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Abstract: Due to COVID-19 barriers, the needs of international container ports have become more
important than in the past. Therefore, it is very critical and essential for the scientific developments of
port-logistics. To gain the scientific developments of port logistics, effective and efficient evaluation
methods for decision-making are indispensable, especially for assessing service performance of
international container ports based on dependent evaluation criteria (DEC). Among numerous
decision-making methods, technique for order preference by similarity to ideal solution (TOPSIS)
was often expanded under fuzzy environments into fuzzy multi-criteria decision-making (FMCDM)
to preserve imprecise messages. The FMCDM was able to be associated with quality function
deployment (QFD) into a hybrid method to solve problems with DEC. To gain more messages, QFD
and TOPSIS are combined and then expanded under interval-valued fuzzy environment (IVFE) to
solve a FMCDM problem with DEC. Practically, evaluating service performance of international
container ports in Taiwan and the surrounding sea areas is considered a problem with DEC because
the related evaluation criteria are partially connected. By the hybrid method of combining QFD
with TOPSIS under IVFE, international container ports with DEC are effectively and efficiently
evaluated for service performance, and more insights are gained than the past for establishing
essential fundamentals in recent scientific developments of port logistics on account of breaking
down COVID-19 barriers.

Keywords: dependent evaluation criteria (DEC); international container ports; interval-valued fuzzy
numbers (IVFNs); quality function deployment (QFD); technique for order preference by similarity
to ideal solution (TOPSIS)

1. Introduction

Since the outbreak of COVID-19, the tasks of international container ports for trans-
portation have become more essential for world economics. Before COVID-19, passenger
transportation and cargo freight might have been equally important; however, recently,
people are more often confined in certain regions and, thus, are more reliant on purchasing
goods to satisfy life requirements than previously. It is evident that, globally, numerous car-
gos in the entrepot trade are needed and have to be transported via international container
ports. It is said that recent scientific developments are very important for port logistics [1]
because of equipment and vessel shortages, total capacity decline, port congestion, and
cost increase during COVID-19 outbreaks. In Taiwan and surrounding sea areas, there are
some important container ports including Hong Kong, Shanghai, Kaohsiung, Shenzhen,
Singapore, Tokyo, Pusan, Klang, Manila, Laem Chabang, Oingdao, and Tanjung Priok [2].
The efficiency measurement of these international container ports will be essential for
developing port logistics in Asia and the Pacific regions. Practically, 13 evaluation criteria
are taken into consideration: tugboat operation, untwisting rope operation, pilot operation,
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stevedoring efficiency, low damage rate for goods, waiting time for unloading, working and
service flexibility, application service process, service personnel ability, service personnel
attitude, advisory services, harbor rates, and stevedoring rates. Due to the close connec-
tion between partial evaluation criteria, an effective and efficient evaluation method is
indispensable for evaluating service performance of international container ports based on
dependent evaluation criteria (DEC). To DEC, some past approaches evaluated the related
problems with analytic network process (ANP) [3] or DEC transformed into independent
evaluation criteria (IDEC). However, ANP was limited in data specifications and compli-
cated questionnaires, whereas DEC transformed into IDEC might add some computations,
such as factor analysis [4] and criteria weights reassessed. In this paper, we desire to use
a hybrid method [5], merging several techniques to evaluate decision-making problems
with DEC, and avoid the drawbacks mentioned above. We discuss the development of the
hybrid method as follows:

Evaluation should be one of the important decision-making issues, and some criteria
considered belong to multi-criteria decision-making (MCDM) [6]. A MCDM problem is
generally shown as:

C1 C2 . . . Cn

G =

A1
A2
...

Am


G11 G12 · · · G1n
G21 G22 · · · G2n

...
... · · ·

...
Gm1 Gm2 · · · Gmn

 (1)

and
W = [W1, W2, . . . , Wn] (2)

where Ai denotes the ith alternative, Cj indicates the jth criterion, Gij is the rating of Ai
on Cj, and Wj is the weight of Cj for i = 1, 2, . . . , m; j = 1, 2, . . . , n. In the previous MCDM
problems [7], some with imprecise messages on evaluation are regarded as fuzzy MCDM
(FMCDM) problems [8] because these messages are commonly assessed by linguistic
variables [9,10] and then displayed by fuzzy numbers [11]. Practically, imprecise messages,
including alternative ratings and criteria weights, are indicated by linguistic variables, and
then represented by fuzzy numbers in FMCDM problems.

Moreover, FMCDM problems [12] having IDEC were widely described. However,
some with DEC might be rarely mentioned due to complex computation. In recent years,
FMCDM problems with DEC were gradually discussed. To overcome complex computa-
tions of DEC, quality function deployment (QFD) [13] is utilized in aggregating customer
requirements and technical solutions to derive criteria weights. In QFD [14], customer re-
quirements indicate user opinions, and technical solutions denote professional viewpoints.
In QFD, the customer requirements are expressed in an important level matrix, and the re-
lationships between customer requirements and technical solutions are presented through
a relation matrix. According to the two matrices above, the importance and relationship of
DEC are rationally displayed, and then criteria weights are derived by QFD. In addition,
QFD can be extended under fuzzy environment into fuzzy QFD (FQFD) [15]. In FQFD,
entries of the two matrices are displayed by fuzzy numbers. Owing to data characteristics,
the computation of FQFD [16,17] is complicated for combining the two matrices. Liang’s
approach [18] is illustrated to describe the complicated computation.

In Liang’s FQFD [18], the important level matrix and the relation matrix, through
matrix multiplication, were combined into a criterion weight. Further, two triangular
or trapezoidal fuzzy numbers were integrated into a weighted relationship rating by
multiplying the two matrices above, and the weighted relationship rating based on the
fuzzy extension principle [11] was a pooled fuzzy number (PFN). All weighted relationship
ratings within each technical solution are summarized and then averaged to form a criterion
weight that is also a PFN. Practically, the fuzzy calculation [19] of the yield of the weighted
values is difficult owing to the multiplication of trapezoidal fuzzy numbers. In fact, these
previous computations used in interval-valued fuzzy numbers (IVFNs) [20,21] were harder
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than other fuzzy numbers. The aggregation computation of pooled fuzzy numbers (PFNs)
in the extension of QFD (i.e., FQFD) to form criteria weights was critical, especially for
FMCDM with DEC, regardless of whether ratings or weights of alternatives were IVFNs
or not.

In recent years, some proposed FMCDM having IDEC under an interval-valued fuzzy
environment (IVFE) [22,23] in order to obtain more information than other versions, such
as triangular or trapezoidal fuzzy numbers. However, FMCDM with DEC for IVFNs was
rarely discussed due to difficult computations of DEC. Herein, QFD and technique for
order preference by similarity to ideal solution (TOPSIS) are expanded under IVFE [24] to
resolve the multiplication tie of fuzzy numbers for obtaining more messages in FMCDM
with DEC. TOPSIS [6] is a famous method and often expanded under fuzzy environment
into FMCDM [25,26]. The underlying logic of TOPSIS mainly defines anti-ideal solution
and ideal solution in decision-making. The anti-ideal solution maximizes cost criteria
and minimizes benefit criteria, whereas the ideal solution maximizes benefit criteria and
minimizes cost criteria. Therefore, the optimal alternative within all candidate alternatives
has the farthest distance to the anti-ideal solution and the shortest distance to the ideal
solution. Moreover, the distances of candidate alternatives to the anti-ideal solution and
the ideal solution are aggregated into relative closeness coefficients in TOPSIS. Then, all
candidate alternatives are ranked based on their corresponding coefficients.

Some past approaches [8,12,19,27] were useful to TOPSIS [28] extended under a fuzzy
environment, but they were utilized in triangular or trapezoidal fuzzy numbers. In addition,
Wang [29], using TOPSIS and relative preference relation (RPR), processed related problems
under IVFE because these processes were gradually complicated and, thus, more messages
needed to be obtained than in the previous approaches. In Wang’s [29] approach, decision-
making problems through RPR were constructed on IVFNs [30] and solved by FMCDM
with IDEC. The RPR [29] between IVFNs is revised from Lee’s [31,32] fuzzy preference
relation (FPR) between triangular fuzzy numbers. Therefore, TOPSIS based on the RPR
is extended under IVFE into interval-valued FMCDM (IVFMCDM) [20,33] with IDEC in
Wang’s method [29]. QFD and TOPSIS in this paper are extended for IVFMCDM with DEC
by a preference relation similar to Wang’s [29] RPR. In fact, Wang [34], based on an extended
FPR (EFPR) improved from Lee’s method [31,32], had associated QFD with simple additive
weighting (SAW) [35] for IVFMCDM with DEC to obtain more data. Similar to TOPSIS,
SAW is another famous MCDM method, but TOPSIS has the strength in alternative ranking
due to the relative closeness coefficients. The relative closeness coefficients for alternatives
are in interval [0,1] and, thus, the ranking of alternatives is easy. Nevertheless, QFD
extended for IVFNs in Wang’s approach [34] is still an important reference for this paper.
Based on the above, QFD is associated with TOPSIS as a hybrid method for IVFNs to solve
IVFMCDM problems with DEC. Regarding scientific developments of port logistics, service
performance evaluation of international container ports can be regarded as an IVFMCDM
problem with DEC. Therefore, it is suitable for IVFNs to be applied as the hybrid method
for evaluation.

To be clear, related rationales of IVFNs are expressed in Section 2. In Section 3, the
extensions of QFD and TOPSIS for IVFNs in decision-making are presented to solve IVFM-
CDM problems with DEC. A numerical example about service performance evaluation of
international container ports with DEC is calculated in Section 4. Eventually, conclusions
are described in the final section.

2. Mathematical Rationales

In this section, related rationales of IVFNs [11] are described as follows.

Definition 1. According to the concept of interval-valued fuzzy sets (IVFSs) [30], an interval-
valued fuzzy set(IVFS) A on (−∞, ∞) is defined as:

A = {x, [µAL(x), µAU (x)]}, x ∈ (−∞, ∞), µAL , µAU : (−∞, ∞)→ [0, 1], (3)
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µAL(x) ≤ µAU (x), ∀x ∈ (−∞, ∞), µA(x) = [µAL(x), µAU (x)], x ∈ (−∞, ∞),

whereµAL(x)is the lower limitation of membership degree and µAU (x) is the upper limitation of
membership degree.

Hence, the membership degree of an IVFS A in x∗ is expressed by [µAL(x∗),µAU (x∗)]
(see Figure 1), where µAL(x∗) and µAU (x∗) denote the minimum and maximum grades of
membership in x∗.
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Figure 1. An IVFS A.

Definition 2. A triangular interval-valued fuzzy number(TIVFN) A (see Figure 2) [36] is
denoted as:

A= [AL, AU ]= [(aL
l , aL

h , aL
u ; wL

A), (aU
l , aU

h , aU
u ; wU

A = 1)], (4)

where AL and AU , respectively, denote the lower part and upper part of A, and AL⊆AU . Moreover,
µA(x) is a membership function that indicates the membership grade of x, where µAL(x) and
µAU (x) are, respectively lower part and upper part of µA(x).
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According to Figure 2, the related lemmas [33] for an interval-valued fuzzy num-
ber(IVFN) A are denoted below.

Lemma 1. An IVFN A is a crisp value if aL
l =aU

l =aL
h =aU

h =aL
u=aU

u .
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Lemma 2. An IVFN A is a triangular fuzzy number if AL=AU(i.e., aL
l =aU

l = al , aL
h =aU

h =ah, and
aL

u=aU
u = au). A is indicated by a triplet (al , ah, au).

Lemma 3. An IVFN A is a general TIVFN (see Figure 3) presented by A = [AL, AU ] =(
(aU

l , aL
l ), (aL

h = aU
h ), (aL

u , aU
u )
)

if wL
A = wU

A = 1 and aL
h = aU

h .
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Moreover, a general TIVFN A with µAL(x) and µAU (x) is defined by:

µAL(x) =



x− aL
l

aL
h − aL

l
aL

l ≤ x ≤ aL
h

aL
u − x

aL
u − aL

h
aL

h ≤ x ≤ aL
u

0 otherwise

(5)

and

µAU (x) =



x− aU
l

aU
h − aU

l
aU

l ≤ x ≤ aU
h

aU
u − x

aU
u − aU

h
aU

h ≤ x ≤ aU
u

0 otherwise

(6)

where aL
h = aU

h .
Let

(
(aU

l , aL
l ), (aL

h = aU
h = ah), (aL

u , aU
u )
)

be the general TIVFN A. Herein, general trian-
gular interval-valued fuzzy numbers (TIVFNs) are utilized to represent IVFNs below.

Definition 3. Let ◦ be an operation on real numbers, such as +,−, ∗,∧,∨, etc. Let A = [AL, AU ]
and B =[BL, BU ] be two IVFNs. An extended operation ◦ generalized from Lee’s [31,32] on IVFNs
is indicated as:

µAL◦BL(z) = sup
x,y:z=x◦y

{µAL(x) ∧ µBL(y)} and

µAU◦BU (z) = sup
x,y:z=x◦y

{µAU (x) ∧ µBU (y)}
(7)

Definition 4. Let A = [AL, AU ] be an IVFN. Then,
(

AL)−
α

,
(

AL)+
α

,
(

AU)−
α

, and
(

AU)+
α

improved from Lee’s methods [31,32] are, respectively, displayed as:(
AL
)−

α
= inf(z)

µAL (z)≥α

,
(

AL
)+

α
= sup(z)

µAL (z)≥α

,
(

AU
)−

α
= inf(z)

µAU (z)≥α

, and
(

AU
)+

α
= sup(z)

µAU (z)≥α

(8)
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Definition 5. A FPR R [37,38] is a fuzzy subset of <×< with a membership function µR(A, B)
representing the preference degree of fuzzy numbers A over B.

(i) R is reciprocal if and only if µR(A, B) = 1− µR(B, A) for all fuzzy numbers A and B;
(ii) R is transitive if and only if µR(A, B) ≥ 1

2 and µR(B, C) ≥ 1
2 ⇒ µR(A, C) ≥ 1

2 for all
fuzzy numbers A, B, and C;

(iii) R is a total ordering relation [39,40] if R satisfies both reciprocal and transitive on
fuzzy numbers.

According to R [29], A is smaller than B if µR(A, B) < 1
2 , A is larger than B if

µR(A, B) > 1
2 , or A and B are no different if µR(A, B) = 1

2 .

Definition 6. An EFPR R′ is an extended fuzzy subset of R × R with membership function
−∞ ≤ µR′(A, B) ≤ ∞ representing the preference degree of fuzzy numbers A over B [31,32].

(i) R′ is reciprocal if and only if µR′(A, B) = −µR′(B, A) for all fuzzy numbers A and B;
(ii) R′ is transitive if and only if µR′(A, B) ≥ 0 and µR′(B, C) ≥ 0⇒ µR′(A, C) ≥ 0 for all

fuzzy numbers A,B , and C;
(iii) R′ is additive if and only if µR′(A, C) = µR′(A, B) + µR′(B, C);
(iv) R′ is a total ordering relation if R′ satisfies reciprocal, transitive, and additive.

Based on the EFPR, A is smaller than B if µR′(A, B) < 0, A is larger than B if
µR′(A, B) > 0, or A and B are no different if µR′(A, B) = 0.

Definition 7. Let A and B be two general fuzzy numbers. Based on Lee’s method [31,32], the
EFPR µR′(A, B) of A over B is defined as:∫ 1

0
((A− B)−α +(A− B)+α )dα (9)

Definition 8. For two IVFNs A and B, the EFPR [34] µP∗(A, B) of A over B is:∫ 1

0
((AU − BU)

−
α + (AL − BL)

−
α +(AL − BL)

+
α + (AU − BU)

+
α )dα (10)

Lemma 4. As A =
(
(aU

l , aL
l ), ah, (aL

u , aU
u )
)

and B =
(
(bU

l , bL
l ), bh, (bL

u , bU
u )
)

are two TIVFNs, the
EFPR µP∗(A, B) according to Equation (10) is yielded as:

(aU
l − bU

u ) + (aL
l − bL

u) + 4(ah − bh) + (aL
u − bL

l ) + (aU
u − bU

l )

2
(11)

Definition 9. Let A =
(
(aU

l , aL
l ), ah, (aL

u , aU
u )
)

and B =
(
(bU

l , bL
l ), bh, (bL

u , bU
u )
)

be two TIVFNs.
The addition ⊕ [17] for A and B is define as:

A⊕ B
=
(
(aU

l , aL
l ), ah, (aL

u , aU
u )
)
⊕
(
(bU

l , bL
l ), bh, (bL

u , bU
u )
)

=
(
(aU

l + bU
l , aL

l + bL
l ), ah + bh, (aL

u + bL
u , aU

u + bU
u )
) (12)

Definition 10. The multiplication ⊗ [17] of a real number β (≥ 0) and a TIVFN
A =

(
(aU

l , aL
l ), ah, (aL

u , aU
u )
)

is defined as:

β⊗ A = β ⊗
(
(aU

l , aL
l ), ah, (aL

u , aU
u )
)
=
(
(βaU

l , βaL
l ), βah, (βaL

r , βaU
r )
)

(13)

Based on above, the EFPR for a set of IVFNs is expressed as follows:
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Definition 11. Let S = {X1, X2, . . . , Xn}, where Xj = [XL
j , XU

j ] is an IVFN for j = 1, 2, . . . , n.

X′ = [X′L, X′U ] is the reference basis for these IVFNs in EFPR. Then, µP∗(Xj, X′) is derived by
P∗ as an EFPR to represent the preference degree of Xj over X′ for X1, X2, . . . , Xn. According to
Equation (10),

µP∗(Xj, X′) =
∫ 1

0
((XU

j − X′U)
−
α
+ (XL

j − X′L)
−
α
+(XL

j − X′L)
+

α
+ (XU

j − X′U)
+

α
)dα,

(14)
where j = 1, 2, . . . , n.

Lemma 5. Let X′ =
(
(X′Ul , X′Ll ), X′h, (X′Lu , X′Uu )

)
be the reference basis of X1, X2, . . . , Xn, where

Xj =
(
(xU

jl , xL
jl), xjh, (xL

ju, xU
ju)
)

is a TIVFN forj = 1, 2, . . . , n. According to Equations (11) and (14),

µP∗(Xj, X′) =
(xU

jl − X′Uu ) + (xL
jl − X′Lu) + 4(xjh − X′h) + (xL

ju − X′Ll ) + (xU
ju − X′Ul )

2
(15)

for j = 1, 2, . . . , n.

Through the EFPR P∗, µP∗(Xj, X′)< 0 denotes that Xj is smaller than X′, µP∗(Xj, X′)>
0 indicates that Xj is larger than X′, or µP∗(Xj, X′) = 0 shows that Xj is equal to X′. Since
P∗ is a total ordering relation [34] on IVFNs, X1, X2, . . . , Xn in S are ranked based on
µP∗(X1, X′), µP∗(X2, X′), . . . , µP∗(Xn, X′).

3. Extending QFD and TOPSIS under IVFE

In this section, QFD and TOPSIS are generalized under IVFE for IVFMCDM with DEC.
To describe IVFMCDM clearly, related computations are presented as follows.

As QFD are combined with TOPSIS for crisp values to solve MCDM problems with
DEC, the computation flowchart is expressed in Figure 4.

Figure 4. The computation flowchart of combined QFD with TOPSIS for crisp values.
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Through the computation flowchart of Figure 4, related computation steps about QFD
and TOPSIS extended under IVFE for IVFMCDM with DEC needs to be improved. For an
IVFMCDM problem, let C1, C2, . . . , Cn be DEC and W1, W2, . . . , Wn be related weights of
these DEC. These weights of DEC are derived by extending QFD under IVFE for IVFMCDM.
Assume that D1, D2, . . . , Dt are customer requirements employed by s users, and WDkq is a
fuzzy important level of Dk evaluated by the qth user, where k = 1, 2, . . . , t; q = 1, 2, . . . , s.
WD1, WD2, . . . , WDt are fuzzy important levels of D1, D2, . . . , Dt after aggregating the
opinions of s users. Therefore,

WDk=
1
s
⊗ (WDk1 ⊕WDk2 ⊕ . . .⊕WDks), k = 1, 2, . . . , t (16)

In addition,
WD= [WD1, WD2, . . . , WDt] (17)

is a fuzzy important level matrix consisting of WD1, WD2, . . . , WDt.
According to QFD, weights W1, W2, . . . , Wn of DEC are obtained by merging the im-

portant level matrix above and following a relation matrix. The relation matrix between
customer requirements over technical solutions is assessed by f professionals. Rkjv eval-
uated by the vth professional is the fuzzy relationship strength rating for Dk over Cj (i.e.,
technical solution), and Rkj through f professionals denotes the mean of relationship
strength rating for Dk over Cj, where k = 1, 2, . . . , t; j = 1, 2, . . . , n; v = 1, 2, . . . , f . Hence,

Rkj=
1
f
⊗ (Rkj1 ⊕ Rkj2 ⊕ . . .⊕ Rkj f ), k = 1, 2, . . . , t; j = 1, 2, . . . , n (18)

Then, R is assumed to be the relation matrix with R11, R12, . . . , Rtn for customer re-
quirements over technical solutions after aggregating the viewpoints of f professionals, i.e.,

C1 C2 . . . CnR =

D1
D2
...

Dt


R11 R12 · · · R1n
R21 R22 · · · R2n

...
... · · ·

...
Rt1 Rt2 · · · Rtn

 (19)

Through Equations (17) and (19), W is yielded by extending QFD under fuzzy envi-
ronment into a weight matrix with W1, W2, . . . , Wn, where:

Wj=
1
t [WD1, WD2, . . . , WDt]


R1j
R2j

...
Rtj


= 1

t ⊗ (WD1 ⊗ R1j ⊕WD2 ⊗ R2j ⊕ . . .⊕WDt ⊗ Rtj)

(20)

for j = 1, 2, . . . , n.
In addition, two fuzzy numbers [34,41] are multiplied into a PFN presented in Equa-

tions (19) and (20). Several PFNs aggregated are commonly important in extending QFD
under fuzzy environment because the computations of PFNs are complex, especially for
deriving IVFNs into PFNs. For instance, WDk = ((wdU

kl , wdL
kl), wdkh, (wdL

ku, wdU
ku)) and

Rkj = ((rU
kjl , rL

kjl), rkjh, (rL
kju, rU

kju)) are two TIVFNs. By extension principle,

WDk ⊗ Rkj= ((PU
kj , PL

kj), Qkj, (ZL
kj, ZU

kj); (FL
kj, FU

kj ), (T
L
kj, TU

kj ); (Y
L
kj, YU

kj ), (V
L
kj, VU

kj )) (21)

for k = 1, 2, . . . , t; j = 1, 2, . . . , n.
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Herein, the membership function µWDk⊗Rkj(x) of WDk ⊗ Rkj [34] is presented to be:

µWDk⊗Rkj(x) =



{
−FU

kj +

[(
FU

kj

)2
− 4
(

PU
kj − x

)
TU

kj

]1/2
}

2TU
kj

i f PU
kj ≤ x ≤ Qkj{

−FL
kj +

[(
FL

kj

)2
− 4
(

PL
kj − x

)
TL

kj

]1/2
}

2TL
kj

i f PL
kj ≤ x ≤ Qkj

1 i f x = Qkj{
YL

kj −
[(

YL
kj

)2
− 4
(

ZL
kj − x

)
VL

kj

]1/2
}

2VL
kj

i f Qkj ≤ x ≤ ZL
kj{

YU
kj −

[(
YU

kj

)2
− 4
(

ZU
kj − x

)
VU

kj

]1/2
}

2VU
kj

i f Qkj ≤ x ≤ ZU
kj

0 otherwise

(22)

where
PL

kj = wdL
klr

L
kjl , PU

kj = wdU
klr

U
kjl ,

Qkj = wdkhrkjh,

ZL
kj = wdL

kurL
kju, ZU

kj = wdU
kurU

kju,

FL
kj = wdL

kl(rkjh − rL
kjl) + rL

kjl(wdkh − wdL
kl),

FU
kj = wdU

kl(rkjh − rU
kjl) + rU

kjl(wdkh − wdU
kl),

TL
kj = (wdkh − wdL

kl)(rkjh − rL
kjl), TU

kj = (wdkh − wdU
kl)(rkjh − rU

kjl),

YL
kj = wdL

ku(r
L
kju − rkjh) + rL

kju(wdL
ku − wdkh),

YU
kj = wdU

ku(r
U
kju − rkjh) + rU

kju(wdU
ku − wdkh),

VL
kj = (wdL

ku − wdkh)(rL
kju − rkjh), VU

kj = (wdU
ku − wdkh)(rU

kju − rkjh).

Evidently, the multiplication of WDk and Rkj(i.e., WDk ⊗ Rkj) is a PFN, not a TIVFN.
Generally, the follow-up computations of PFNs in FMCDM are too hard to derive. To solve
the hard problem of deriving PFNs, the EFPR values of the fuzzy important levels over the
comparison basis replace the fuzzy important levels. Owing to WDk(k = 1, 2, . . . , t) being
larger than 0, the comparison basis of these IVFNs can be assumed as 0. Then,

µP∗(WDk, 0)=
wdU

kl + wdL
kl + 4wdkh + wdL

ku + wdU
ku

2
(23)

is derived by Equation (15) to denote the preference degree of WDk over 0, where
k = 1, 2, . . . , t. According to µP∗(WDk, 0), the matrix W′ having adjusted fuzzy weights
W1
′, W2

′, . . . , Wn
′ for DEC is yielded, where:

Wj
′= 1

t ⊗ [µP∗(WD1, 0), µP∗(WD2, 0), . . . , µP∗(WDt, 0)]


R1j
R2j

...
Rtj

 =

1
t
⊗ (µP∗(WD1, 0)⊗ R1j ⊕ µP∗(WD2, 0)⊗ R2j ⊕ . . .⊕ µP∗(WDt, 0)⊗ Rtj)

(24)

for j = 1, 2, . . . , n.
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Wj′ is a TIVFN because µP∗(WDk, 0) is yielded as a crisp value and Rkj is a TIVFN,
where k = 1, 2, . . . , t; j = 1, 2, . . . , n. W1

′, W2
′, . . . , Wn′ are the representation values of

W1, W2, . . . , Wn and used in IVFMCDM with DEC.
After the adjusted fuzzy weights are derived by extending QFD under IVFE, Gijv is

the evaluation rating assessed by the vth professional for Ai on Cj, and Gij is the mean
rating of Ai on Cj, where i = 1, 2, . . . , m; j = 1, 2, . . . , n; v = 1, 2, . . . , f . Therefore,

Gij=
1
f
⊗ (Gij1 ⊕ Gij2 ⊕ . . .⊕ Gij f ), i = 1, 2, . . . , m; j = 1, 2, . . . , n (25)

Moreover, G̃ij represents the normalization of Gij =
(
(gU

ijl , gL
ijl), gijh, (gL

iju, gU
iju)
)

. The
normalized computation is divided into three different statuses.

1. G̃ij = Gij as Gij is yielded according to linguistic variables [9,10] and transformed into
an IVFN in the interval [0,1];

2. G̃ij = ((
gU−

jl

gU
iju

,
gU−

jl

gL
iju

),
gU−

jl

gijh
, (

gU−
jl

gL
ijl

,
gU−

jl

gU
ijl

)) as Gij is assessed on cost criteria, where

gU−
jl = min

i=1,2,...,m

{
gU

ijl

}
, ∀j;

3. G̃ij = ((
gU

ijl

gU+
ju

,
gL

ijl

gU+
ju

),
gijh

gU+
ju

, (
gL

iju

gU+
ju

,
gU

iju

gU+
ju

)) as Gij is evaluated on benefit criteria, where

gU+
ju = max

i=1,2,...,m

{
gU

iju

}
, ∀j.

Let G̃ij =
(
(g̃U

ijl , g̃L
ijl), g̃ijh, (g̃L

iju, g̃U
iju)
)

be the normalized rating of the ith alternative on
the jth criterion, where i = 1, 2, . . . , m; j = 1, 2, . . . , n. Then, the normalized rating matrix
Ai is presented as

Ai = [G̃i1, G̃i2, . . . , G̃in], i = 1, 2, . . . , m (26)

The anti-ideal solution [29], A−, found from the m normalized alternatives on n
criteria, is:

A− = [G̃−1 , G̃−2 , . . . , G̃−n ], (27)

where

G̃−j =
(
(g̃U−

jl , g̃L−
jl

)
, g̃−jh,

(
g̃L−

ju , g̃U−
ju )

)
= (( min

i=1,2,...,m

{
g̃U

ijl

}
, min

i=1,2,...,m

{
g̃L

ijl

}
), min

i=1,2,...,m

{
g̃ijh

}
, ( min

i=1,2,...,m

{
g̃L

iju

}
, min

i=1,2,...,m

{
g̃U

iju

}
))

for j = 1, 2, . . . , n, whereas the ideal solution [29], A+, found from the m normalized
alternatives on n criteria, is:

A+ = [G̃+
1 , G̃+

2 , . . . , G̃+
n ] (28)

where

G̃+
j =

(
(g̃U+

jl , g̃L+
jl

)
, g̃+jh,

(
g̃L+

ju , g̃U+
ju )

)
= (( max

i=1,2,...,m

{
g̃U

ijl

}
, max

i=1,2,...,m

{
g̃L

ijl

}
), max

i=1,2,...,m

{
g̃ijh

}
, ( max

i=1,2,...,m

{
g̃L

iju

}
, max

i=1,2,...,m

{
g̃U

iju

}
))

for j = 1, 2, . . . , n. To the jth criterion,

µP∗(G̃ij, G̃−j )=
(g̃U

ijl − g̃U−
ju ) + (g̃L

ijl − g̃L−
ju ) + 4(g̃ijh − g̃−jh) + (g̃L

iju − g̃L−
jl ) + (g̃U

iju − g̃U−
jl )

2
, (29)

whereas
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µP∗(G̃+
j , G̃ij)=

(g̃U+
jl − g̃U

iju) + (g̃L+
jl − g̃L

iju) + 4(g̃+jh − g̃ijh) + (g̃L+
ju − g̃L

ijl) + (g̃U+
ju − g̃U

ijl)

2
, (30)

where i = 1, 2, . . . , m; j = 1, 2, . . . , n.
According to µP∗(G̃+

j , G̃ij), µP∗(G̃ij, G̃−j ) and Wj
′, D−i is calculated to indicate the

weighted preference degree of Ai over A−, whereas D+
i is calculated to denote the weighted

preference degree of A+ over Ai for i = 1, 2, . . . , m; j = 1, 2, . . . , n. Define

D−i = [µP∗(G̃i1, G̃−1 ), µP∗(G̃i2, G̃−2 ), . . . , µP∗(G̃in, G̃−n )]


W1
′

W2
′

...
Wn
′


= (µP∗(G̃i1, G̃−1 )⊗W1

′)⊕ (µP∗(G̃i2, G̃−2 )⊗W2
′)⊕ . . .⊕ (µP∗(G̃in, G̃−n )⊗Wn

′),

(31)

whereas

D+
i = [µP∗(G̃+

1 , G̃i1), µP∗(G̃+
2 , G̃i2), . . . , µP∗(G̃+

n , G̃in)]


W1
′

W2
′

...
Wn
′


= (µP∗(G̃+

1 , G̃i1)⊗W1
′)⊕ (µP∗(G̃+

2 , G̃i2)⊗W2
′)⊕ . . .⊕ (µP∗(G̃+

n , G̃in)⊗Wn
′),

(32)

where i = 1, 2, . . . , m.
According to above, D−i and D+

i being TIVFNs are not less than 0 for i = 1, 2, . . . , m.
Let D−i =((dU−

il , dL−
il ), d−ih, (dL−

iu , dU−
iu )) and D+

i = ((dU+
il , dL+

il ), d+ih, (dL+
iu , dU+

iu )), where
i = 1, 2, . . . , m. Eventually, the relative closeness coefficient Di of Ai derived by EFPR is

Di=
µP∗(D−i , 0)

µP∗(D−i , 0) + µP∗(D+
i , 0)

=
dU−

il + dL−
il + 4d−ih + dL−

iu + dU−
iu

dU−
il + dL−

il + 4d−ih + dL−
iu + dU−

iu + dU+
il + dL+

il + 4d+ih + dL+
iu + dU+

iu
,

(33)

where µP∗(D−i , 0)=
dU−

il + dL−
il + 4d−ih + dL−

iu + dU−
iu

2
and

µP∗(D+
i , 0) =

dU+
il + dL+

il + 4d+ih + dL+
iu + dU+

iu
2

for i = 1, 2, . . . , m. Obviously, the larger
the value of Di is, the closer the ideal solution is. On the contrary, the lesser the value of Di
is, the closer the anti-ideal solution is. The value of Di in the optimal alternative is farther
from 0 and approaches 1 than others. In other words, these alternatives are ranked through
D1, D2, . . . , Dm. As D1, D2, . . . , Dm are computed, the ranking order for the m alternatives
is correspondingly determined. The best alternative will be found and IVFMCDM with
DEC is finished.

To sum up, QFD and TOPSIS extended under IVFE for IVFMCDM with DEC can be
summarized in Figure 5. Through the comparison between Figures 4 and 5, EFPR is critical
and important for fuzzy extension of QFD and TOPSIS in IVFMCDM.
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Figure 5. The computation flowchart of combined QFD with TOPSIS for IVFNs.

4. A Numerical Example about Service Performance Evaluation of International
Container Ports with DEC

A numerical example similar to Wang’s [29] approach is illustrated to demonstrate the
IVFMCDM mentioned above clearly. In the illustrated example, 12 international container
ports described in Section 1 are measured their service performance through customers
based on DEC. To the IVFMCDM problem with DEC, the 12 ports, denoted by A1, A2,
. . . , A12, are evaluated based on the 13 evaluation criteria, C1, C2, . . . , C13, that are also
described in Section 1. In addition, convenience (D1), efficiency (D2), and safety or security
(D3) employed by customers denote three customer requirements, and WD1, WD2, and
WD3 indicate the fuzzy importance levels of D1, D2, and D3. These customers measure
importance levels of D1, D2, and D3 by linguistic variables. The linguistic variables and
their corresponding fuzzy numbers are shown in Table 1, and related assessments displayed
by users are expressed in Table 2. Then, fuzzy importance levels of customer requirements
based on data of Tables 1 and 2 are aggregated in Table 3.

Table 1. Linguistic variables and corresponding fuzzy numbers.

Linguistic Variables Fuzzy Numbers

Very low (VL) ((0,0),0,(0.1,0.2))
Low (L) ((0.1,0.2)),0.3,(0.4,0.5))

Medium (M) ((0.3,0.4),0.5,(0.6,0.7))
High (H) ((0.5,0.6),0.7,(0.8,0.9))

Very high (VH) ((0.8,0.9),1,(1,1))
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Table 2. Linguistic assessments for customer requirements.

Customer
Requirements

Assessments

VL L M H VH

D1 5 9 13 26 22
D2 12 10 18 19 16
D3 13 9 9 19 25

Table 3. Fuzzy importance levels for customer requirements.

Customer Requirements Importance Levels

D1 ((0.472,0.565),0.659,(0.729,0.800))
D2 ((0.383,0.467),0.551,(0.629,0.708))
D3 ((0.441,0.524),0.607,(0.673,0.740))

Using data from Table 3, the relative preference degrees of fuzzy importance levels for
customer requirements over 0 calculated by Equation (15) are displayed in Table 4.

Table 4. Relative preference degrees of fuzzy importance levels over zero.

Customer Requirements Relative Preference Degrees

D1 2.601
D2 2.195
D3 2.403

In total, 13 technical solutions employed by experts are utilized to indicate DEC, and
weights (W1, W2, . . . , W13) of the evaluation criteria (C1, C2, . . . , C13) are shown in
the service performance evaluation problem. Moreover, linguistic relationship strength
assessments for three customer requirements for technical solutions are shown in Table 5.
The messages are obtained through the previous linguistic variables, too. Then, fuzzy
relationship strength ratings for D1, D2, and D3 on C1, C2, . . . , C13 are obtained to
construct a relation matrix according to the data of Table 1 and the linguistic relationship
strength ratings of Table 5. In addition, the relation matrix is presented in Table 6.

Table 5. Linguistic relationship strength assessments for customer requirements on technical solutions.

D1 D2 D3

VL L M H VH VL L M H VH VL L M H VH

C1 1 0 3 1 5 1 1 3 2 3 0 0 0 5 5
C2 0 0 2 3 5 1 1 2 3 3 0 1 3 3 3
C3 1 2 2 2 3 0 0 3 4 3 0 1 4 2 3
C4 0 0 1 3 6 2 3 3 1 1 2 2 3 3 0
C5 0 1 1 2 6 1 1 1 3 4 3 1 4 1 1
C6 3 1 1 5 0 1 0 3 2 4 0 1 1 2 6
C7 4 1 3 1 1 0 0 1 4 5 3 2 3 1 1
C8 2 2 2 1 3 1 0 1 3 5 0 1 2 2 5
C9 0 1 0 3 6 1 0 1 2 6 0 1 1 3 5

C10 1 2 6 1 0 1 1 0 2 6 4 2 3 1 0
C11 2 3 1 4 0 0 1 1 5 3 1 1 3 2 3
C13 0 1 2 2 5 1 2 6 0 1 1 0 2 2 5
C13 0 2 6 1 1 0 2 2 3 3 1 1 0 2 6

Through the data of Tables 4 and 6, an adjusted fuzzy weight matrix computed by
Equation (24) for the DEC is derived in Table 7.
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Table 6. The relation matrix for three customer requirements on 13 technical solutions.

C1 C2 C3

D1 ((0.54,0.63),0.72,(0.77,0.82)) ((0.61,0.71),0.81,(0.86,0.91)) ((0.42,0.51),0.60,(0.67,0.74))
D2 ((0.44,0.53),0.62,(0.69,0.76)) ((0.46,0.55),0.64,(0.71,0.78)) ((0.53,0.63),0.73,(0.80,0.87))
D3 ((0.65,0.75),0.85,(0.90,0.95)) ((0.49,0.59),0.69,(0.76,0.83)) ((0.47,0.57),0.67,(0.74,0.81))

C4 C5 C6

D1 ((0.66,0.76),0.86,(0.90,0.94)) ((0.62,0.72),0.82,(0.86,0.90)) ((0.29,0.36),0.43,(0.53,0.63))
D2 ((0.25,0.33),0.41,(0.50,0.59)) ((0.51,0.60),0.69,(0.75,0.81)) ((0.51,0.60),0.69,(0.75,0.81))
D3 ((0.26,0.34),0.42,(0.52,0.62)) ((0.26,0.33),0.40,(0.49,0.58)) ((0.62,0.72),0.82,(0.86,0.90))

C7 C8 C9

D1 ((0.23,0.29),0.35,(0.44,0.53)) ((0.37,0.45),0.53,(0.60,0.67)) ((0.33,0.43),0.53,(0.62,0.71))
D2 ((0.63,0.73),0.83,(0.88,0.93)) ((0.58,0.67),0.76,(0.81,0.86)) ((0.47,0.57),0.67,(0.74,0.81))
D3 ((0.24,0.31),0.38,(0.47,0.56)) ((0.57,0.67),0.77,(0.82,0.87)) ((0.59,0.68),0.77,(0.81,0.85))

C10 C11 C12

D1 ((0.25,0.34),0.43,(0.53,0.63)) ((0.26,0.34),0.42,(0.52,0.62)) ((0.57,0.67),0.77,(0.82,0.87))
D2 ((0.59,0.68),0.77,(0.81,0.85)) ((0.53,0.63),0.73,(0.80,0.87)) ((0.28,0.37),0.46,(0.55,0.64))
D3 ((0.16,0.22),0.28,(0.38,0.48)) ((0.44,0.53),0.62,(0.69,0.76)) ((0.56,0.65),0.74,(0.79,0.84))

C13

D1 ((0.33,0.43),0.53,(0.62,0.71))
D2 ((0.47,0.57),0.67,(0.74,0.81))
D3 ((0.59,0.68),0.77,(0.81,0.85))

Table 7. The adjusted fuzzy weight matrix for DEC.

W1′ W2′ W3′

((1.311,1.535),1.758,(1.893,2.028)) ((1.258,1.490),1.723,(1.874,2.024)) ((1.128,1.360),1.591,(1.759,1.927))

W4′ W5′ W6′

((0.963,1.173),1.382,(1.562,1.743)) ((1.119,1.327),1.536,(1.687,1.837)) ((1.121,1.328),1.534,(1.697,1.860))

W7′ W8′ W9′

((0.852,1.034),1.215,(1.402,1.588)) ((1.202,1.417),1.632,(1.769,1.907)) ((1.102,1.334),1.566,(1.728,1.889))

W10′ W11′ W12′

((0.776,0.968),1.160,(1.356,1.552)) ((0.966,1.180),1.395,(1.589,1.783)) ((1.147,1.372),1.597,(1.746,1.895))

W13′

((1.102,1.334),1.566,(1.728,1.889))

As the adjusted fuzzy weight matrix is derived by extending QFD under a fuzzy
environment, these above users, recognized as experts, are also employed to evaluate the
service performance of 12 ports through linguistic variables of Table 1. These linguistic
performance ratings utilized by professionals against evaluation criteria are presented in
Table 8, and then the fuzzy performance matrix is aggregated in Table 9.

Table 8. Linguistic performance ratings of international container ports on evaluation criteria.

A1 A2 A3

VL L M H VH VL L M H VH VL L M H VH

C1 0 3 3 1 3 1 1 1 4 3 1 4 4 0 1
C2 1 1 1 4 3 0 0 3 3 4 0 1 3 3 3
C3 2 1 3 1 3 2 2 3 0 3 2 0 2 0 6
C4 2 0 2 3 3 0 6 1 1 2 1 1 1 3 4
C5 3 1 4 1 1 1 1 2 3 3 0 1 3 1 5
C6 0 3 3 3 1 2 1 5 2 0 1 5 0 2 2
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Table 8. Cont.

A1 A2 A3

VL L M H VH VL L M H VH VL L M H VH

C7 0 1 1 5 3 3 3 3 0 1 0 0 3 5 2
C8 1 3 2 3 1 1 1 1 4 3 2 3 2 3 0
C9 2 0 3 2 3 3 1 3 0 3 2 3 3 1 1

C10 1 4 1 3 1 1 1 2 3 3 2 5 1 0 2
C11 1 1 3 4 1 4 1 1 1 3 1 0 6 1 2
C13 1 2 3 1 3 1 2 5 0 2 0 4 4 1 1
C13 0 0 2 5 3 1 3 0 3 3 1 0 1 3 5

A4 A5 A6

VL L M H VH VL L M H VH VL L M H VH

C1 2 3 0 2 3 5 0 1 2 2 1 1 2 3 3
C2 0 0 4 0 6 2 1 5 0 2 1 3 1 2 3
C3 1 0 3 3 3 1 1 0 4 4 2 0 2 3 3
C4 1 1 0 4 4 2 1 5 2 0 1 6 1 2 0
C5 3 3 1 3 0 0 3 3 3 1 5 1 2 0 2
C6 2 3 2 0 3 1 3 3 0 3 2 0 4 2 2
C7 1 1 6 1 1 2 0 4 3 1 3 0 2 2 3
C8 0 1 1 5 3 5 0 2 3 0 1 1 5 1 2
C9 3 3 4 0 0 2 2 2 0 4 2 2 0 6 0

C10 0 4 4 1 1 2 3 3 1 1 1 0 6 3 0
C11 2 2 0 3 3 1 1 2 3 3 1 1 1 1 6
C13 1 1 1 4 3 1 0 1 3 5 2 0 3 0 5
C13 2 0 3 2 3 0 0 2 6 2 3 3 3 0 1

A7 A8 A9

VL L M H VH VL L M H VH VL L M H VH

C1 2 0 2 3 3 3 3 0 3 1 1 0 6 3 0
C2 0 2 5 1 2 3 1 3 0 3 2 2 2 3 1
C3 3 0 3 0 4 1 1 6 1 1 2 1 4 1 2
C4 0 1 3 3 3 5 0 1 2 2 3 3 3 1 0
C5 0 2 2 6 0 1 1 0 6 2 5 0 1 2 2
C6 1 0 1 2 6 0 1 1 5 3 0 0 4 3 3
C7 3 3 1 3 0 3 0 6 0 1 1 1 4 4 0
C8 1 1 1 1 6 6 1 1 1 1 2 1 5 0 2
C9 2 3 3 0 2 1 1 3 2 3 2 0 2 2 4

C10 3 3 3 0 1 2 3 2 0 3 1 3 3 3 0
C11 1 1 4 3 1 1 1 4 1 3 3 3 0 0 4
C13 1 0 2 5 2 0 3 0 5 2 0 0 3 5 2
C13 0 4 4 1 1 0 4 1 4 1 0 4 3 3 0

A10 A11 A12

VL L M H VH VL L M H VH VL L M H VH

C1 2 0 5 0 3 1 1 1 1 6 1 1 6 2 0
C2 0 5 5 0 0 6 0 4 0 0 6 1 1 1 1
C3 0 1 1 3 5 5 0 1 2 2 3 3 3 1 0
C4 1 0 1 4 4 0 0 3 3 4 1 0 1 2 6
C5 6 3 1 0 0 2 3 1 3 1 2 2 2 3 1
C6 3 0 6 0 1 1 1 1 3 4 2 0 3 2 3
C7 0 0 4 3 3 5 0 1 1 3 5 0 5 0 0
C8 4 3 1 1 1 0 4 2 4 0 1 1 1 1 6
C9 0 2 2 6 0 1 1 4 4 0 3 5 2 0 0

C10 0 3 4 3 0 2 3 3 2 0 2 3 0 4 1
C11 6 0 2 2 0 2 0 2 2 4 0 0 0 5 5
C13 2 1 5 0 2 0 0 0 4 6 2 3 3 0 2
C13 0 0 6 2 2 0 0 2 3 5 0 1 3 3 3
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Table 9. Fuzzy performance matrix for international container ports on criteria.

C1 C2 C3

A1 ((0.41,0.51),0.61,(0.68,0.75)) ((0.48,0.57),0.66,(0.73,0.80)) ((0.39,0.47),0.55,(0.62,0.69))
A2 ((0.48,0.57),0.66,(0.73,0.80)) ((0.56,0.66),0.76,(0.82,0.88)) ((0.35,0.43),0.51,(0.58,0.65))
A3 ((0.24,0.33),0.42,(0.51,0.60)) ((0.49,0.59),0.69,(0.76,0.83)) ((0.54,0.62),0.70,(0.74,0.78))
A4 ((0.37,0.45),0.53,(0.60,0.67)) ((0.60,0.70),0.80,(0.84,0.88)) ((0.48,0.57),0.66,(0.73,0.80))
A5 ((0.29,0.34),0.39,(0.47,0.55)) ((0.32,0.40),0.48,(0.56,0.64)) ((0.53,0.62),0.71,(0.77,0.83))
A6 ((0.46,0.55),0.64,(0.71,0.78)) ((0.40,0.49),0.58,(0.65,0.72)) ((0.45,0.53),0.61,(0.68,0.75))
A7 ((0.45,0.53),0.61,(0.68,0.75)) ((0.38,0.48),0.58,(0.66,0.74)) ((0.41,0.48),0.55,(0.61,0.67))
A8 ((0.26,0.33),0.40,(0.49,0.58)) ((0.34,0.41),0.48,(0.55,0.62)) ((0.32,0.41),0.50,(0.59,0.68))
A9 ((0.33,0.42),0.51,(0.61,0.71)) ((0.31,0.39),0.47,(0.56,0.65)) ((0.34,0.42),0.50,(0.58,0.66))
A10 ((0.39,0.47),0.55,(0.62,0.69)) ((0.20,0.30),0.40,(0.50,0.60)) ((0.59,0.69),0.79,(0.84,0.89))
A11 ((0.57,0.66),0.75,(0.79,0.83)) ((0.12,0.16),0.20,(0.30,0.40)) ((0.29,0.34),0.39,(0.47,0.55))
A12 ((0.29,0.38),0.47,(0.57,0.67)) ((0.17,0.21),0.25,(0.34,0.43)) ((0.17,0.24),0.31,(0.41,0.51))

C4 C5 C6

A1 ((0.45,0.53),0.61,(0.68,0.75)) ((0.26,0.33),0.40,(0.49,0.58)) ((0.35,0.45),0.55,(0.64,0.73))
A2 ((0.30,0.40),0.50,(0.58,0.66)) ((0.46,0.55),0.64,(0.71,0.78)) ((0.26,0.34),0.42,(0.52,0.62))
A3 ((0.51,0.60),0.69,(0.75,0.81)) ((0.55,0.65),0.75,(0.80,0.85)) ((0.31,0.40),0.49,(0.57,0.65))
A4 ((0.53,0.62),0.71,(0.77,0.83)) ((0.21,0.28),0.35,(0.45,0.55)) ((0.33,0.41),0.49,(0.56,0.63))
A5 ((0.26,0.34),0.42,(0.52,0.62)) ((0.35,0.45),0.55,(0.64,0.73)) ((0.36,0.45),0.54,(0.61,0.68))
A6 ((0.19,0.28),0.37,(0.47,0.57)) ((0.23,0.28),0.33,(0.41,0.49)) ((0.38,0.46),0.54,(0.62,0.70))
A7 ((0.49,0.59),0.69,(0.76,0.83)) ((0.38,0.48),0.58,(0.68,0.78)) ((0.61,0.70),0.79,(0.83,0.87))
A8 ((0.29,0.34),0.39,(0.47,0.55)) ((0.47,0.56),0.65,(0.73,0.81)) ((0.53,0.63),0.73,(0.80,0.87))
A9 ((0.17,0.24),0.31,(0.41,0.51)) ((0.29,0.34),0.39,(0.47,0.55)) ((0.51,0.61),0.71,(0.78,0.85))
A10 ((0.55,0.64),0.73,(0.79,0.85)) ((0.06,0.10),0.14,(0.24,0.34)) ((0.26,0.33),0.40,(0.49,0.58))
A11 ((0.56,0.66),0.76,(0.82,0.88)) ((0.29,0.37),0.45,(0.54,0.63)) ((0.51,0.60),0.69,(0.75,0.81))
A12 ((0.61,0.70),0.79,(0.83,0.87)) ((0.31,0.39),0.47,(0.56,0.65)) ((0.43,0.51),0.59,(0.66,0.73))

C7 C8 C9

A1 ((0.53,0.63),0.73,(0.80,0.87)) ((0.32,0.41),0.50,(0.59,0.68)) ((0.43,0.51),0.59,(0.66,0.73))
A2 ((0.20,0.27),0.34,(0.43,0.52)) ((0.48,0.57),0.66,(0.73,0.80)) ((0.34,0.41),0.48,(0.55,0.62))
A3 ((0.50,0.60),0.70,(0.78,0.86)) ((0.24,0.32),0.40,(0.50,0.60)) ((0.25,0.33),0.41,(0.50,0.59))
A4 ((0.32,0.41),0.50,(0.59,0.68)) ((0.53,0.63),0.73,(0.80,0.87)) ((0.15,0.22),0.29,(0.39,0.49))
A5 ((0.35,0.43),0.51,(0.60,0.69)) ((0.21,0.26),0.31,(0.41,0.51)) ((0.40,0.48),0.56,(0.62,0.68))
A6 ((0.40,0.47),0.54,(0.61,0.68)) ((0.37,0.46),0.55,(0.63,0.71)) ((0.32,0.40),0.48,(0.58,0.68))
A7 ((0.21,0.28),0.35,(0.45,0.55)) ((0.57,0.66),0.75,(0.79,0.83)) ((0.28,0.36),0.44,(0.52,0.60))
A8 ((0.26,0.33),0.40,(0.49,0.58)) ((0.17,0.21),0.25,(0.34,0.43)) ((0.44,0.53),0.62,(0.69,0.76))
A9 ((0.33,0.42),0.51,(0.61,0.71)) ((0.32,0.40),0.48,(0.56,0.64)) ((0.48,0.56),0.64,(0.70,0.76))
A10 ((0.51,0.61),0.71,(0.78,0.85)) ((0.19,0.25),0.31,(0.40,0.49)) ((0.38,0.48),0.58,(0.68,0.78))
A11 ((0.32,0.37),0.42,(0.49,0.56)) ((0.30,0.40),0.50,(0.60,0.70)) ((0.33,0.42),0.51,(0.61,0.71))
A12 ((0.15,0.20),0.25,(0.35,0.45)) ((0.57,0.66),0.75,(0.79,0.83)) ((0.11,0.18),0.25,(0.35,0.45))

C10 C11 C12

A1 ((0.30,0.39),0.48,(0.57,0.66)) ((0.38,0.47),0.56,(0.65,0.74)) ((0.40,0.49),0.58,(0.65,0.72))
A2 ((0.46,0.55),0.64,(0.71,0.78)) ((0.33,0.39),0.45,(0.52,0.59)) ((0.33,0.42),0.51,(0.59,0.67))
A3 ((0.24,0.32),0.40,(0.48,0.56)) ((0.39,0.48),0.57,(0.65,0.73)) ((0.29,0.39),0.49,(0.58,0.67))
A4 ((0.29,0.39),0.49,(0.58,0.67)) ((0.41,0.49),0.57,(0.64,0.71)) ((0.48,0.57),0.66,(0.73,0.80))
A5 ((0.25,0.33),0.41,(0.50,0.59)) ((0.46,0.55),0.64,(0.71,0.78)) ((0.58,0.67),0.76,(0.81,0.86))
A6 ((0.33,0.42),0.51,(0.61,0.71)) ((0.57,0.66),0.75,(0.79,0.83)) ((0.49,0.57),0.65,(0.70,0.75))
A7 ((0.20,0.27),0.34,(0.43,0.52)) ((0.36,0.45),0.54,(0.63,0.72)) ((0.47,0.56),0.65,(0.73,0.81))
A8 ((0.33,0.41),0.49,(0.56,0.63)) ((0.42,0.51),0.60,(0.67,0.74)) ((0.44,0.54),0.64,(0.72,0.80))
A9 ((0.27,0.36),0.45,(0.55,0.65)) ((0.35,0.42),0.49,(0.55,0.61)) ((0.50,0.60),0.70,(0.78,0.86))
A10 ((0.30,0.40),0.50,(0.60,0.70)) ((0.16,0.20),0.24,(0.34,0.44)) ((0.32,0.40),0.48,(0.56,0.64))
A11 ((0.22,0.30),0.38,(0.48,0.58)) ((0.48,0.56),0.64,(0.70,0.76)) ((0.68,0.78),0.88,(0.92,0.96))
A12 ((0.31,0.39),0.47,(0.56,0.65)) ((0.65,0.75),0.85,(0.90,0.95)) ((0.28,0.36),0.44,(0.52,0.60))

C13

A1 ((0.55,0.65),0.75,(0.82,0.89))
A2 ((0.42,0.51),0.60,(0.67,0.74))
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Table 9. Cont.

C13

A3 ((0.58,0.67),0.76,(0.81,0.86))
A4 ((0.43,0.51),0.59,(0.66,0.73))
A5 ((0.52,0.62),0.72,(0.80,0.88))
A6 ((0.20,0.27),0.34,(0.43,0.52))
A7 ((0.29,0.39),0.49,(0.58,0.67))
A8 ((0.35,0.45),0.55,(0.64,0.73))
A9 ((0.28,0.38),0.48,(0.58,0.68))
A10 ((0.44,0.54),0.64,(0.72,0.80))
A11 ((0.61,0.71),0.81,(0.86,0.91))
A12 ((0.49,0.59),0.69,(0.76,0.83))

Based on the entries of Table 9, these alternatives on varied criteria have different
strengths for ratings. Due to the ratings constructed based upon IVIFNs, it is very difficult
to compare these alternatives based on criteria, and the evidence is shown in the radar
chart of Figure 6. In fact, the criteria comparison complexity of these alternatives is still
high and even IVIFNs are degenerated to be crisp values through the concept of mean.
The situation is expressed in the radar chart of Figure 7. Therefore, aggregating alternative
ratings on varied criteria is necessary and criterial.
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By extending TOPSIS under IVFE, the anti-ideal and ideal solutions of the 12 inter-
national container ports against 13 evaluation criteria according to the data of Table 9 are
derived in Table 10.

Table 10. Anti-ideal and ideal solutions of twelve international container ports on all criteria.

C1 C2 C3

Anti-ideal solution ((0.24,0.33),0.39,(0.47,0.55)) ((0.12,0.16),0.20,(0.30,0.40)) ((0.17,0.24),0.31,(0.41,0.51))
Ideal solution ((0.57,0.66),0.75,(0.79,0.83)) ((0.60,0.70),0.80,(0.84,0.88)) ((0.59,0.69),0.79,(0.84,0.89))

C4 C5 C6

Anti-ideal solution ((0.17,0.24),0.31,(0.41,0.51)) ((0.06,0.10),0.14,(0.24,0.34)) ((0.26,0.33),0.40,(0.49,0.58))
Ideal solution ((0.61,0.70),0.79,(0.83,0.88)) ((0.55,0.65),0.75,(0.80,0.85)) ((0.61,0.70),0.79,(0.83,0.87))

C7 C8 C9

Anti-ideal solution ((0.15,0.20),0.25,(0.35,0.45)) ((0.17,0.21),0.25,(0.34,0.43)) ((0.11,0.18),0.25,(0.35,0.45))
Ideal solution ((0.53,0.63),0.73,(0.80,0.87)) ((0.57,0.66),0.75,(0.80,0.87)) ((0.48,0.56),0.64,(0.70,0.78))

C10 C11 C12

Anti-ideal solution ((0.20,0.27),0.34,(0.43,0.52)) ((0.16,0.20),0.24,(0.34,0.44)) ((0.28,0.36),0.44,(0.52,0.60))
Ideal solution ((0.46,0.55),0.64,(0.71,0.78)) ((0.65,0.75),0.85,(0.90,0.95)) ((0.68,0.78),0.88,(0.92,0.96))

C13

Anti-ideal solution ((0.20,0.27),0.34,(0.43,0.52))
Ideal solution ((0.61,0.71),0.81,(0.86,0.91))

Through information of Tables 7, 9 and 10, weighted preference degrees of these ports
over the anti-ideal solution are derived in Table 11. Additionally, weighted preference
degrees of the ideal solution over these ports are yielded in Table 12.

Table 11. Weighted preference degrees of international container ports over the anti-ideal solution.

Weighted Preference Degrees

A1 ((10.4589,12.5568),14.6547,(16.2703,17.8859))
A2 ((13.7587,16.4601),19.1614,(21.1399,23.1183))
A3 ((14.4360,17.3390),20.2419,(22.4793,24.7167))
A4 ((14.4388,17.2991),20.1595,(22.3024,24.4453))
A5 ((12.7780,15.3665),17.9550,(19.9174,21.8798))
A6 ((12.3903,14.8501),17.3099,(19.1862,21.0625))
A7 ((14.7240,17.5798),20.4355,(22.5247,24.6139))
A8 ((11.5305,13.8491),16.1677,(17.9403,19.7128))
A9 ((11.4995,13.7733),16.0472,(17.7481,19.4490))
A10 ((10.2931,12.4139),14.5347,(16.1961,17.8575))
A11 ((14.4753,17.3570),20.2388,(22.3946,24.5505))
A12 ((10.8658,13.0575),15.2492,(16.9584,18.6675))

Table 12. Weighted preference degrees of the ideal solution over international container ports.

Weighted Preference Degrees

A1 ((9.8545,11.7973),13.7401,(15.1954,16.6506))
A2 ((11.1390,13.3959),15.6528,(17.4328,19.2128))
A3 ((10.4617,12.5170),14.5723,(16.0934,17.6144))
A4 ((10.4589,12.5568),14.6547,(16.2703,17.8859))
A5 ((12.1197,14.4895),16.8592,(18.6553,20.4514))
A6 ((12.5074,15.0058),17.5043,(19.3865,21.2687))
A7 ((10.1737,12.2762),14.3787,(16.0480,17.7173))
A8 ((13.3672,16.0068),18.6465,(20.6324,22.6184))
A9 ((13.3982,16.0826),18.7670,(20.8246,22.8821))

A10 ((14.6046,17.4420),20.2795,(22.3766,24.4737))
A11 ((10.4224,12.4989),14.5754,(16.1781,17.7807))
A12 ((14.0450,16.8138),19.5826,(21.6332,23.6839))
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Through entries of Tables 11 and 12, relative closeness coefficients of the 12 inter-
national container ports in service performance and their ranking order are gained in
Table 13.

Table 13. Relative closeness coefficients and ranking order of international container ports on
service performance.

Relative Closeness Coefficients Ranking Order

A1 0.5163 6
A2 0.5497 5
A3 0.5818 2
A4 0.5788 4
A5 0.5157 7
A6 0.4974 8
A7 0.5863 1
A8 0.4645 9
A9 0.4607 10
A10 0.4179 12
A11 0.5810 3
A12 0.4383 11

The relative closeness coefficients of these ports related to service performance are,
respectively, A1: 0.5163, A2: 0.5497, A3: 0.5818, A4: 0.5788, A5: 0.5157, A6: 0.4974,
A7: 0.5863, A8: 0.4645, A9: 0.4607, A10: 0.4179, A11: 0.5810, and A12: 0.4383. Therefore,
their ranking order determined by these relative closeness coefficients is A7 > A3 > A11 >
A4 > A2 > A1 > A5 > A6 > A8 > A9 > A12 > A10 presented in the table as well. Obviously, A7
is the optimal port of the 12 international container ports, based upon service performance.

In 2016, Wang [2] evaluated these international container ports listed above based
upon weakness and strength indices of FMCDM. In addition to the weakness and strength
indices of FMCDM, Wang also used the other three computations to assess the international
container ports in his approach. Through four varied computations, the average ranking
order scores of 12 international container ports were, respectively, A1: 1.25, A2: 7.75,
A3: 4.25, A4: 5, A5: 3, A6: 1.75, A7: 5.75, A8: 9.25, A9: 12, A10: 9.75, A11: 7.25, and
A12: 11. Based on the above, the average ranking order scores computed by Wang were
different from the ranking order of Table 13. It was due to equipment and vessel shortages,
total capacity decline, port congestion, and cost increase during COVID-19 outbreaks.
Undoubtedly, COVID-19 outbreaks reserved the ranking orders of these international
container ports from 2016 to the present. For instance, A1 in Wang’s approach was the
optimal port of the 12 international container ports, based upon on performance evaluation,
whereas the ranking order for A1 was merely 6 in this paper. In fact, A1 indicated that
the port was in Hong Kong. Because of COVID-19 outbreaks, the Hong Kong economy
has deteriorated more than others due to numerous factors, and thus its port performed
less well than before, too. The sort variations of other international container ports on
performance evaluation could be discussed through the similar analysis. Evidently, the
dilemma of epidemic prevention and economic development is an important issue for all
governments. For a complicated environment, TIVFNs present more data than other fuzzy
numbers. Therefore, international container ports with DEC, using the hybrid method of
combining QFD with TOPSIS under IVFE, are effectively and efficiently assessed for service
performance, and more messages are gained than in the past, meaning we can establish
the essential fundamentals of port logistics related to COVD-19 barriers, and the recent
scientific developments in port logistics due to the pandemic.

5. Conclusions

Since the evaluation of service performance of international container ports is a FM-
CDM problem with DEC, we extend QFD and TOPSIS under a fuzzy environment into
IVFMCDM for the evaluating of the problem in this paper. Through EFPR, the multipli-
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cation of IVFNs to form PFNs is not necessary for computations of extending QFD and
TOPSIS into a hybrid method under a fuzzy environment. The hybrid method can deal with
the FMCDM problems with DEC and avoid the corresponding drawbacks of ANP or IDEC
transformed into DEC. Moreover, a port’s relative closeness coefficients based on the EFPR
are derived as the sorting reference for service performance evaluation of international
container ports with DEC. Further, IVFMCDM provides the preference degrees of ports
over the anti-ideal solution, and the ideal solution over ports on varied criterion besides
relative closeness coefficients, so that managers, through the data in Table 7, Table 9, and
Table 10, can evaluate ports based on different perspectives. Evidently, the IVFMCDM
method, extending QFD and TOPSIS under a fuzzy environment, has three advantages:
processing of decision-making problems with DEC, easy computation, and more mes-
sage grabbing ability than other fuzzy numbers. Therefore, the service performance of
international container ports with DEC are effectively and efficiently evaluated. In the
future, varied data specifications may be in FMCDM problems with DEC because more
messages are taken into consideration to solve decision-making problems. Decision-makers
should match each kind of data specification to develop decision-making methods. The
hybrid method of combining QFD with TOPSIS provides a logical underlying to pro-
pose a new perspective for management applications including scientific developments of
port logistics.
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