
we designed to analyze the influence of the RFP and DCN structures on the detection
model performance and to validate the effectiveness of the Mask R-CNN+RFP+DCN model.
The second part presents the results of the comparison between other models (OpenCV,
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SSD, YOLOv3, and Cascade R-CNN) and this model and evaluates the performance of
a traditional image algorithm, classical CNN framework, and the improved method in
detecting netting damage.

3.1. Ablation Experiment Result

To verify the effect of the improvement of the netting damage detection model, Mask
R-CNN was incrementally improved by adding RFP and DCN modules to form an ex-
tended model. Figure 11 compares the detection results of the model at each stage of the
ablation experiment on the test dataset. Netting with a 1.2 mm twine diameter, a 1.5 cm
mesh bar length, and multiple small-size damages are shown in the left column of the
figure. Netting with a 3.0 mm twine diameter, a 3.0 cm mesh bar length, and an irregular
damage are shown in the right column of the figure.
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Figure 11 shows that the original model completed the detection of conventional
damaged objects, but with inaccurate segmentation and localization of the breakage and
several missing small-size objects. After adding the RFP module, the detection results of
the model for small-size damage improved significantly with more accurate detection and
localization of the damage. This result shows that the method effectively extracted low-
level location features from the image and fused them with the high-level semantic features.
It better solves the small-size damage which is difficult to detect by previous methods, such
as the MobileNet-SSD framework proposed by Liao et al. [22]. The addition of the DCN
structure made the convolutional kernel adaptively offset according to the damage shape
features, extracting features more efficiently and enhancing the segmentation capability
of the model for irregular damage feature masks. The detection results of the model with
two improved strategies show that each damaged object was accurately located and finely
segmented. Thus, the present model benefits from effectively combining the two improved
strategies to solve the netting damage detection problem. In addition, we also analyzed the
performance of each stage of the model according to the missing detection rate, average
accuracy, F1 score, and detection speed, as shown in Table 4.

Table 4. Damage detection results in different improved stage models.

Model Missing Rate AP F1 Score FPS

Mask R-CNN 28.56% 86.62% 85.81% 4.46
Mask R-CNN+RFP 11.18% 90.12% 89.27% 4.20
Mask R-CNN+DCN 21.83% 91.90% 90.11% 4.82

Mask R-CNN+RFP+DCN 7.12% 94.48% 94.02% 4.74

The experimental results in Table 4 show that: (1) The use of the RFP structure instead
of the ordinary FPN resulted in a 17.38% reduction in the model’s missing detection rate
and a 3.50% increase in the average precision, indicating that RFP significantly optimized
the model’s damaged objects detection and location performance through the iterative
fusion of low-level position features of the image. (2) By improving the feature extraction
ability of the model for irregular damage through DCN, the average precision improved
to 91.90%, and the detection period was reduced by 7.28%, indicating that DCN structure
effectively improved the segmentation performance and convolution efficiency by changing
the convolution kernel sampling approach. (3) The missing detection rate of the final model
in the test dataset was 7.12%, which was 21.44% lower than that of the original model.
The average precision was 94.48%, an improvement of 7.86% over the original model. The
model detection processed about 4.74 frames per second.

The preceding detection results and data analysis demonstrate the effectiveness of
our proposed model improvement strategy. We conclude that RFP and DCN combine to
optimize the detection performance of the model, with RFP contributing the most to the
optimization of the model’s missing detection rate and DCN contributing the most to the
model’s precision and detection speed.

3.2. Model Performance Comparison

We compared our improved Mask R-CNN+RFP+DCN model with OpenCV, SSD,
YOLOv3, and Cascade R-CNN models on the test dataset. OpenCV is an image processing
method that extracts feature information of the mesh pixel color and contour area to find
damage. SSD and YOLOv3 are deep learning one-stage target detection models. Mask
R-CNN and Cascade R-CNN are two-stage target detection models. The performance of
models was evaluated according to the missing detection rate, average precision, F1-score,
and detection FPS. Table 5 shows the comparison result of different netting damage detec-
tion models.
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Table 5. Performance comparison of different models for netting damage detection.

Model Missing Rate AP F1 Score FPS

OpenCV 56.92% —— — 29.36
SSD 35.80% 77.98% 75.33% 5.67

YoloV3 29.21% 81.27% 78.79% 9.77
Mask R-CNN 28.56% 86.62% 85.81% 4.46

Cascade R-CNN 23.99% 89.15% 88.56% 2.9
Our model 7.12% 94.48% 94.02% 4.74

Table 5 shows that the missing detection rate of our proposed model was 7.12%,
which was 28.68%, 22.09%, 21.44%, and 16.87% lower than that of the SSD, YOLOv3, Mask
R-CNN, and Cascade R-CNN models, respectively. The average precision was 94.48%,
which increased by 16.50%, 13.21%, 7.86%, and 5.33%, respectively. Because our model
is based on a two-stage detection framework incorporating RFP and DCN structures, the
model more efficiently extracts and fuses the effective feature information of the high
and low layers of the image and improves the detection and segmentation ability of the
model on the damaged objects. The improved model does suffer from some drawbacks at a
processing speed of 4.74 FPS. Our model is not as fast as other models, but it still meets the
performance requirements in practical use. Compared with the traditional methods such as
the characteristic gradient curve of mesh holes [20] and OpenCV, the detection effect of this
method is more intuitive and has better robustness. The comparison with other methods
shows that our model has detection performance exceeding that of competing methods
with acceptable processing speed.

The netting damage detection results of each model on the test dataset are shown
in Figure 12. The left column is from a container experiment environment with a twine
diameter of 1.2 mm and a mesh bar length of 1.5 cm. The center column is from a wave
flume experiment environment with a twine diameter of 3.0 mm and a mesh bar length of
3.0 cm. The right column is from an actual aquaculture environment with a twine diameter
of 4.8 mm and a mesh bar length of 3.0 cm. The figure shows that all models completed the
detection of obviously damaged objects, but our improved model had the best detection
results. In the left column, the improved model detected all the damaged objects, while the
other models did not easily detect the small and irregular damages in the lower left. In the
center column, the damaged objects are connected and irregular. Due to the introduction
of the DCN structure, our model had a better location and segmentation performance for
irregular damaged objects. In the right column, the seawater is turbid, and the netting has
serious biofouling. The other models did not accurately detect the damaged objects. In
contrast, our proposed model detected the damage in a complex environment, with the
mask segmentation accurately locating the damage.
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4. Conclusions

In this paper, we present a Mask R-CNN framework-based model for detecting and
locating the underwater netting damage in marine aquaculture environments. Our effort
expands on an original model to cope with actual marine conditions, with small-size
fractures and irregular damage shapes in various water conditions and other variants. The
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missing detection rate, detection precision, and detection FPS of the model are significantly
improved after adding RFP and DCN structures. We make the following conclusions:

(1) Our proposed model combining Mask R-CNN, RFP, and DCN detects netting damage
in both laboratory and actual marine environments. The missing detection rate of
the final model is 7.12%, with an accuracy of 94.48%. The detection processes around
4.74 FPS while using about 231.8 MB of RAM, which satisfies actual application
requirements and facilitates the deployment of this method in embedded equipment.

(2) A dataset of netting damage images was collected and labeled in the simulated labo-
ratory environment and marine aquaculture environment. We performed comparison
tests using OpenCV, SSD, YOLOv3, Mask R-CNN, Cascade R-CNN, and the proposed
model. The results show that our proposed combination of Mask R-CNN, RFP, and
DCN has better detection performance than the others.

(3) Currently, the research on CNN-based damage detection of underwater netting in
aquaculture facilities is scarce. We have constructed an underwater netting damage
detection scheme based on computer vision and deep learning that not only detects
ordinary netting damage but also accurately detects small-size and irregular dam-
age. This method offers potential for use in actual aquaculture facilities to reduce
aquaculture risk and maintenance costs by enabling early repairs to damaged netting.
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